
 !""#$%& '($)# *+,-. &' /0/1 223 4567/1 8!&# 90/0

©:
*!;'2#<& +==':%<$%'& ('; ,)#';#$%:<" -'>2!$#; .:%#&:#

 !

T C C C



J T́

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

jacobo.toran@uni-ulm.de

The use of computers has become very important in most areas of research,

both experimental and theoretical. Curiously, in the case of complexity theory,

the use of computers as a tool to guide research has not played a central role

so far. Kazuyuki Amamo gives in this column an extensive overview on recent

attempts to obtain new results in the area of Boolean circuits with the help of

computers.

R  C  B

F  C

Kazuyuki Amano ∗

Abstract

With the rapid advances in computers, it becomes attractive to explore
the use of computers to attack open problems in computational complexity.
In this article, we concentrate on the problems of the complexity of Boolean
functions, and overview several recent attempts to use computers in var-
ious ways to obtain concrete results on major problems in computational
complexity. We discuss the problems on several computational models in-
cluding ordered binary decision diagrams, Boolean circuits, and polynomial
threshold representations of Boolean functions.

∗Tenjin 1-5-1, Kiryu, Gunma, 376-8515 Japan, Department of Computer Science, Gunma Uni-
versity. amano@cs.gunma-u.ac.jp

 !" #$%%"&'()* &!" +, -.

 !

1 Introduction

Due to the rapid progress of computers, we now have a personal computer whose
computational power is exceeding the power of the supercomputer two or three
decades ago. My personal computer can verify (the Robertson et al.’s version [45]
of) the proof of the Four Color Theorem in less than five minutes. The fields of ex-
perimental mathematics in which computation plays a central role of investigation
have become increasingly wider.

In contrast, the progress of the research on computational complexity, espe-
cially on lower bound problems, is not so rapid. In spite of the computational com-
plexity studies the nature of computation, the use of computers in the research of
computational complexity seems not so common compared to mathematics. The
starting point of this article is a simple thought: Can we use computers more
seriously in the investigation of computational complexity?

In this article, we concentrate on the problems concerning concrete models of
computations like Boolean circuits and overview several recent attempts to use
computers in various ways to obtain concrete results on major problems in com-
plexity theory. The models we consider in this article include ordered binary
decision diagrams, Boolean circuits, and polynomial threshold representations of
Boolean functions. We are aware that many of them are still in preliminary stages,
and more work is needed to get an important result. However, we hope that these
attempts inspire a new idea for attacking the major and difficult problems in com-
plexity theory; this is one of the main points that we would like to offer in this
article.

An article encouraging to use computers in the research of computational com-
plexity, which has a similar spirit to this article, was also presented by Williams
[54]. In that article, he reviewed several topics that practical computing has made
a noteworthy impact. The topics include the analysis of the complexity of ex-
ponential time algorithms, constructing gadgets using computers and more. This
article is more oriented to the problems of the complexity of Boolean functions. In
addition, we give several open problems that we believe to be interesting, doable
and fun.

The organization of this article is as follows: In Section 2, we start with the
problem on the OBDDs as an illustrative example so that a large amount of com-
putations lead us to a better understanding of the complexity. Then in Section 3,
we consider three topics on Boolean circuits and see how actual computations can
help to obtain theoretical results. In Section 4, we consider the problems on the
expressive power of real valued polynomials for representing Boolean functions
including a new computational method for getting an upper bound on the average
density of polynomial threshold representations of Boolean functions.

 !"#$% &' ()(!" "# $% $&'()*%

2 Ordered Binary Decision Diagrams

We begin this article by reviewing the problem on the expressive power of ordered
binary decision diagrams (OBDDs) and how computers are helping to give a better
knowledge about the complexity. The ordered binary decision diagram is one of
the most well studied models for representing Boolean functions both in theory
and in practice.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable

ordering π on Xn is a permutation from {1, . . . , n} to Xn leading to the ordered list

π(1), . . . , π(n) of the variables.
A π-OBDD on Xn is a directed acyclic graph whose sinks are labeled by a

constant 0 or 1 and whose inner nodes are labeled by Boolean variables from

Xn. Each inner node has two outgoing edges, one of them labeled by 0, the other
by 1. The edges between inner nodes have to respect the variable ordering π,
i.e., if an edge leads from an xi-nodes to an x j-node, then π

−1(xi) < π−1(x j). A

π−OBDD computes a Boolean function f : {0, 1}n → {0, 1} in the following way:
An assignment (a1, . . . , an) ∈ {0, 1}n to Xn defines a uniquely determined path from

the root to one of the sinks. The label of the reached sink gives f (a). The size of a
π-OBDD is defined as the number of its nodes. The OBDD complexity of f is the

minimum size of a π-OBDDs that computes f . A π-OBDD for some unspecified

variable order is simply called OBDD.

The size of an OBDD for a given Boolean function is strongly depending on
the variable order. For example, consider the function f (x1, . . . , x2n) = (x1 ∨ x2)∧
(x3 ∨ x4) ∧ · · · ∧ (x2n−1 ∨ x2n). If we use the ordering (x1x3 · · · x2n−1x2x4 · · · x2n),
then we only need 2n+ 2 nodes to represent f ; however we need 2n+1 nodes if the
ordering (x1x2 · · · x2n) is used.

In the theory of OBDDs, one of the most investigated functions is the middle
bit of integer multiplication. This is a 2n-variable Boolean function that represents
the n-th bit (the least significant bit is counted as the first) of the product of two n

bit numbers (xn−1 · · · x0) and (yn−1 · · · y0) specified by inputs. This function is the
first practical function for which an exponential lower bound has been proven for
every variable order [12].

The investigation of the OBDD size of the middle bit of integer multiplication
as well as other bits has a long history. An excellent survey devoted to this topic
was presented by Bollig [11] in the BEATCS column. The newest volume of the
famous book of Knuth [31] also discusses this topic extensively.

The current best lower bound is 2⌊n/2⌋/61 − 4 by Woelfel [55] and the current
best upper bound is 2.8 · 26n/5 by the author and Maruoka [3]. The upper bound
is achieved by the pairwise ascending variable order π = (x0, y0, . . . , xn−1, yn−1).

 !" #$%%"&'()* &!" +, -.

 !

n 4 5 6 7 8 9 10 11 12
Size of OBDD 31 63 136 315 756 1717 4026 9654 21931
Size of qOBDD 39 72 156 348 797 1808 4106 9796 22151

26n/5 ≈ 28 64 147 338 776 1783 4096 9410 21619

Figure 1: The minimum size of OBDD or qOBDD for the middle bit of multipli-
cation. The data for qOBDD are from [3] and for OBDD are from [30, 47]

In fact, we found this by computer calculations. Below we describe a short story
explaining this.

For an ease of exposition, we consider a variant of OBDDs called quasi-
reduced OBDDs (qOBDDs); OBDDs where all variables have to be tested on
every path from the source to the sinks. The size of π-qOBDD is at most n + 1
times larger than the size of π-OBDD for a same π, i.e., both are essentially the
same (especially when we consider a function having an exponential complexity
like integer multiplication). By the following nice fact, the size of π-OBDD for a
given function f is fully characterized by the number of different subfunctions of
f obtained by fixing appropriate variables according to π.

Fact 1. Let f be a Boolean function over the variable set X = {x1, . . . , xn}. For
I ⊆ X, let sub(f , I) denote the number of different subfunctions of f obtained

by fixing all variables in X\I. Then, the number of π(i)-nodes in an optimal π-
qOBDD for f is equal to sub(f , I) with I = {π(i + 1), . . . , π(n)}.

This immediately implies that the size of an optimal qOBDD for f is given by

min
I={I0,...,In}

∑

0≤i≤n
sub(f , Ii), (1)

where the minimum ranges over all sequences of sets φ = I0 ⊂ I1 ⊂ · · · ⊂ In = X

with |Ii| = i. By a standard dynamic programming, we can compute the opti-
mal size of qOBDD for a given n-variable function as well as an optimal variable
ordering in time O(n23n) [17]. Note that we can similarly compute an optimal
OBDD by replacing the term sub(f , Ii) in Eq. (1) by subx(f , Ii) denoting the num-
ber of different subfunctions of f obtained by fixing {π(i + 1), . . . , π(n)} and es-
sentially depends on x. Current computers are fast enough to carry out these
computations for up to n ∼ 20.

