
��

News from New Zealand

by

C. S. Calude

Department of Computer Science, University of Auckland
Auckland, New Zealand

cristian@cs.auckland.ac.nz

1 Scientific and Community News
The latest CDMTCS research reports are (http://www.cs.auckland.ac.nz/
staff-cgi-bin/mjd/secondcgi.pl):

397. G. J. Chaitin. A Mathematical Theory of Evolution and Biological Creativ-
ity. 01/2011

398. Y. Bugeaud. Continued Fractions of Transcendental Numbers. 02/2011

399. R. Nicolescu and H. Wu. BFS Solution for Disjoint Paths in P Systems.
03/2011

400. A. Akhtarzada, C. S. Calude, J. Hosking. A Multi-Criteria Metric Algo-
rithm for Recommender Systems. 04/2011

401. G. Gimel’farb, R. Nicolescu and S. Ragavan. P Systems in Stereo Match-
ing. 04/2011

402. L. Staiger. Exact Constructive Dimension. 04/2011



������ �� 	
� ����� ����

��

2 A Dialogue with Professor Joseph Sifakis about
Concurrent Systems Specification and Verifica-
tion

Professor Joseph Sifakis, http://www-verimag.imag.fr/~sifakis, is a
leading researcher well-known for his pioneering work in theoretical and prac-
tical aspects of concurrent systems specification and verification, notably the
area of model-checking. His current research activities include component-based
design, modelling, and analysis of real-time systems with focus on correct-by-
construction techniques.

Educated at the Electrical Engineering at the National Technical University
of Athens and the University of Grenoble, Professor Sifakis received a doctorate
(1974) and a state doctorate (1979) from the University of Grenoble, and a Dr.
h.c. from the École Polytechnique Fédérale de Lausane, Switzerland (2009).

Professor Sifakis holds the INRIA-Schneider endowed industrial chair and
works at the Verimag Laboratory, Grenoble, of which he is a founder. He is the
director of the Carnot Institute “Intelligent Software and Systems" in Grenoble
(http://www.carnot-lsi.com) and coordinates Artist2, the European Net-
work of Excellence for research on Embedded Systems.

Professor Sifakis has received the CNRS Silver Medal in 2001 and the Turing
Award for 2007. He is a grand officer of France’s national order of merit.

Cristian Calude: Please tell us about your education and the people who influ-
enced most your academic career.

Joseph Sifakis: I studied Electrical Engineering at the National Technical Uni-
versity in Greece. As a student I was inclined to be more concerned with theory
than with practice. I came to Grenoble in 1970 for graduate studies in Physics.
An encounter has been decisive for my career: I had the chance to meet Professor
Jean Kuntzmann, who was the Director of the Institute of Informatics and Applied
Mathematics (IMAG). My interest in Computer Science grew and I decided to quit
my studies in Physics and start undergraduate studies at IMAG. Jean Kuntzmann
was an inspired mathematician. I did my Engineering thesis under his supervi-
sion on modelling the timed behaviour of circuits. I learned a lot from him, and
I remember that he always recommended not looking at the bibliography before
coming up with one’s own solution to a problem. This is a rule that I have strictly
observed throughout my career. After my Engineering Thesis, I became interested
in the theory of concurrency.

In 1974, I met Carl Adam Petri and then visited him and his colleagues in
Bonn several times. I was really impressed by his erudition but I could not really



��� �������	 
� ��� ����

��

understand why “true concurrency” was such a big idea. In contrast to the pre-
vailing approach, I considered in my papers that Petri nets are merely transition
systems.

In 1977, I definitely left Petri nets for program semantics and verification.
Dijkstra’s papers and books had a deep influence on my work as well as discus-
sions with Michel Sintzoff who was working at that time on program verification.
They drew me the idea of fixpoint characterization for temporal modalities, and
this opened the way to the results on model-checking. My student Jean-Pierre
Queille developed the first model checker in 1982. I met Ed Clarke and Allen
Emerson at CMU in November 1982 and we realized that we had been working
independently on the same problem. From Patrick Cousot I learned about abstract
interpretation—our offices were in the same corridor and we were both members
of the “Programming Languages” team.

