
 !""#$%& '($)# *+,-. &' /0/1 223 /456/781 9!&# 40/0

©:
*!;'2#<& +==':%<$%'& ('; ,)#';#$%:<" -'>2!$#; .:%#&:#

T D C C



P F

Department of Computer Science, University of Crete

P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and

Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)

N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr

T O  Q S

Marko Vukolić

IBM Research - Zurich

mvu@zurich.ibm.com

Abstract

A quorum system is a collection of subsets of nodes, called quorums,

with the property that each pair of quorums have a non-empty intersection.

Quorum systems are the key mathematical abstraction for ensuring consis-

tency in fault-tolerant and highly available distributed computing. This pa-

per is a brief overview of the evolution of quorum systems, with emphasis

on their role in two fundamental applications: distributed storage and repli-

cation.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

1 Introduction

The very etymology of the word quorum (‘of whom’, Latin genitive plural of qui,

who), is an indication of its importance, as it denotes a selected group. Quorums

have been used for centuries in, e.g., legislative terminology, to denote the number,

usually a majority, of ‘officers or members of a body that when duly assembled is

legally competent to transact business’ [2]. A historical example of such a ‘busi-

ness’ is the process of voting. Intuitively, requiring majorities to reach decisions in

a voting process is critical in preventing (obviously undesirable) inconsistencies

and partitioning in a legislative process.

This historical use of quorums has arguably inspired their use in computer

science. Namely, in distributed computing, quorums come in groups, forming

quorum systems. Given a set of nodes, typically servers, a quorum system is a

collections of subsets of nodes, called quorums, every two of which intersect. A

set of majorities is both a fundamental and obvious example of a quorum system.

Moreover, following the historical path further, it should not be surprising that

the raison d’être of quorum systems in distributed computing is to guarantee con-

sistency. Here, the key property of quorum systems is that of non-empty pair-wise

intersections. The other important aspect of quorums, namely that they are (typi-

cally strict) subsets of a set of nodes, relates to the goals of higher availability [56],

better load balancing [37] and fault-tolerance [13] in distributed systems. The key

idea here is that a client accessing a (replicated) service does not necessarily need

to communicate with all the nodes, but only with the nodes belonging to some

quorum, which is itself often a strict subset of nodes. This leads to relaxation of

the load on nodes that reside outside of a quorum and/or enables tolerance of their

failures, resulting in higher availability.

In this context, quorum systems have been used to implement a wide variety

of distributed objects and services. Typical examples include replicated databases

[26, 35, 62], mutual exclusion [6, 45], read/write registers [11, 47] and group

communication [9, 18], to name only a very few.

A comprehensive survey of all the protocols and techniques that rely on the

notion of quorums would probably require a dedicated book and is most certainly

beyond the scope of this paper. On the other hand, the goal of this paper is to

briefly overview the evolution of quorum systems in distributed computing lit-

erature, with particular emphasis on refinements of the original quorum notion.

Specifically, our goal is to overview how the simple non-empty intersection prop-

erty has evolved in time and to attempt to explain different quorum access meth-

ods of a given quorum system, in terms of different model assumptions and design

goals. The key applications we have in mind are two fundamental ones that have

significantly benefitted from the evolution of quorum systems: distributed stor-

 !" #$%%"&'()* &!" +, -.

 !"

age and replication. In addition, we overview some of the main quorum systems

measures such as load and availability.

The remainder of the paper is organized as follows. Section 2 introduces some

of the definitions and terminology used in the paper. Section 3 overviews classical

quorum systems as well as few fundamental measures typically used to evaluate

quorum systems and protocols that use them. Then we describe three refinements

of the classical quorum systems. Section 4 describes Byzantine quorum systems,

which are designed to provide consistency in presence of Byzantine failures. Sec-

tion 5 describes probabilistic quorum systems that probabilistically depart from

classical quorum system to provide better availability. Section 6 presents refined

quorum systems, which further refine classical and Byzantine quorum systems,

with the goal of designing strongly consistent distributed protocols with optimal

latency. Finally, Section 7 concludes the paper.

2 Preliminaries

Basics. Given a set S , a set system (or a hypergraph) H is a subset of the pow-

erset of S , i.e., H ⊆ 2S . In other words, a set system is a set of subsets of S . We

denote by m(H) the minimal cardinality of some element in H, m(H) = min
Q∈H

|Q|.
Strategy σ is a probabilistic function that takes a (non-empty) set system H as

input, and outputs some Q ∈ H with probability σH(Q), such that
∑

Q∈H

σH(Q) = 1.

Registers. In this paper we also discuss different read/write storage [22] seman-

tics implemented using different quorum systems. For completeness, we infor-

mally define these storage semantics here (precise definitions can be found in,

e.g., [12, 41, 44]).

We consider the notions of safe, regular and atomic storage (also known as

read/write register) introduced by Lamport in [41]. All three semantics behave

in the same consistent way in the absence of read/write concurrency (also called

contention); in this case, a read returns the last value written. In the case of con-

tention, a read in safe storage may return an arbitrary value, whereas in regular

storage, it may return either the last value written prior to the read or some of the

values written concurrently. Finally, atomic storage has the strongest semantics

and provides the reader with an illusion of a sequential access to storage.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

3 Classical Quorum Systems

In this section, we first provide some background and a basic definition of quorum

systems. This is followed by exemplifying some of the classical quorum systems

used in literature. Finally, we introduce some important quorum system measures.