The empirical results shown in Fig. 1 are bit surprising. The OBDD (or
qOBDD) complexity of the middle bit of integer multiplication seems very well
proportional to 26n/5. For example, in the case of qOBDD, the optimal variable

 !"#$% &' ()(!" "# $% $&'()*%

 !

orderings for n = 10, 11, 12 are

(x3x4x5x6y3y4y5y6x2y2x1y1x7y7x8y8x0y9x9y0),

(x3x4x5x6x7y4y5y6y7y3x2y2x1y1x8y8x9y9x0y10x10y0),

(x2x3x4x5x6x7y4y5y6y7y3y2x1y1x8y8x9y9x10y10x0y11x11y0),

See [3, 30, 47] for more optimal orderings. These are enough to inspire a
hypothesis that the pairwise ascending order (x0, y0, . . . , xn−1, yn−1) or its slight
modification (x1, y1, . . . , xn−2, yn−2, x0, yn−1, xn−1, y0) is a good ordering. Once we
have this, showing the O(26n/5) upper bound is an easy task using Fact 1. Note
that very recently this upper bound is shown to be asymptotically optimal if we
fix the ordering to the pairwise ascending [47].

To see whether the true OBDD complexity of the middle bit of integer mul-
tiplication is Θ(26n/5) seems to be an interesting open question, which is also
appeared as an “exercise" in the Knuth’s book [31]. In addition, the following
general question would also be interesting for understanding the nature of multi-
plication.

Problem 1. For each k, determine the asymptotic OBDD complexity of the k-th bit

of integer multiplication and find an optimal variable ordering for representing it.

We believe that computer experiments would also help to attack this problem
since we can obtain a catalog of optimal representations up to a relatively large
number of inputs, say n ∼ 20. Again, consult [11] for a recent progress in this
topic.

3 Boolean Circuits

In spite of a huge amount of effort, we have very little knowledge about the circuit
complexity. In 80’s, exponential lower bounds have been shown on the size of
monotone circuits for the clique function as well as the size of constant depth
circuits for the parity function. However, we should say that these two results are
still the most important achievement in this area so far. To this date, the largest
lower bounds on the circuit size for a function in NP is 5n [26]. We are eager to
get a new idea for proving a stronger lower bound.

As we see in the last section, it would be possible to get a new insight by
examining a catalog of optimal circuits for small functions generated by comput-
ers. This was at least partially succeeded for OBDDs. Several attempts have been
made also for Boolean circuits using SAT solvers [54, 28].

On a current technology, the maximum size of circuits that can feasibly be
enumerated by a computer is around 10. For example, in the recent volume of the

 !" #$%%"&'()* &!" +, -.

 !

famous Knuth’s book [30, Chap. 7.1.2], he gave the complete classification of all
Boolean functions on up to five variables in terms of their circuit complexity. The
hardest function among all 5-variable Boolean functions over the basis B2 (which
contains all 2-input functions) needs 12 gates. Interestingly, such a function is
essentially unique. However, it would not be feasible to enumerate all circuits
with 20 gates, even in a near future.

In this section, we review three another approaches aiming to use computers
in proving lower bounds. The first two are to reduce the lower bound problem to
a polynomially solvable optimization problem, and the last one is a graph theo-
retic approach based on the computer search. So far, these approaches could not
deliver a significant lower bound. However, we hope that pushing them further
would yield a new insight on how to prove a stronger lower bound on a stronger
computational model.

3.1 Lower Bounds for Depth Two Threshold Circuits via LP

A major open problem in circuit complexity is to give a superpolynomial lower
bound on the size of depth-2 threshold circuits (with unrestricted weights) for an
explicit Boolean function. Many exponential lower bounds are known for depth-
2 threshold circuits with various restrictions (see e.g., [49] and the references
therein). Among these restricted circuits, we consider in this section depth-two
circuits with a threshold gate at the top and symmetric gates below. Such circuits
have been considered before in e.g., [15]. Below we demonstrate that an expo-
nential lower bound for this model can be obtained by solving a large-scale linear
program using LP solvers. Note that the contents of this section is an updated
version of [2] that was built on the work by Basu et al. [9].

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two binary inputs of length n. The
inner product mod 2 function, denoted by IPn(X,Y), is defined as ⊕ixiyi where ⊕
denotes the exclusive-OR operation.

A linear threshold function f (X) is a Boolean function on input X =

(x1, . . . , xn) ∈ {0, 1}n such that

f (X) = sgn















w0 +

n
∑

i=1

wixi















,

where w = (w0, . . . ,wn) ∈ Rn+1 is called the weights, and sgn stands for the sign
function: sgn(x) = 1 if x > 0, and sgn(x) = 0 otherwise. A threshold gate is
a gate that computes a threshold function. A function f : {0, 1}X → R is called
symmetric if the value of f depends only on the number of inputs that are 1.
A symmetric gate is a gate that computes a symmetric function. For a Boolean

 !"#$% &' ()(!" "# $% $&'()*%

 !

function f , the minimum number of symmetric gates in a depth-two circuit of
“threshold-of-symmetric gates" that computes f is denoted by s(f).

It is convenient to consider a polynomial P of the form

P(X,Y) =
∑

S⊆X∪Y
wShS (X,Y), (2)

where wS ∈ R and hS denote a symmetric function over the variable set S . The
support of P is defined as {S ⊆ X ∪ Y | wS , 0}. We say that P sign-represents f

if P(X) > 0 whenever f (x) = 1 and P(X) < 0 whenever f (x) = 0. Obviously, s(f)
is equal to the minimum size of the support of a polynomial that sign-represents
f .

Let f be a (not necessarily Boolean) function on a set of variables X and ρ be
a partial assignment of the variables, i.e., ρ is a map from X to the set {0, 1, ∗}. The
restriction of f by ρ, denoted by f |ρ, is the function obtained from f by setting xi
to be ρ(xi) if xi ∈ {0, 1} and leaving xi if xi = ∗. For a partial assignment ρ, let
res(ρ) denote the set of variables that mapped to 0 or 1 by ρ.

We also define the restriction of a polynomial P of the form (2) by ρ, denoted
by P|ρ as follows: First, replace each hS in P by hS |ρ. Note that hS |ρ is a symmetric
function on S \res(ρ). Then, for every S 1 and S 2 such that hS 1 |ρ and hS 2 |ρ are on
the same set of variables S ′, then replace wS 1hS 1 |ρ+ wS 2hS 2 |ρ by an equivalent
symmetric function h′S ′ . This is always possible since the sum of two symmetric
functions is also a symmetric function.

Suppose that P is an optimal polynomial that sign-represents IPn. Consider
two assignments α : (x1, y1) = (0, 1) and β : (x1, y1) = (1, 1). Since P|α sign-
represents IPn−1 and P|β sign-represents the complement of IPn−1, it is obvious that
the polynomial P|α − P|β sign-represents IPn−1.

We now divide P into two subformulas P0 and P1; P1 is consisting of all terms
including x1, and P0 is the rest. Let ♯(P) denote the number of terms in P. We
have

P|α − P|β = P0|α + P1|α − P0|β − P1|β = P1|α − P1|β,

since P0 is independent of x1. This implies ♯(P1) ≥ ♯(P1|α − P1|β) ≥ s(IPn−1).
The first inequality follows from a simple observation. Since s(IPn) = ♯(P0) +
♯(P1), if we could similarly show that ♯(P0) ≥ s(IPn−1), then we would get the
recursion s(IPn) ≥ 2s(IPn−1) which immediately gives a lower bound of s(IPn) ≥
2n. However, we cannot cancel out P1|σ1 − P1|σ2 by any two assignments σ1 and
σ2 to {x1, y1}.

Instead, we consider assignments to four variables {x1, x2, y1, y2} and divide
P into 24 = 16 parts depending on the intersection of these four variables and
the support of monomials. For T ⊆ {x1, y1, x2, y2}, let PT be a subformula of P
consisting of all terms wShS such that S ∩ {x1, y1, x2, y2} = T .

 !" #$%%"&'()* &!" +, -.

 !

Consider two assignments α : (x1, y1, x2, y2) = (0, 1, 1, 0) and β :
(x1, y1, x2, y2) = (1, 1, 0, 0). Obviously, P|α − P|β sign-represents IPn−2. Here we
have

P|α − P|β =
∑

T⊆{x1,y1,x2,y2}
(PT |α − PT |β) =

∑

T :|T∩{x1,x2}|=1
(PT |α − PT |β),

since polynomials PT |α − PT |β are canceling out when |T ∩ {x1, x2}| = 0 or 2.
We introduce new variables qT ’s that represent ♯(PT)/s(IPn−2). Then the above

equation implies the linear inequality
∑

T :|T∩{x1,x2}|=1
qT ≥ 1. (3)

Eight variables (out of 16) are appeared in the LHS of the above inequality. On
the other hand, since ♯(P) =

∑

T ♯(PT) we have

∑

T⊆{x1,y1,x2,y2}
qT =

s(IPn)
s(IPn−2)

.