In the autumn of 1983, I met Amir Pnueli for the first time at a workshop on
“The Analysis of Concurrent Systems”, organized in Cambridge. This was the
beginning of a continuous interaction and collaboration for more than 25 years.
Amir had a deep influence on my career. For more than 10 years, we have setup
several European projects in collaboration withWillem-Paul de Roever, on system
modelling and verification. We jointly organized with Ed Clarke the Workshop on
the “Verification of Finite State Systems” in Grenoble in 1989. This workshop is
considered as the first edition of the CAV Conference. Amir Pnueli opened my
horizons and contributed to the visibility and recognition of our work at Verimag
through his international network of connections and collaborations. He brought
me into contact with leading researchers and teams working on timed and hybrid
systems. Thomas Henzinger came to Verimag as a postdoctoral student. Oded
Maler, Amir Pnueli’s Ph.D. student, joined my team as a permanent researcher.
We had a strong team that contributed significantly to the development of the
state-of-the-art in hybrid and timed systems. Amir Pnueli has frequently visited
Verimag for over ten years and we greatly benefited from his wisdom and support.

The interaction and collaboration with researchers in my own team also had a
deep impact on my career. I will mention Ahmed Bouajjani, Saddek Bensalem,
Susan Graf, OdedMaler, Sergio Yovine and Stavros Tripakis as well as Paul Caspi
and Nicolas Halbwachs who designed and developed the Lustre synchronous pro-
gramming language.

In the late 90’s my research interests progressively shifted from verification
and formal methods to system design. This was not the result of the direct influ-
ence of a single person but rather through an increasing awareness that verification
was hitting a wall and only incremental improvements in the state-of-the-art could
be expected. I stepped down from the Steering Committee of CAV and started a
research program on embedded systems design. Interactions with colleagues such
as Hermann Kopetz, Lothar Thiele, Thomas Henzinger, Alberto Sangiovanni-



������ �� 	
� ����� ����

��

Vincentelli and Edward Lee contributed to elaborating a system perspective for
Computer Science. I worked actively for setting up the Emsoft Conference and
for organizing the Embedded Systems community in Europe through the Artist co-
ordination measure followed by the Artist2 and ArtistDesign European Networks
of Excellence. Although this incurred some considerable effort in administrative
work, I learned a lot through the scientific management of world class research
teams.

CC: Please present Verimag you have founded and directed.

JS: In January 1993, I founded Verimag laboratory, a joint-venture between IMAG
(Computer Science and Applied Mathematics Institute) and Verilog SA. This has
been an exiting and fruitful experience. Verimag has transferred the Lustre lan-
guage to the SCADE synchronous programming environment. SCADE has been
used by Airbus for over 15 years to develop safety critical systems and has become
a de facto standard for aeronautics. SCADE has been qualified as a development
tool by the FAA, EASA, and Transport Canada under DO-178B up to Level A.
It is currently been commercialized by Esterel Technologies. We also transferred
functional testing and verification techniques to the ObjectGeode tool for mod-
elling real-time distributed applications. This tool has been commercialized by
Telelogic purchased by IBM in 2008.

Since 1997, Verimag has been a public research laboratory, associated with
CNRS and the University of Grenoble. It plays a prominent role in embedded
systems by producing cutting edge research and leading research initiatives and
projects in Europe.

As the director of Verimag I have sought a balance between basic and applied
research. I have used resources from industrial contracts and collaborative projects
to develop new research activities and strengthen the potential in basic research.
For me, participation in industrial projects has been a source of inspiration. It
allowed the definition of new research directions that are scientifically challenging
and technically relevant. I believe that this virtuous cycle of interaction between
academic research and applications is the key to Verimag’s success.

CC: What are Artist2 and ArtistDesign?

JS: ArtistDesign is a European Network of Excellence federating the European
research community in Embedded Systems Design. It brings together 31 of the
best research teams as core partners, 15 Industrial and SME affiliated Industrial
partners, 25 affiliated Academic partners, and 5 affiliated International Collabora-
tion partners who participate actively in the technical meetings and events.