If we consider another pair of assignments, then we get another inequality similar
to Ineq. (3). By considering four pairs of Type 1 assignments, and four pairs of
Type 2 assignments described below, we get the system of inequalities shown in
Fact 2.
Type 1 Choose i ∈ {1, 2} and v ∈ {xi, yi}. The unchosen variable in {xi, yi} is
denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).
Type 2 Choose v1 ∈ {x1, y1} and v2 ∈ {x2, y2}. Let u1 and u2 be the unchosen
variables in {x1, y1} and in {x2, y2}, respectively. Let α : (v1, u1, v2, u2) = (0, 1, 1, 0)
and β : (v1, u1, v2, u2) = (1, 1, 0, 0).

Fact 2. Let z be the minimum value of the objective function of the following linear

program. Then s(IPn) ≥ z · s(IPn−2).

Minimize
∑

T⊆{x1,y1,x2,y2}
qT

Subject to
∑

T :v∈T
qT ≥ 1 (v ∈ {x1, y1, x2, y2})

∑

T :|{v1,v2}∩T |=1
qT ≥ 1 (v1 ∈ {x1, y1}, v2 ∈ {x2, y2}),

qT ≥ 0 (T ⊆ {x1, x2, y1, y2}).

(4)

LP (4) has 24 variables and 8 constrains, and is easy to solve. The minimum
value of the objective function is 1.5 which implies s(IPn) ≥ 1.5n/2 ∼ 1.2247n.

 !"#$% &' ()(!" "# $% $&'()*%

 !

Quite naturally, a lower bound is improved by considering more assign-
ments. Let k ≥ 3 be an integer. We consider a set of pairs of assignments on
{x1, y1, . . . , xk, yk} of the following two types.
Type 1 Choose i ∈ {1, . . . , k} and v ∈ {xi, yi}. The unchosen variable in {xi, yi} is
denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).
Type 2 Choose i, j ∈ {1, . . . , k} with i , j. Choose v1 ∈ {xi, yi} and v2 ∈ {x j, y j}.
Let u1 and u2 be the unchosen variables in {xi, yi} and in {x j, y j}, respectively. Let
α : (v1, u1, v2, u2) = (0, 1, 1, 0) and β : (v1, u1, v2, u2) = (1, 1, 0, 0).

Note that for two assignments α and β of Type i (i ∈ {1, 2}), P|α − P|β sign-
represents IPn−i. By dividing P into 22k parts and letting qT be ♯(PT)/s(IPn−k), we
can show that:

Fact 3. Suppose that k ≥ 3. Let zk−1 and zk−2 be real numbers such that s(IPn) ≥
zk−1 · s(IPn−(k−1)) and s(IPn) ≥ zk−2 · s(IPn−(k−2)) for every n. Let zk be the minimum
value of the objective function of the following linear program. Then s(IPn) ≥
zk · s(IPn−k).

Minimize
∑

T⊆{x1,y1,...,xk ,yk}
qT

Subject to
∑

T :v∈T
qT ≥ zk−1 (v ∈ {x1, y1, . . . , xk, yk})

∑

T :|{v1,v2}∩T |=1
qT ≥ zk−2

(

i, j ∈ {1, . . . , k}, i , j

v1 ∈ {xi, yi}, v2 ∈ {x j, y j}

)

qT ≥ 0 (T ⊆ {x1, y1, . . . , xk, yk}).

(5)

Note that the constraint matrix of LP (5) is a (2k + 4
(

k

2

)

) × 22k binary matrix
and easy to generate by a simple computer program. In addition, if the value of k
is relatively small, then we can solve this by an LP solver.

Solving LP (5) for k = 3 with z1 = 1 and z2 = 1.5 yields z3 = 2. This implies
s(IPn) ≥ 2n/3 ∼ 1.2599n, which is slightly better than the lower bound obtained
by solving LP (4). Solving LP (5) again for k = 4 with z2 = 1.5 and z3 = 2
yields z4 ∼ 2.8333, which implies better lower bound of s(IPn) ≥ 2.8333n/4 ∼
1.2974n. By repeating this procedure, we can obtain z5 ∼ 4.0277, z6 ∼ 5.7500,
z7 ∼ 8.2541, z8 ∼ 11.9700 and z9 ∼ 17.3350. These imply the lower bounds on
s(IPn) of 1.3213n, 1.3384n, 1.3519n, 1.3638n and 1.3729n, respectively. We have
not succeeded to compute the value of zk for k ≥ 10 at the time of writing this
article (because GLPK solver [35] is killed by the out of memory).

Note that the best known lower bound on s(IPn) is Ω(2n/2/n) = Ω(1.4142n) by
Forster et al. [15] and the upper bound is s(IPn) ≤ 2n. The lower bound is proved
by considering the rank of a communication matrix that sign-represents IPn [15]

 !" #$%%"&'()* &!" +, -.

 !

(see also [49] for a generalization). The upper bound follows from the construc-
tion IPn(X,Y) = sign(

∑

S⊆[n](−2)|S |+1XSYS), where XS and YS denote
∏

i∈S xi and
∏

i∈S yi, respectively.
At this moment, we don’t know whether our method can beat Ω(1.4142n).

However, we think that there is a chance. By examining LP (5) with k = 8 under
the assumption s(IPn) ≥

√
2 · s(IPn−1) for every n, we obtain somewhat curious

fact saying that the lower bound would be enhanced by considering a large LP.

Fact 4. Suppose that, for every sufficiently large n, s(IPn) ≥
√
2 · s(IPn−1) holds.

Then s(IPn) = Ω(1.4198n).

3.2 Lower Bounds on Formula Size via SDP

A Boolean formula is a binary tree where each internal node is labeled with ∧ or
∨, and each leaf is labeled with a literal, i.e., a variable or its negation. A Boolean
formula computes a Boolean function in an obvious way. The size of a formula is
the number of leaves in the tree. For a Boolean function f , the formula complexity,
denoted by L(f), is defined as the size of a smallest formula that computes f . The
famous result of Khrapchenko [27] says that the formula complexity of the parity
of n variables is at least n2. The current best lower bound for an explicitly defined
function is n3−o(1) due to Håstad [21].

The quantum adversary method ([5],[8],[33],[56]) has originally been devel-
oped for proving lower bounds on quantum query complexity. Laplante, Lee and
Szegedy [32] revealed that this method is also very useful for lower bounding
the formula size. In this framework, a lower bound on the formula size of an n-
variable Boolean function can be obtained by solving an SDP (semidefinite pro-
gram) of the order n2n.

Let Γ be a 2n × 2n be a Hermitian matrix with rows and columns labeled by
elements of {0, 1}n such that Γ[x, y] = 0 whenever f (x) = f (y). Let ||M|| denote
the spectral norm of the matrix M. For a Boolean function f : {0, 1}n → {0, 1}, the
adversary bound for f is defined as

ADV(f) = max
Γ≥0,Γ,0

||Γ||
maxi ||Γ ◦ Di||

,

where the maximum is taken over nonnegative symmetric matrices Γ, and Di is
a zero-one matrix where Di[x, y] = 1 iff xi , yi. Γ ◦ Di denotes the entry-wise
product of Γ and Di.

Laplante, Lee and Szegedy [32] proved that ADV(f)2 is a lower bound on the
formula complexity of f . This parameter can be formulated as SDP [52]: Let F be
a 2n × 2n binary matrix such that F[x, y] = 1 iff f (x) , f (y), and let Di be defined

 !"#$% &' ()(!" "# $% $&'()*%

 !

as above. The parameter ADV(f) is given by 1/µmin, where µmin is the minimal
solution of the following semidefinite program:

Minimize µ = tr∆
Subject to ∆ is diagonal,

Z ≥ 0,
Z · F = 1,

∀i : ∆ − Z ◦ Di � 0,

(6)

Here tr∆ denotes the trace of a matrix ∆.
This parameter enjoys a nice composition property. For two Boolean functions

f on n variables and g on m variables, let f ⊗g denote a composite function on nm
variables: (f ⊗g)(x1, . . . , xmn) = f (g(x̃1), . . . , g(x̃n)) where x̃i = (x(i−1)m+1, . . . , xim).

Theorem 1. ([5, 22]) For every Boolean functions f and g, ADV(f ⊗ g) =

ADV(f) · ADV(g).

This theorem says that if L(f) = ADV(f)2 and L(g) = ADV(g)2, then L(f ⊗
g) = L(f)·L(g). This gives a nice generalization of the result of Khrapchenko [27].
The parity function on n = 2k variables can be written as (x1⊕ x2)⊗ · · · ⊗ (x1⊕ x2).
The optimal formula for x1 ⊕ x2 is (x1 ∧ x2) ∨ (x1 ∧ x2), which has size 4. By
using this recursively, we get a formula for the parity on 2k variables whose size
is 4k = n2. Khrapchenko’s n2 lower bound for the parity function guarantees
the exact optimality of such a naive construction. Note that, recently, Tarui [53]
proved that the formulas constructed in this way are essentially unique smallest
ones.

Theorem 1 shows a similar optimality can be established for any base func-
tions f with the property L(f) = ADV(f)2. We call such a function tight. By
using an SDP solver, we can enumerate all tight functions on up to five vari-
ables. We say that two Boolean functions are in the same NPN-equivalence class
if they can be equivalent by negating of output and input variables and permut-
ing of input variables. The number of NPN-equivalence classes of 2, 3, 4 and 5
or fewer variables are 2, 14, 222 and 616126, respectively. Out of them, 4, 8, 20
and 55 classes are tight [23, 18]. Example of such functions are MUX(x1, x2, x3)
and MUX(x1 ⊕ x2, x3 ⊕ x4, x3 ⊕ x5), where MUX(x1, x2, x3) denotes the multiplexer
function x1x2 ∨ x1x3. At this moment, we don’t know whether the tightness is a
necessary condition for such an optimality result.

It should be noted that unfortunately, it is known that ADV(f)2 is upper
bounded by n2. See also [24] for another explanation of the limit of this method.
So we should in mind that this method can not yield a super-quadratic lower bound
on the formula size.

 !" #$%%"&'()* &!" +, -.

 !

Note also that Høyer, Lee and Sp̌alek [23] strengthen this method. They intro-
duced new parameter

ADV±(f) = max
Γ,0

||Γ||
maxi ||Γ ◦ Di||

,

in which the condition Γ ≥ 0 in ADV(f) is removed, and proved that ADV±(f)2 is
also a lower bound on formula size. The computational results for this parameter
as well as the program for MatLab can be found on the web page in the reference
of [23].

In the preceding two sections, we reviewed lower bound problems on two
computational models can be formulated as linear program and semidefinite pro-
gram. Thus, an interesting question is:

Problem 2. Can we formulate a lower bound problem on a stronger model as a

polynomial time solvable optimization problem?

3.3 Linear Lower Bounds on Circuit Size

Let B2 denote the set of all (sixteen) Boolean functions over two variables, and let
U2 denote B2\{⊕,≡}, i.e., B2 excluding the parity and its negation. For a Boolean
function f , the B2-circuit complexity (U2-circuit complexity, resp) of f is the
minimum size of a circuit over B2 (U2, resp.) that computes f . After a long
line of research for improving a constant factor of linear lower bounds on circuit
complexity, the current best lower bound on B2-circuit complexity for a function
in NP is 3n [10] and that on U2-circuit is 5n [26] (see also [34, 25]). Essentially,
all linear lower bounds are proved by so called the gate-elimination method.

A typical proof using the gate-elimination method is as follows: First we de-
fine some property of n-variable Boolean functions Q(n). Then we show that, for
an optimal circuit for a function having Q(n), a specific number of gates, say α,
can be eliminated by fixing some variable to a constant 0 or 1 and the resulting
function has the property Q(n − 1). Applying this inductively gives an αn lower
bound on a circuit size for a function having Q(n).

The core of the proof is typically by the case analysis on the “local pattern" of
circuits near the input terminals. That became more and more complicated as the
constant factor increases; the proof of 5n lower bounds by Iwama et al. [26] needs
to analyze several dozen of cases in which the deepest one is like Case 2.3.3.3.4.

Such an analysis would be automated by computers. To examine the possibil-
ity of this approach, we briefly review their lower bound proof.

Let C be a circuit over Xn = {x1, . . . , xn}. Recall that a partial assignment σ is
a mapping from Xn to {0, 1, ∗}. We say that the set of variables fixed to a constant
by σ the support of σ. For a Boolean function f on Xn and a partial assignment

 !"#$% &' ()(!" "# $% $&'()*%

 !

σ, let f |σ denote the function obtained from f by applying σ. We use the similar
notation C|σ for a Boolean circuit C.

The proof by Iwama et al. [26] (as well as 4.5n bound by Lachish and Raz
[34]) uses the following property of Boolean functions:

Definition 2. A Boolean function f over Xn = {x1, . . . , xn} is k-mixed if for every

V ⊆ Xn such that |V | = k and for any two distinct partial assignments α and β
with support V, the functions obtained from f by applying α and β are distinct,

i.e., f |α , f |β.
Note that they originally used the property called strongly-two-dependent; but

the property of k-mixed is stronger than this.
The main portion of their proof is the following lemma.

Lemma 1. Let f be a t-mixed n-variable Boolean function with n− t = k. Suppose

that n ≥ 2k+4 and a circuit C computes f . Then, there exists a partial assignment

σ that satisfies the following: |σ| ≤ 2, and there exist a Boolean circuit C′ ≡ C|σ
such that SD(C) ≥ SD(C′)+5|σ|. Here SD(C) is a measure of a circuit size which
is a slight modification of the normal "number of gates" measure (see [26] for the

definition).

By using above lemma inductively we can obtain the lower bound of 5n−o(n)
for every k-mixed function with k = n − o(n).

Such a method can be reformulated as follows: In order to show the αn lower
bound on a circuit complexity of f , it is sufficient to give a class of local circuit
patternsD that satisfies the following.

(C1) For every optimal circuit C that computes f , some pattern D ∈ D appears
in C.

(C2) For every circuit C and every D ∈ D, if D appears in C, then there exists a
partial assignment σ and a circuit C′ ≡ C|σ such that

[the size of C] − [the size of C′] ≥ α|σ|.

Interestingly, this formulation of the gate-elimination method is quite resem-
ble to the famous proof of the Four Color Theorem [6, 7, 45]. The computer
assisted proof of this theorem has given by Appel and Haken three decades ago.
A simplified but still computer assisted proof has then given by Robertson et al.
[45] which proceeds as follows.

Suppose for the contrary that there exists a counterexample to the Four Color
Theorem. Let P be some easily describable graph theoretic property that a mini-
mal counterexample to the Four Color Theorem has. Then, they exhibited a setD
of 633 "configurations", that consists of small graphs with some additional infor-
mation, satisfying the following:

 !" #$%%"&'()* &!" +, -.

(F1) For every planar graph G with property P, some configuration D ∈ D ap-
pears in G.

(F2) If a configuration D ∈ D appears in G, then G is not a minimal counterex-
ample to Four Color Theorem.

By verifying above two statements using computers, we can conclude that no
minimal counterexample exists, and hence Four Color Theorem is true.

We now review the propositions (C1) and (C2). Suppose that a circuit C is
a minimal counterexample to a lower bound, i.e., C is an optimal circuit that
computes f and the size of it is less than αn. Recall that a circuit is defined as a
graph in which nodes represent gates and edges represent wires. We can put some
graph theoretic properties for a circuit C by its optimality, which we consider as
the property P in (F1). Then (C2) says that if C contains D ∈ D then, C is not
a minimal counterexample (since if C is a counterexample, then a smaller circuit
C|σ is also).

It would be interesting to give a (minimal) set of circuit patterns that yield a
lower bound of 5n or even higher. We have in fact tried to pursuit this approach
for getting a higher lower bound, but failed. However, during the experiments, the
author and Tarui [4] have succeeded(?) to find the reason why we have failed.

In fact, there exists a k-mixed Boolean function with k = n − o(n) that can be
computed by a U2-circuit of size 5n + o(n). The 5n lower bounds for this class of
functions have already been tight.

Below we sketch the construction of the function, which is a modification of a
function introduced by Savický and Žák [48].

Let p be a prime such that n ≤ p < 2n. Define wn : {0, 1, . . .} → {1, . . . , n}
so that wn(s) is the residue of s modulo p, if this residue lies in {1, . . . , n}, and
is 1 otherwise. Put b = ⌈ n

⌈log n2⌉⌉. We split the interval {1, . . . , n} into b blocks
D1, . . . ,Db of equal size. For every n ∈ N, fn(x1, . . . , xn) outputs one of its input
xz where an index is given by

z = wn

















b
∑

i=1

















i ·
⊕

j∈Di

x j

































.

Theorem 2. [4] The function fn defined above is k-mixed with k = n −
ω(
√
n log2 n) and can be computed by a U2 circuit of size 5n + o(n).

This result means that every lower bounds method that applies to arbitrary k-
mixed functions cannot show a lower bound higher than 5n. So the problem we
should tackle first is:

Problem 3. Find a property of Boolean functions that can be used to derive a

lower bound higher than 5n.

 !"#$% &' ()(!" "# $% $&'()*%

 !

We still believe that a graph theoretic approach described above helps to in-
spire such a property.

4 Polynomial Representation of Boolean Functions

In this section, we consider two problems both are on the expressive power of real
polynomials for representing Boolean functions. This is one of the most active
subjects in the research of computational complexity. See e.g., [50, 51] for a
recent progress on this topic.