The central objective for ArtistDesign is to build on existing structures and
links forged in the FP6 Artist2 Network of Excellence, to become a virtual Cen-
ter of Excellence in Embedded Systems Design. This is mainly achieved through



��� �������	 
� ��� ����

��

tight integration between the central players of the European research community.
These teams have already established a long-term vision for embedded systems in
Europe, which advances the emergence of Embedded Systems as a mature disci-
pline.

The research effort aims to integrate topics, teams, and competencies, through
an ambitious and coherent research programme of research activities which are
grouped into 4 Thematic Clusters: “Modelling and Validation”, “Software Synthe-
sis, Code Generation, and Timing Analysis”, “Operating Systems and Networks”,
“Platforms and MPSoC”, “Transversal Integration” covering both industrial ap-
plications and design issues aims for integration between clusters.

The NoE has a very dynamic International Collaboration programme, inter-
acting at top levels with the best research centers and industrial partners in the
USA: (NSF, NASA, SRI, Boeing, Honeywell, Windriver, Carnegie Mellon, Van-
derbilt, Berkeley, UPenn, UNC Chapel Hill, UIUC, etc) and in Asia (Tsinghua
University, Chinese Academy of Sciences, Seoul National University, East China
Normal University, etc).

ArtistDesign also has a very strong tradition of Summer Schools, Graduate
Courses, and major workshops.

CC: Why is model checking so important for today’s IT industry? What are your
main contributions in this area?

JS: The first results on “property verification by evaluation of formulas” are in
my Thesis (Thèse d’Etat) presented in June 1979. These results have been pub-
lished in the paper “A Unified Approach for Studying the Properties of Transition
Systems”—Theoretical Computer Science, Vol. 18, 1992. They include a fixpoint
characterization of a simple logic with two modalities: possible and inevitable.

The results of my Thesis led to the development of the first model checker CE-
SAR, in 1982. The tool allows translation of finite state CSP programs into Petri
nets, extended with finite-valued variables. The verification method is symbolic,
representing sets of model states as boolean expressions. My team developed in
the 80’s several model-checkers for the verification of distributed systems, by us-
ing enumerative techniques such as CADP and the IF toolbox. We also developed
in collaboration with Telelogic the TGV testing tool that generates test suites for
communication protocols from their specification in a simple temporal logic.

My research for more than a decade focused on increasing the efficiency of
model-checking techniques. I investigated compatibility between equivalences
induced by temporal logics and behavioural equivalences based on bisimulation
relations that can be used to reduce models. I also produced results relating model-
checking and abstract interpretation that have been successfully applied in tools
such as Invest at Verimag and SAL at SRI.

In the early 90’s we studied, in collaboration with T. Henzinger, X. Nicollin



������ �� 	
� ����� ����

��

and S. Yovine, the first symbolic model-checking algorithm for the verification of
TCTL. This algorithm has been implemented in the Kronos tool at Verimag. I also
worked on the verification of hybrid systems, in collaboration with researchers
from Verimag and Rajeev Alur and Thomas Henzinger. These general results are
complemented by work on the verification of specific classes of hybrid systems, in
particular in collaboration with Amir Pnueli. Finally, in collaboration with Oded
Maler and Amir Pnueli, I produced results on the synthesis of controllers for timed
systems. These have been applied for schedulability analysis of real-time systems.

Today model-checking is a mature technology used by companies such as In-
tel, IBM and Microsoft. These have developed proprietary technology for verify-
ing complex systems. Model-checking can be also used for debugging or gener-
ating suites for testing real implementations. I see two main obstacles to the ap-
plication of model checking to complex systems. One is of course the size of the
state space which may increase exponentially with the number of the components
of a system. The other, equally important obstacle is generating faithful models
from system description formalisms, in particular for mixed software/hardware
systems.

CC: What is component-based construction and BIP?