4.1 Degree of Full-Sensitive Functions

There have been developed many complexity measures for Boolean functions, and
investigated the relation among them. See e.g., a good survey by Buhrman and
de Wolf [13]. In this section, we consider the relationship between two major
measures; the sensitivity and the degree of Boolean functions.

Let f be an n-variable Boolean function. The sensitivity of f on x is the
number of bit positions i such that f (x) , f (xi), where xi denotes x with its i-th
bit flipped. The sensitivity of f is s(f) = maxx sx(f).

An n-variable polynomial p : Rn → R represents f is p(x) = f (x) for every
x ∈ {0, 1}n. Note that each Boolean function can be represented by a unique

multivariate polynomial (see e.g., Lemma 1 in [13]). The degree of f is the degree
of this multivariate polynomial that represents f .

Definition 3. An n-variable Boolean function f is fully sensitive if the sensitivity
of f is n.

We consider the following simple question.

Problem 4. What is the minimum degree of an n-variable Boolean function that

is fully sensitive?

The current best lower bound is
√
n/2 and the upper bound is O(nlog6 3) =

O(n0.613). One of the importance of the problem of finding a fully sensitive and
low degree function is that it gives the largest known gap between the decision
tree complexity and the "log-rank" of the communication matrix (see e.g., [29]
and [39]).

The lower bound is proved by Nisan and Szegedy [38]. Note that if we allow
some approximation, this lower bound is asymptotically tight. There is a poly-
nomial p of degree O(

√
n) such that |p(x1, . . . , xn) − OR(x1, . . . , xn)| ≤ 1/3 for

every x, where OR denotes the OR function that is apparently fully sensitive at the

 !" #$%%"&'()* &!" +, -.

 !

origin x = 00 · · · 0 (see [38, Example 3.11] for the construction using Chebyshev
polynomials). Note also that the degree of the OR function is exactly n.

Nisan and Szegedy [38] have also gave the construction of a fully sensitive
function whose degree is nlog3 2 ∼ n0.631. Let E2 denote the Boolean function on
three variables given by

E2(x1, x2, x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3.

It outputs 1 iff one or two of its inputs are 1. Define E(k)
2 as the function on n = 3k

variables obtained by building a complete ternary tree of depth k, where the 3k

leaves are the variables and each node is the E2-function of its three children.
Then E

(k)
2 is represented by E2(E

(k−1)
2 , E(k−1)

2 , E(k−1)
2), and so by a polynomial of

degree 2k = nlog3 2. It is easy to check that E(k) is fully sensitive at the origin.
It is noticeable that, in the above construction, we can use any "base" function

if it is fully sensitive at the origin. If we use an n-variable function of degree k,
then we can get a fully sensitive N-variable function of degree N logn k.

Along to this line, Kushilevits has improved the exponent to log6 3 = 0.613...,
which is the current best, by exhibiting such a function on 6 variables of degree 3
(see [39, footnote 1 on p.560]).

Let S (6) be a family of 3-sets on {1, 2, . . . , 6} defined as

S (6) = {(1, 2, 3), (1, 2, 4), (3, 4, 5), (3, 4, 6), (1, 5, 6),
(2, 5, 6), (1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}.

Let F3 be a polynomial on 6 variables defined as

F3(x1, . . . , x6) =
∑

i:1≤i≤6
xi −

∑

(i, j):1≤i< j≤6
xix j +

∑

(i, j,k)∈S (6)
xix jxk.

Interestingly, S (6) is also appeared in a major open question in extremal graph
theory.

Given an r-graph F on a vertex set V , i.e., a hypergraph whose edge set con-
sists of r-sets of V , the Turán number ex(n,F) is the maximum number of edges
in an n-vertex r-graph not containing a copy of F . The Turán density of F is
defined as

π(F) = lim
n→∞

ex(n,F)
(

n

r

) .

Determining π(F) for a given F is a notoriously hard problem (see e.g., [36, 44]
and the references therein). One of the most well-investigated cases is π(K−

4),
where K−

4 = {abc, abd, acd} is the complete 3-graph on 4 vertices with one edge

 !"#$% &' ()(!" "# $% $&'()*%

 !

removed. It is known that π(K−
4) ≥ 2/7, and this lower bound is strongly believed

to be tight.
Obtaining an upper bound on the density is very difficult. Recently, Razborov

[43, 44] developed an intriguing technique called "Flag Algebra" that can be used
to attack this problem. Very roughly speaking, in this framework, the problem
of upper bounding the Turán density is reduced to the feasibility of some well-
designed semidefinite programming problems. Designing a good problem is typ-
ically relying on a computer calculation. This seems to be another domain that
computers can help in obtaining theoretical results. In [44], it is described that the
current best upper bound π(K−

4) ≤ 0.2978 can be obtained by this method.
The lower bound π(K−

4) ≥ 2/7 follows from the construction due to Frankl
and Füredi [16] that "blow-ups" the system S (6) (see [16] for the detail). This
construction gives a sequence of K−

4 -free 3-graphs with asymptotic density 2/7.
In fact, the problem to find an extremal K−

4 -free graph is formulated as a 0-1
integer programming problem on the variable set {xS | S ⊆ V and |S | = 3}:

Maximize
∑

S xS
Subject to

∑

S⊆T xS ≤ 2 (∀T ⊆ V with |T | = 4),

It is easy to check that S (6) is the unique solution of this problem for n = 6.
Markström and Talbot [36] conducted a systematic search using a computer and
provided all extremal K−

4 -free 3-graphs on n vertices for n ≤ 19. Quite interest-
ingly, for every 11 ≤ n ≤ 19, the unique extremal graph is this blow-up construc-
tion. Motivating by this, they conjectured that this is true for every n ≥ 11, i.e.,
the recursive use of a small gadget would always give an optimal construction.

Similar to this problem, our problem can also be written as an integer pro-
gramming problem. Note that every coefficient of a polynomial that represents a
Boolean function must be an integer. The variable set is {xS | S ⊆ {1, . . . , n} and
|S | ≤ k}, and the existence of a fully sensitive degree k function on n variables is
given by the feasibility of the following system (without objective function):

Subject to 0 ≤ ∑

S⊆T xS ≤ 1, (∀T ⊆ V),
xS = 1, (∀S with |S | = 1),
xφ = 0.

(7)

It is natural to expect that a good formula can be obtained by solving this
problem by IP solvers. A simple examination can verify that F3 is the unique
polynomial (up to a permutation and negation of variables) of degree 3 that rep-
resents a fully sensitive Boolean function on 6 variables. In addition, there are no
such polynomials of degree 3 on 7 variables.

We start with the case of degree 4. We already have such a construction for
n = 9, which is E(2)

2 . Again, this construction is optimal. We below give a (fully

 !" #$%%"&'()* &!" +, -.

 !

theoretical) proof verifying this since it says a bit more than what the well-known
symmetrization technique (Fact 5) introduced by Minsky and Papert [37] can say.
In the sequel, we denote the number of ones in a binary vector x by |x|.

Fact 5. Let f be a Boolean function on n variables, and p be a polynomial that

represents f . Then there exists a univariate polynomial p̃ such that (i) for every

k ∈ {0, 1, . . . , n},

p̃(k) = a0 + a1

(

k

1

)

+ a2

(

k

2

)

+ · · · + an

(

k

n

)

, (8)

where ai = αi/
(

n

i

)

and αi is the sum of the coefficients of all degree i monomials

in p, (ii) p̃(k) is equal to the probability that f (x) outputs 1 when x is chosen

uniformly from all input vectors with Hamming weight k.

Proof. Consider a real valued polynomial

psym(x1, . . . , xn) =

∑

π p(xπ(1), . . . , xπ(n))

n!
,

where the summation is over all permutations π on {1, . . . , n}. Since psum only de-
pends on the number of ones in inputs, there exist a unique univariate polynomial
p̃ such that

p̃(x1 + · · · + xn) = psym(x1, . . . , xn).

It is easy to check that p̃ satisfies the conditions in the fact. �

Theorem 3. There are no Boolean functions f on 10 variables such that f is fully
sensitive and the degree of f is at most 4.

Proof. Suppose for the contrary that a multilinear polynomial p of degree 4 on
X = {x1, . . . , x10} represents a f such that f is fully sensitive. W.l.o.g., this happens
at the origin. This immediately implies that (i) every monomial of degree 1 in p

has the coefficient 1, and (ii) every monomial of degree 2 has the coefficient −1 or
−2. By applying the symmetrization (Eq. (8)), we have

p̃(k) = k + a2

(

k

2

)

+ a3

(

k

3

)

+ a4

(

k

4

)

.

for some a2, a3 and a4. By (ii) of Fact 5, 0 ≤ p̃(k) ≤ 1 for every k = 0, . . . , 10.
It is easy to check that this linear system has a unique feasible solution; a2 = −1,
a3 = 7/12 and a4 = 1/6. This gives p̃(2) = 1, p̃(5) = 0 and p̃(8) = 1 implying
that p(x) = 1 for every x with |x| = 2 or 8, and p(x) = 0 for every x with |x| = 5.

 !"#$% &' ()(!" "# $% $&'()*%

 !

Now we consider a multilinear polynomial p′ on {x1, . . . , x8} obtained from p

by fixing x9 = x10 = 0. We have that p′(x) = 0 for every x with |x| = 0 or 5, and
p′(x) = 1 for every x with |x| = 1, 2 or 8 because p is so. Since we have 5 fixed
points for a degree 4 polynomial p̃′, it is uniquely determined to

p̃′(k) = k −
(

k

2

)

+
7
12

(

k

3

)

− 1
6

(

k

4

)

. (9)

Since the coefficient of every degree 3 monomial of p′ is 0 or 1, Fact 5 (i) implies
that the coefficient 7/12 of the term

(

k

3

)

in Eq.(9) must be a multiple of 1/
(

10
3

)

=

1/56, a contradiction. �

We now proceed to the case of degree 5. Since the minimum value of n that
satisfies logn 5 < log6 3 is 14, we seek a function on 14 variables. We have tried
to solve IP (7) for (n, k) = (14, 5) by the IP solver in GLPK package [35], but it
never came back. So far, we could only obtain a partial result like the following:

Definition 4. We say that a multilinear polynomial p is bounded if the coefficient

of a monomial t in p is 0 or 1 whenever the degree of t is odd, and is 0 or −1
whenever the degree is even.

Note that any polynomial obtained by a recursive use of E2 or F3 are bounded.

Fact 6. There are no Boolean functions f on 14 variables such that (i) f is fully

sensitive at the origin, and (ii) f can be represented by a bounded polynomial of

degree 5.

The proof is by checking the infeasiblity of IP (7) with additional constraints
that xS ∈ {0, 1} when |S | is odd and xS ∈ {−1, 0} when |S | is even. We also use
the result that the maximum number of edges in aK−

4 - free 3-graph on 14 vertices
is 126 that were recently shown by Markström and Talbot [36] using a computer
verification to reduce the search space.

Through the experiments, we now feel that the following problem, which is
easier than Problem 4, is already very hard.

Problem 5. Is there a fully sensitive function whose degree is smaller than the

degree of function obtained by the recursion of F3?

4.2 Average Density of Sign-Representing Polynomials

The final topic in this article is on the "density" of sign-representing polynomi-
als of Boolean functions. Recently, we found a new method for obtaining an
improved bound on the average density of Boolean functions by computer calcu-
lations [1].

 !" #$%%"&'()* &!" +, -.

 !

Lower Bound Upper Bound
All Functions (0.11)2n (0.75)2n

Almost All Functions (0.11)2n (0.617)2n

Table 1: The known bounds on the PTF density of Boolean functions on {1,−1}n.
The right bottom is shown here.

In most of this section, we use {1,−1} to represent Boolean values. The
false or 0 is represented by 1, and the true or 1 is represented by −1. Let
f : {1,−1}n → {1,−1} be a Boolean function on n variables and let p : Rn → R
be a real polynomial. Recall that p sign-represents f if sgn(p(x)) = f (x) for all
x ∈ {1,−1}n (i.e., sgn(p(x)) > 0 if f (x) = 1 and sgn(p(x)) < 0 if f (x) = −1). The
expressive power of such a representation has been extensively investigated espe-
cially in complexity theory and in learning theory (see e.g., [37, 46, 40, 50, 51]
and the references therein). The PTF density of a given Boolean function f is the
minimum number of monomials with non-zero coefficient in a polynomial that
sign-represents f . Note that the PTF density is depending on the choice of the
domain of functions. In this section, we exclusively consider the case {1,−1}n.

It is classically known that every Boolean function on n variables can be sign-
represented by a polynomial with 2n monomials. However, in general, less mono-
mials are enough. For example, it is easy exercise to show that every two-variable
Boolean function can be sign-represented by a polynomial with at most three
monomials, not four.

In spite of a long history of investigations, there still is a large gap between the
upper and lower bounds on the worst/average PTF density of Boolean functions.
For the lower bounds, Saks [46, Theorem 2.27] noted that the result of Cover [14]
implies that almost all Boolean functions on n variables have PTF density at least
(0.11)2n. To this date, this is the best known lower bound on the PTF density even
for the worst case.

Recently, Oztop [41] (see also [42]) gave an elegant proof of the result that the
PTF density of every n-variable function is at most (0.75)2n. This improves the
previously known bound of (1− 1

O(n))2
n by O’Donnell and Servedio [40] and is the

first result saying that a constant ratio, namely, 3/4, of all monomials are always
enough to represent a Boolean function.

In this section, we briefly sketch the Oztop’s method and see that a general-
ization of this method can yield a better bound if we consider the average case.
Intuitively, we show that the problem of upper bounding the average density of
n-variable Boolean functions can be reduced to a problem of computing (some
modified version of) average density of k-variable Boolean functions for small k.
Interestingly, an upper bound is improved just by increasing the computational

 !"#$% &' ()(!" "# $% $&'()*%

 !

effort. The best bound we have obtained so far is (0.617)2n and it is quite con-
ceivable that this bound will further be improved. The known bounds on the PTF
density of Boolean functions are summarized in Table 1.

4.2.1 Basics

Let p be a real valued polynomial that sign-represents a Boolean function f :
{1,−1}n → {1,−1}. Since x2 = 1 for x ∈ {1,−1}, we can assume without loss
of generality that p is a linear combination of all 2n multilinear monomials over
x1, . . . , xn. The support of p is a set of monomials with non-zero coefficient in p

and the density of p is the size of the support of p. For a Boolean function f , the
PTF density of f is the smallest density of a polynomial that sign-represents f .

It is very useful to writing this in vector notations. We follow the notation by
Oztop [41, 42].

For n ≥ 1, let Dn be a Hadamard matrix of order 2n defined as

D1 =

(

1 1
1 −1

)

, Dn =

(

Dn−1 Dn−1

Dn−1 −Dn−1

)

(for n ≥ 2).

The well known identities DnDn = 2nI and (Dn)−1 = 2−nDn are very useful.
Each column of Dn is indexed by a monomial in Mn in the ordering of 1, x1, x2,
x2x1, x3, x3x1, x3x2, x3x2x1, . . . , xnxn−1 . . . x1. For a polynomial p =

∑2n
i=1 aimi

where mi =
∏

j∈S i
x j with S i ⊆ {1, . . . , n}, the column vector a = (a1, . . . , a2n)T

is called the coefficient vector of p where we use the same ordering for monomi-
als as above.

Then the column vector Dna represents the values of p(x) where the assign-
ments to (xn, xn−1, . . . , x1) are ordered as 00 . . . 00, 00 · · · 01, 00 · · · 10, 00 · · · 11,
. . . , 11 · · · 11 (where 0’s represent 1 and 1’s represent −1). For a Boolean function
f on n variables, let f denote the column vector of length 2n whose elements are
the values of f (x) for all x. We call f as the vector representation of f .

In this notation, p sign-represents f iff YDna > 0, where Y = diag(f). If this
is the case, we are allowed to say that a sign-represents f . The density of p is the
number of non-zero elements of a.

Below we briefly sketch the proof of the (0.75)2n upper bound on the PTF
density of every n-variable Boolean function by Oztop [41, 42].

The following simple fact is extremely useful.

Fact 7. ([42, Theorem 1]) Let f be the vector representation of a Boolean function

on n variables. The set of solutions of the inequality diag(f)Dna > 0 is all positive

linear combinations of the columns of Dndiag(f).

Proof. diag(f)Dna > 0 iff ∃k > 0[diag(f)Dna = k] iff ∃k > 0[a = 1
2n Dndiag(f)k].

�

 !" #$%%"&'()* &!" +, -.

 !

Theorem 4. [41] For any Boolean function on n variables, there exists a sign-

representing polynomial with at most 2n − 2n/4 monomials.

Proof. (sketch) For an n-variable Boolean function f , let a denote the coefficient
vector of a polynomial that sign-represents f . Let f denote the vector representa-
tion of f . We partition a and f into a0, a1 and f0, f1 of equal length, respectively.
We can write as

diag

(

f0
f1

) (

Dn−1 Dn−1

Dn−1 −Dn−1

) (

a0

a1

)

> 0.