JS: We need theory, models and tools for cost-effectively building complex sys-
tems by assembling heterogeneous components. This is essential for any engi-
neering discipline. It confers numerous advantages such as productivity and cor-
rectness.

System designers deal with heterogeneous components, with different char-
acteristics, from a large variety of viewpoints, each highlighting different dimen-
sions of a system. They often use several semantically unrelated formalisms e.g.
for programming, HW description and simulation. This breaks the continuity of
the design flow and jeopardizes its coherency. System development is often de-
coupled from validation and evaluation.

System descriptions used along a design flow should be based on a single se-
mantic model to maintain its overall coherency by guaranteeing that a description
at step n+1 meets essential properties of a description at step n. The semantic
model should be expressive enough to express different types of heterogeneity:

* Heterogeneity of computation: The semantic model should describe both
synchronous and asynchronous computation to allow in particular, modeling
mixed hardware/software systems.

* Heterogeneity of interaction: The semantic model should enable the natural
and direct description of various mechanisms used to coordinate the execution of
components including semaphores, rendezvous, broadcast, method call, etc.

* Heterogeneity of abstraction: The semantic model should support the de-
scription of a system at different abstraction levels from application software to



��� �������	 
� ��� ����

��

its implementation.
Existing theoretical frameworks for composition are based on a single operator

e.g., product of automata, function call. Poor expressiveness of these frameworks
may lead to complicated designs: achieving a given coordination between com-
ponents often requires additional components to manage their interaction. For
instance, if the composition is by strong synchronization (rendezvous), model-
ing the broadcast requires components for choosing the maximal amongst sev-
eral possible strong synchronizations. We need frameworks providing families
of composition operators for the natural and direct description of coordination
mechanisms such as protocols, schedulers and buses. These should provide a uni-
fied composition paradigm for describing and analyzing the coordination between
components in terms of tangible, well-founded and organized concepts. In addi-
tion, they should be equipped with tractable methods for ensuring correctness-by-
construction to avoid the limitations of monolithic verification. These methods
use two types of rules:

* Compositionality rules for inferring global properties of composite com-
ponents from the properties of constituent components e.g. the composition of
deadlock-free components is - under some conditions - a deadlock-free compo-
nent. A special and very useful case of compositionality is when a behavioural
equivalence relation between components is a congruence. In that case, substi-
tuting a component in a system model by a behaviourally equivalent component
leads to an equivalent model. Today, we lack compositionality theory for progress
properties as well as platform-dependent properties.

* Composability rules ensuring that essential properties of components are
preserved when they are used to build composite components. Consider for in-
stance, two components. One is the composition of a set of components shar-
ing a common resource accessed in mutual exclusion. The other is obtained as
the composition of the same set of components scheduled for optimal use of the
shared resource. Is it possible to obtain a single component integrating this set of
components and such that both mutual exclusion and the scheduling constraints
hold? System engineers face this type of non-trivial problem every day. They
use libraries of solutions to specific problems and they need methods for com-
bining them without jeopardizing their essential properties. Feature interaction
in telecommunication systems, interference among web services, interference in
aspect programming are all manifestations of the lack of composability.

This vision has motivated my research over the past decade, during which I
studied BIP (Behaviour, Interaction, Priority), a component framework for rig-
orous system design. BIP allows the construction of composite hierarchically-
structured components from atomic components characterized by their behaviour
and their interface. Components are composed by the layered application of inter-
actions and of priorities. Interactions express synchronization constraints between



������ �� 	
� ����� ����

��

actions of the composed components while priorities are used to filter amongst
possible interactions and to steer system evolution to meet performance require-
ments e.g. to express scheduling policies. Interactions are described in BIP as
the combination of two types of protocols: a) rendez-vous to express strong sym-
metric synchronization and b) broadcast to express triggered asymmetric synchro-
nization. BIP offers a clean and abstract concept of architecture separated from
behaviour. Architecture in BIP is a first class concept that can be analyzed and
transformed. BIP relies on rigorous operational semantics that have been im-
plemented in three Execution Engines for centralized, distributed and real-time
execution. The combination of interactions and priorities to describe coordina-
tion between components confers BIP expressiveness not matched by any other
existing formalism. The usual notion of expressiveness does not take into account
features such as primitives for structuring and composition. It considers as equiva-
lent (Turing complete) a wide variety of formalisms from high-level programming
languages to counter machines. I have proposed a notion of expressiveness that
characterizes the ability of modeling formalisms to describe coordination mecha-
nisms between components.

CC: What is your vision for the development of computer science?

JS: Computer Science is a young and rapidly evolving discipline due to the ex-
ponential progress of technology and applications. It is a scientific discipline in
its own right with its own concepts and paradigms. It deals with problems related
to the representation, transformation and transmission of Information. As such,
it studies all aspects of computing from models of computation to the design of
software and computing devices.

Information is an entity distinct from matter and energy. It is a resource that
can be stored, transformed, transmitted and consumed. It is immaterial but needs
media for its representation. Information is any structure to which one can assign
a meaning. The number “4” can be represented by the symbols “100”, “four”,
“IV”. All these representations have the same meaning defined by a semantic
function. This concept is different from physical information measured as entropy
in Information Theory and Physics, which characterizes the informational content
of a specific representation.

Computer Science is not merely a branch of Mathematics. As any scientific
discipline, it seeks validation of its theories on mathematical grounds. But mainly
and most importantly, it develops specific theory intended to explain and predict
properties of computations which can be tested experimentally.

More than 95% of the chips produced today are for embedded applications.
These are electronic components integrating software and hardware jointly and
specifically designed to provide given functionalities, which are often critical.
They are hidden in devices, appliances and equipment of any kind: mobile phones,



��� �������	 
� ��� ����

��

cameras, home appliances, cars, aircraft, trains, medical devices etc. In 2008, a
person used about 230 embedded chips every day: 80 chips in home appliances,
40 chips at work, 70 chips cars, 40 chips in portable devices. In the near fu-
ture, another anticipated important landmark will be the advent of the Internet of
Things as the result of a convergence between embedded technologies and the In-
ternet. The idea is to use internet technologies to integrate services provided by
hundreds of billions of embedded systems. This will require an upgrade of the
internet infrastructure to make it more secure, safe and reactive. Current features
for exchanging multimedia documents will be extended to encompass real-time
monitoring and control. Systems are becoming ubiquitous. The state of almost
everything can be measured, sensed and monitored. People and objects can com-
municate and interact with each other in entirely new ways. Intelligent systems
allow enhanced predictability of events and optimal use of resources.

It is hard to imagine what Computer Science will be in two decades. More
than any other discipline, it is driven by applications and exponential progress in
technology. The broadening of its perimeter is accompanied by a shift in focus
from programs to systems.

CC: Please illustrate with a simple example the difference between programs, on
one hand, and systems, on the other hand.

JS: Programs usually compute a single function. They transform input data into
output data. They must terminate and are deterministic. A system interacts con-
tinuously with a physical environment. It combines the execution of several func-
tions. Its behaviour can be understood as a relation between input data streams and
output data streams. It is in general non-terminating and non-deterministic. Con-
sider for instance, a controller for a lift. Depending on external stimuli (pushing a
button by a user) it will execute a function that moves the cabin to a destination.
Its behaviour is non-terminating and may be non-deterministic.

Existing models of computation deal with functions. They ignore physical
time and resources. Computation is a finite sequence of steps corresponding to
the execution of primitive operations. Complexity theory is based on abstract
notions of resources such as time and memory. Programs have behaviour that is
independent from the physical resources needed for their execution. In contrast,
essential systems properties strongly depend on physical resources.

New trends in computing systems bring Computer Science closer to Physics.
Marrying physicality and computation requires a better understanding of their dif-
ferences and points of contact. Is it possible to define models of computation
involving quantities such as physical time, physical memory and energy? There
exist significant differences in approaches and paradigms adopted by the two dis-
ciplines. We badly need holistic rigorous design approaches taking into account
the interaction of mixed software/hardware systems with their physical environ-



������ �� 	
� ����� ����

��

ment.