This is equivalent to

diag(f0)D
n−1(a0 + a1) > 0,

diag(f1)D
n−1(a0 − a1) > 0. (10)

By Fact 7, this is equivalent to

(a0 + a1)
T = 2k0Y0,

(a0 − a1)
T = 2k1Y1. (11)

for some row vectors k0 > 0 and k1 > 0, where Yi (i = 0, 1) denotes 2n−1 × 2n−1

matrix diag(fi)Dn−1.
Let Z0 (resp, Z1) be a matrix consisting of all rows of Y0 indexed by x ∈

{0, 1}n−1 such that f0(x) = f1(x) (f0(x) , f1(x), resp). Then Eq. (11) can be written
as

(a0 + a1)
T = 2k0,0Z0 + 2k0,1Z1,

(a0 − a1)
T = 2k1,0Z0 − 2k1,1Z1. (12)

where ki, j > 0 (i, j = 0, 1) is a suitable partition of ki (i = 0, 1). By solving this
for a0 and a1, we have

aT
0 = (k0,0 + k1,0)Z0 + (k0,1 − k1,1)Z1,

aT
1 = (k0,0 − k1,0)Z0 + (k0,1 + k1,1)Z1.

Let z0 and z1 denote the number of rows in Z0 and Z1, respectively. Note that
z0 + z1 = 2n−1. If z1 ≥ 2n−2, then for any k0,0 and k1,0, we can zero z1 components
of a0 by an appropriate setting of k0,1 and k1,1 since Z1 has full rank (this is because
every rows in Dn−1 are linearly independent). If z1 < 2n−2, which implies z0 > 2n−2,
then for any k0,1 and k1,1, we can zero z0 components of a1 by an appropriate
setting of k0,0 and k1,0. This means that a polynomial given by coefficient a =

(a0, a1) sign-represents f and has at most 2n − 2n/4 non-zero elements. �

As we see, this proof is based on a decomposition of f into two subfunctions
f |xn=1 and f |xn=−1. It is quite natural to ask what happens if we decompose f by
fixing two or more variables. We below see that this gives an improved bound for
the average case.

 !"#$% &' ()(!" "# $% $&'()*%

 !

4.2.2 Finer Decompositions yield Better Bounds

Let’s see what happens if we consider two-variable decompositions in the proof
of Theorem 4 instead of one. We partition f into four parts of equal length
f00, f01, f10 and f11. Note that fi, j is the vector representation of the function
f |xn=i,xn−1= j (here we consider the input is {0, 1} instead of {+1,−1}), which we
will denote fi, j. Similarly the coefficient vector a is partitioned into four vectors
of equal length a00, a01, a10 and a11. In place of Eq. (12), we should introduce
23 submatrices Zp for p ∈ {0, 1}3 these are defined according to the values of
(f00(x), f01(x), f10(x), f11(x)). Then by a similar argument to the proof of Theo-
rem 4, we can make zero using the freedom of k’s. Note that in this case we can
use another freedom to enlarge the number of zeros in a. We can consider any
ordering of the partitions of a, e.g., a10 → a11 → a01 → a00.

By taking all of them into account, the number of zeros we can guarantee by
this procedure is formulated as follows: LetMk denote the all 2k monomials on k

variables and π be a mapping from {1, . . . , 2k} to Mk. The mapping π represents
the ordering of the monomials {π(1), π(2), . . . , π(2k)}. For a Boolean function f

and an ordering of monomials π, the freedom of f with respect to π, denoted by
free(f , π) is defined as the maximum t such that f can be sing-represented by a
polynomial with monomials Mk − {π(1), π(2), . . . , π(t)}. For a positive integer k
and an ordering π of Mk, let d(k, π) denote the average of free(f , π)/2k over all
k-variable Boolean functions f with f (1, 1, . . . , 1) = 1 which we call the average
freedom with respect to π. Note that the last condition (f (1, 1, . . . , 1) = 1) can be
removed without changing the value of d(k, π) by symmetry.

The generalization of Theorem 4 can be stated as follows (see [1] for the
proof).

Theorem 5. [1] Let ǫ > 0 an arbitrary constant. Let k ≥ 1 be an integer and π be
an ordering of Mk. Then, there is a constant c > 0 (depending on ǫ and k) such

that all but a 2−c2
n

fraction of n-variable Boolean functions have PTF density at

most (1 − d(k, π) + ǫ)2n.

It is a bit tedious but easy to verify (by hand) that d(2, π) = 5/16 for every π of
M2; this gives (0.688)2n upper bounds on the average PTF density of n-variable
functions. The computation of d(k, π) for k ≥ 3 is done by a computer (it takes
double exponential time in k). Note that we can see whether a given k-variable
function f has a sign-representing polynomial with support S by checking the
feasibility of the linear system diag(f)Dka > 0 where ai = 0 for every i < S ,
which is an easy task for any linear programming solver when k is small.

The computation of d(3, π) for every possible π is quite feasible by a standard

 !" #$%%"&'()* &!" +, -.

 !

PC. By using the GLPK package [35], we found that

d(3, {1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3}) = 316/(27 × 8) = 0.3085 · · · ,
d(3, {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}) = 360/(27 × 8) = 0.3515 · · · ,

and that all orderings ofM3 are categorized into one of the above two. This gives
the upper bound on the average PTF density of (0.649)2n.

The computation of d(4, π) for all π seems out of reach. However, the result
for k = 3 inspires the ordering

π4 = {1, x1, . . . , x4, x1x2, . . . , x3x4, x1x2x3, . . . , x2x3x4, x1x2x3x4},

would be a good candidate. We compute d(4, π4) (again by a computer) to find

d(4, π4) = 195804/(215 × 16) = 0.3734 · · · , (13)

which gives the upper bound of (0.627)2n. However, this is not the best.
We then computed the average freedom of 2000 randomly chosen orderings

of M4, which took about two days on a standard PC. The best ordering we have
found is

π′4 = {1, x1x2x3, x1x4, x1x3x4, x1x2x3x4, x3x4, x2x4, x3, x1x3,
x1, x1x2, x2x3x4, x2x3, x2, x4},

which has the average freedom of

d(4, π′4) = 200964/(215 × 16) = 0.3833 · · · . (14)

Note that 8 (out of 2000) orderings have the same value. This immediately gives
the following upper bound, which is the best we have obtained so far.

Corollary 1. [1] Almost all Boolean functions on n variables have PTF density

at most (0.617)2n.

We provide verifiable data for Eqs. (13) and (14) on the web page [1]. These
are the lists of polynomial representations of all 4-variable functions with max-
imum freedom with respect to the designated ordering. The correctness of Eqs.
(13) and (14) can be verified by hand in a several weeks, or by a computer in a
few seconds. At the time of writing this article, we don’t know whether π′4 is the
best among all orderings ofM4 or not.

Apparently, our method would yield a better upper bound if we have more
computational resource (or more sophisticated algorithm for computing the aver-
age freedom). A random sampling experiment suggests that 1− d(5, π5) is around
0.598 where π5 is an obvious extension of π4. A natural question is:

Problem 6. What is the best achievable bound obtained by this method?

 !"#$% &' ()(!" "# $% $&'()*%

5 Concluding Remarks

In this article, we review several recent attempts to use computers in various ways
to obtain concrete results for the problems in computational complexity. Some of
them are (at least partially) succeeded and some of them are not. We strongly hope
that these approaches inspire a new idea on how to attack the difficult problems,
especially the lower bound problems, in computational complexity.

The last thing we mention is that the feasibility of checking the computer
proofs. If a proof is "NP-type", i.e., a witness of an upper or lower bound is gen-
erated (like the one in Section 4.2), then it seems no problems. However, if a proof
is "co-NP-type", i.e., the non-existence is verified by checking a huge number of
cases (like the one in Section 3.3), this may be a problematic. One possible ap-
proach is to translate a computer proof into a formal proof. A Coq proof of the
Four Color Theorem by Gonthier [19] or an ongoing "Flyspeck" project [20] for
the Kepler Conjecture is a nice example. However this would need a huge amount
of work in general, and we do not have a good solution to this meta-problem.

References

[1] K. Amano, New Upper Bounds on the Average PTF Density of Boolean
Functions, Manuscript, 2010 (available at http://www.cs.gunma-u.ac.jp/
˜amano/poly/index.html).

[2] K. Amano and A. Maruoka. On the Complexity of Depth-2 Circuits with Threshold
Gates, Proc. of MFCS ’05, LNCS 3618, 107-118, 2005.

[3] K. Amano and A. Maruoka. Better Upper Bounds on the QOBDD Size of Integer
Multiplication, Disc. Appl. Math., 155(10): 1224–1232, 2007.

[4] K. Amano and J. Tarui. A Well-Mixed Function with Circuit Complexity 5n ± o(n):
Tightness of the Lachish-Raz-type Bounds, Proc. of TAMC ’08, LNCS 4978, 342–
350, 2008.

[5] A. Ambainis, Polynomial Degree vs. Quantum Query Complexity, J. Comput. Sys.
Sci., 72(2), 220–238, 2006 (Earlier version in FOCS ’03).