CC: What and how should we teach CS?

JS: Computer Science complements and enriches our knowledge with theory and
models enabling a deeper understanding of discrete dynamic systems. It proposes
a constructive and operational view of the world which complements the classic
declarative approach adopted by Physics.

Computer Science curricula seldom recognize the importance of systems and
fails to provide a holistic view of the discipline. I have the following recommen-
dations.

* Teach students how to think in terms of systems (design process, tools, inter-
action with users and physical environment). Computer Science curricula should
be extended and enriched by including principles, paradigms, techniques from
Control Theory and Electrical Engineering.

* Teach principles rather than facts (foundations, architectures, protocols,
compilers, simulation. . . ). Very often courses are descriptive and present details
that can be acquired later as needed in professional life. Students should be pre-
pared to deal with the constant change induced by technology and applications.
They also should be kept aware of the limitations of existing theory of computing.
Very often theory makes assumptions oversimplifying reality.

* Put emphasis on information and computation as universal concepts appli-
cable not only to computers and provide the background for triggering critical
thinking, understanding and mastering the digital world.

CC: Theories are not famous for leading to technologies. What do you think about
research in Computer Science and its impact on industrial practice?

JS: Unfortunately, the current scope and focus of research in Computer Science
fail to address central problems for the IT industry, in particular problems raised
by system design and engineering. Following well-beaten paths rather than tak-
ing the risk of exploring new ideas is a prevalent attitude by researchers from all
scientific communities. More than in other disciplines, research in Computer Sci-
ence has been over-optimistic regarding the possibility for solving hard problems
and overcoming obstacles. This can probably be explained by the strong demand
and incentives for innovation by funding agencies as well as the strong push from
applications and market needs. Very often, scientific roadmaps and position pa-
pers present “challenges” that are mere visions and take desires for reality. All
of the following were once hyped as main breakthroughs: Artificial Intelligence,
Fifth Generation Computers, Program Synthesis, True Concurrency, Web Science.
The proper goal of theory in any field is to make models that accurately describe
real systems. Models can be used to explain phenomena and predict system be-
haviour. They should help system builders do their jobs better. A very common



��� �������	 
� ��� ����

��

attitude is to work on mathematically clean theoretical frameworks whether or not
they are relevant. Very often, simple mathematical frameworks attract the most
brilliant researchers who produce sterile “low-level theory”, that has no point of
contact with real computing. This leads to a separation between theoretical and
practical work that is harmful for the discipline. The opposite extreme is also ob-
served. There exist frameworks intended to describe real systems such as UML
and AADL constructed in an ad hoc manner. These include a large number of
semantically unrelated constructs and primitives. It is practically impossible to
obtain rigorous formalizations and build any useful theory for such frameworks.
We need theoretical frameworks expressive enough to directly encompass a mini-
mal set of high-level concepts and primitives for system description and amenable
to formalization and analysis.

CC: Is it possible to find a mathematically elegant and still practicable theoretical
framework for computing systems?

JS: Computer Science deals with building artefacts. The key issue is construc-
tivity, that is, the ability to effectively build correct systems. As system synthesis
from requirements is intractable for complex systems, we should study principles
for building correct systems from components. The aim is to avoid a posteriori
monolithic verification as much as possible. There already exists a large body
of constructivity results in Computer Science such as algorithms, architectures,
protocols. Their application allows correctness for (almost) free. How can the
global properties of a composite system be effectively inferred from the proper-
ties of its constituents? This remains an old open problem that urgently needs
answers. Failure in bringing satisfactory solutions will be a limiting factor to sys-
tem integration. It would also mean that Computer Science is definitely relegated
to second class status with respect to other disciplines.
Useful Links:
Joseph Sifakis’ home page: http://www-verimag.imag.fr/~sifakis,
Verimag’s home page: http://www-verimag.imag.fr,
ArtistDesign: http://www.artist-embedded.org/artist,
BIP: http://www-verimag.imag.fr/Rigorous-Design-of-Component-
Based.html?lang=en

CC: Thank you.