[6] K. Appel and W. Haken, Every Planar Map is Four Colorable. Part I. Discharging,
Illinois J. Math., 21, 429–490, 1977.

[7] K. Appel, W. Haken and J. Koch, Every Planar Map is Four Colorable. Part II.
Reducibility, Illinois J. Math., 21, 491–567, 1977.

[8] H. Barnum, M.E. Saks and Mario Szegedy, Quantum query complexity and semi-
definite programming. Proc. of CCC ’03, 179–193, 2003.

[9] S. Basu, N. Bhatnagar, P. Gopalan and R.J. Lipton, Polynomials that Sign Represent
Parity and Descartes Rule of Signs, Computational Complexity, 17(3), 377-406,
2008. (Earlier version in CCC ’04)

 !" #$%%"&'()* &!" +, -.

 !

[10] N. Blum, A Boolean Function Requiring 3n Network Size, Theoret. Comput. Sci.,
28, 337–345, 1984.

[11] B. Bollig, Integer Multiplication and the Complexity of Binary Decision Diagrams,
Bulletin of the EATCS, 98, 78–106, 2009.

[12] R.E. Bryant, On the Complexity of VLSI Implementations and Graph Representa-
tions of Boolean Functions with Applications to Integer Multiplication, IEEE Trans.

on Computers, 40, 205–213, 1991.

[13] H. Buhrman and R. de Wolf, Complexity Measures and Decision Tree Complexity:
A Survey, Theoret. Comput. Sci., 288(1), 21–43, 2002.

[14] T. Cover, Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition, IEEE Trans. Electronic Computers, EC-
14(3), 326–334, 1965.

[15] J. Forster, M. Krause, S. V. Lokam, R. Mubarakzjanov, N. Schmitt, H. Simon, Re-
lations Between Communication Complexity, Linear Arrangements, and Computa-
tional Complexity. Proc. of FSTTCS ’01, 171–182, 2001.

[16] P. Frankl and Füredi, An Exact Result for 3-Graphs, Discrete Math., 50(2-3), 323–
328, 1984.

[17] S.J. Friedman and K.J. Supowit, Finding the Optimal Variable Ordering for Binary
Decision Diagrams, IEEE Trans. Comput., 39, 710–713, 1990.

[18] H. Fukuhara, personal communication, 2010.

[19] G. Gonthier, Formal Proof – The Four-Color Theorem, Notices of the AMS, 55(11),
1382–1393, 2008.

[20] T.C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua and R. Zumkeller, A
Revision of the Proof of the Kepler Conjecture, Discrete Comput. Geom, 44, 1–34,
2010.

[21] J. Håstad, The Shrinkage Exponent of de Morgan Formulas is 2, SIAM J. Comput.,
27(1), 48–64, 1998.

[22] P. Høyer, T. Lee, R. Sp̌alek Tight Adversary Bounds for Composite Functions,
quant-ph/0509067, 2005.

[23] P. Høyer, T. Lee, R. Sp̌alek Negative Weights Make Adversaries Stronger, Proc. of
STOC ’07, 526–535, 2007.

[24] P. Hrubes, S. Jukna, A. Kulikov and P. Pudlak, On Convex Complexity Measures,
Theoret. Comput. Sci., 411, 1842–1854, 2010.

[25] K. Iwama and H. Morizumi, An Explicit Lower Bound of 5n − o(n) for Boolean
Circuits, Proc. of MFCS ’02, 353–364, 2002.

[26] K. Iwama, O. Lachish, H. Morizumi and R. Raz, An Explicit Lower Bound of
5n − o(n) for Boolean Circuits, Manuscript, (combined version of [25] and [34]),
2005.

 !"#$% &' ()(!" "# $% $&'()*%

 !

[27] V.M. Khrapchenko, A Method of Determining Lower Bounds for the Complexity of
Π-schemes, Mathematicheskie Zametki, 10(1), 83–92, 1971 (in Russian); English
translation in Mathematical Notes, 10(1), 474–479, 1971.

[28] A. A. Kojevnikov, A. S. Kulikov and G. N. Yaroslavtsev, Finding Efficient Circuits
Using SAT-solvers, Proc. of SAT ’09, LNCS 5584, 32–44, 2009.

[29] E. Kushilevits and E. Weinreb, On the Complexity of Communication Complexity,
Proc. of STOC ’09, 465–474, 2009.

[30] D. Knuth, The Art of Computer Programming: Volume 4, Fascicle 0: Introduction
to Combinatorial Algorithms and Boolean Functions, Addison-Wesley, 2008.

[31] D. Knuth, The Art of Computer Programming: Volume 4, Fascicle 1: Bitwise Tricks
& Techniques; Binary Decision Diagrams, Addison-Wesley, 2009.

[32] S. Laplante, T. Lee and M. Szegedy, The Quantum Adversary Method and Classi-
cal Formula Size Lower Bounds, Computational Complexity, 15, 163–196, 2006.
(Earlier version in CCC’ 05).

[33] S. Laplante, F. Magniez, Lower Bounds for Randomized and Quantum Query Com-
plexity using Kolmogorov Arguments, Proc. of CCC ’04, 294–304, 2004.

[34] O. Lachish and R. Raz, Explicit Lower Bound of 4.5n − o(n) for Boolean Circuits,
Proc. of STOC ’01, 399–408, 2001.

[35] A. Makhorin, The GLPK (GNU Linear Programming Kit) Package, available at
http://www.gnu.org/software/glpk/.

[36] K. Markström and J. Talbot, On the Density of 2-Colourable 3-Graphs in which any
Four Points Span at Most Two Edges, J. Combin. Designs, 18(2), 105–114, 2009.

[37] M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, 1988 (First edition
appeared in 1968)

[38] N. Nisan andM. Szegedy, On the Degree of Boolean Functions as Real Polynomials,
Computational Complexity, 4, 301–313, 1994.

[39] N. Nisan and A. Wigderson, On Rank vs. Communication Complexity, Combina-

torica, 15(4), 557–565, 1995. (Earlier version in FOCS ’94)

[40] R. O’Donnell, R. Servedio, Extremal Properties of Polynomial Threshold Functions,
J. Comput. Syst. Sci., 74(3), 298-312, 2008. (Earlier version in CCC’03)

[41] E. Oztop, An Upper Bound on the Minimum Number of Monomials Required to
Separate Dichotomies of {−1, 1}n, Neural Computation, 18(12), 3119-3138, 2006.

[42] E. Oztop, Sign-representation of Boolean Functions using a Small Number of
Monomials, Neural Networks, 22(7), 938-948, 2009.

[43] A. Razborov, Flag Algebras, J. Symbolic Logic, 72(4), 1239–1282, 2007.

[44] A. Razborov, On 3-Hypergraphs with Forbidden 4-Vertex Configurations,
Manuscript, 2008.

 !" #$%%"&'()* &!" +, -.

 !

[45] R. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The Four Colour Theo-
rem, J. Combin. Theory., Ser. B, 70, 2–44, 1997.

[46] M.E. Saks, Slicing the Hypercubes, Surveys in Combinatorics, Cambridge Univer-
sity Press, 211–255, 1993.

[47] M. Sauerhoff, An Asymptotically Optimal Lower Bound on the OBDD Size of the
Middle Bit of Multiplication for the Pairwise Ascending Variable Order, Disc. Appl.
Math., 158(11), 1195–1204, 2010.

[48] P. Savický and S. Žák, A Large Lower Bound for 1-Branching Programs, ECCC

TR96-036 Rev.01, 1996.

[49] A.A. Sherstov, The Unbounded-Error Communication Complexity of Symmetric
Functions, Proc. of FOCS ’08, 384–393, 2008.

[50] A.A. Sherstov, The Intersection of Two Halfspaces has High Threshold Degree,
Proc. of FOCS ’09, 343–362, 2009.

[51] A.A. Sherstov, Optimal Bounds for Sign-representing the Intersection of Two Half-
spaces by Polynomials, Proc. of STOC ’10, 2010.

[52] R.Špalek and M. Szegedy, All Quantum Adversary Methods are Equivalent, Proc.
of ICALP ’05, 1299-1311, 2005.

[53] J. Tarui, Smallest Formulas for the Parity of 2k Variables are Essentially Unique,
Theoret. Comput. Sci., (in press), 2010. (Earlier version in COCOON ’08)

[54] R. Williams, Applying Practice to Theory, ACM SIGACT News, 39(4): 37–52, 2008.

[55] P. Woelfel, Bounds on the OBDD-size of Integer Multiplication via Universal Hash-
ing. J. Comput. Sys. Sci., 71(4), 520–534, 2005.

[56] S. Zhang, On the Power of Ambainis’s Lower Bounds, Theoret. Comput. Sci.,
339(2-3), 241–256, 2005.