3.1 Background

In 1979, Thomas proposed [62] a majority approach to solving consensus [44] to

maintain concurrency control over multiple copies of a replicated database. This

paper, along with that of Gifford [26], has marked the dawn of quorum systems

in distributed computing. Perhaps unsurprisingly, both papers used quorums in

the context of voting. In short, Thomas used a majority voting scheme in which

database copies vote on the acceptability of update requests. To write data to the

database, the writer would timestamp the data and write it to a majority of servers.

Then, to read the data, the reader would contact a (possibly different) majority,

and return the data having the highest timestamp.

In this scheme, the majority-intersection property guarantees that the reader

will obtain the latest value. This property is critical in preserving consistency in

presence of potential network partitions.

Quorum systems can be defined in a more general context, refining the concept

of majorities to allow arbitrary quorum sizes while maintaining the requirement

for non-empty pair-wise quorum intersections. The basic definition we use in this

paper is a variation of the definition given in [25]:

Definition 1 (Quorum System). Given a set S = {s1, s2 . . . sn} (n ≥ 1), a set system

QS is a quorum system over S , if and only if

(Intersection) ∀Q1,Q2 ∈ QS : Q1 ∩ Q2 , ∅.

Elements of a quorum system are simply called quorums. When S is under-

stood, we omit it for simplicity.

It is worth noting that the definition of Garcia-Molina and Barbara [25] differs

somewhat, as it defines coteries (i.e., ‘exclusive groups’ [1]) in place of quorum

systems. Coteries (see also, e.g., [38]) can be seen as minimal quorum systems,

with the minimality property stating that there are no two quorums in a coterie

such that one is the strict subset of the other. In this paper, unless stated otherwise,

we will consider a more general, non-minimal notion of a quorum system, as

defined in Definition 1.

In contrast to the work of Thomas, Gifford [26] introduced a weighted voted

scheme and was also the first to refine the concept of majority-based quorums by

separating the notions of read and write quorums. In this fundamental refinement,

the Intersection property is relaxed so as not to require all quorums to intersect.

Gifford separates quorums into two classes: read and write quorums, and requires

only quorums belonging to different classes to intersect. In principle, this refine-

ment with its distinctions between read and write quorums can be applied to any

quorum system. Therefore, for simplicity and unless stated otherwise, the quorum

systems surveyed in this paper will not account for the read/write distinction.

For a comprehensive survey of early approaches to consistency using quorum

systems, the reader is referred to [24]. Classical quorum systems have also been

extensively used in the context of storage simulations in message-passing systems.

The seminal example of such is the ABD atomic storage simulation by Attiya,

Bar-Noy and Dolev [11]. The original majority-based ABD simulation along with

the survey of the subsequent work were discussed in a recent article by Attiya [10].

In the following, we briefly instantiate classical quorum systems through few

classical examples (beyond majorities).

3.2 Examples

Singleton. The simplest quorum system is the one containing a singleton: Singl =

{{si}}, for some si ∈ S .

Finite projective planes (FPP). If set S contains n = k2 + k + 1 nodes, where k

is a prime power, then a finite projective plane of order k is a quorum system, in

which every quorum has exactly k + 1 = O(
√
n) nodes, every node is contained in

exactly k + 1 quorums and every two quorums intersect in exactly one node. This

quorum system was used by Maekawa [45] in his mutual exclusion algorithm.

The simplest example of an FPP quorum system is given by Fano plane, an

order 2 FPP over a set of n = 7 nodes (see Fig. 1).

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 1: Fano plane (an order 2 FPP).

Grid. Assume |S | = k2, for some integer k and nodes arranged in a square matrix

(i.e., a grid). Then, a set of subsets of S of the form Qi, j, such that each Qi, j

contains all elements in row i and column j (1 ≤ i, j ≤ k) forms the quorum system

 !"#$% &' ()(!" "# $% $&'()*%

 !"

over S . Such a quorum system has k2 = n quorums, each of size 2k − 1 = O(
√
n)

and every quorum intersects with every other quorum in at least 2 nodes.

To minimize the size of quorum intersection we can construct a slightly dif-

ferent quorum system containing k =
√
n quorums Qi (1 ≤ i ≤ k) such that Qi

contains all nodes from row i and exactly one node from each row j > i [46]. It is

not difficult to see that the quorum size in this quorum system (we refer to as the

Grid) remains O(
√
n), whereas the size of pair-wise intersections among quorums

is 1. The first grid-like quorum system was used in the replication protocol of

Cheung et al [21].

B-Grid. A generalized grid-like quorum system, called B-Grid, was proposed

by Naor and Wool [56]. This quorum system assumes a rectangular grid of R

rows and c columns, such that rows are grouped into b bands of r rows (R = br),

where band j (1 ≤ j ≤ b) contains rows (j − 1)r + 1 . . . jr. Moreover, denote

the intersection of column c and band j as mini-column (c, j). Then, the B-grid

quorum system consists of b quorums Q j (1 ≤ j ≤ b), each containing one mini-

column from each band (i.e., b mini-columns (ci, i), where 1 ≤ i ≤ b and 1 ≤ ci ≤
c) and one node from each column in band j (see also Fig. 2). It is not difficult

to see that B-Grid is a quorum system in which every quorum contains exactly

br + c − 1 nodes.

Figure 2: The B-Grid quorum system over a set of n = brc = 120 nodes, with

c = 15 columns, b = 4 bands and r = 2 rows per band.

3.3 Measures

Two fundamental quorum system measures are load and availability, studied by

Naor and Wool [56] and Peleg and Wool [57], respectively.

3.3.1 Load

In principle, a protocol using a quorum system will need to access some quorum.

In the best case, a process accessing a quorum will be able to select a given quo-

 !" #$%%"&'()* &!" +, -.

 !

rum Q and access all nodes that belong to Q. Such usage of a quorum system

will induce load, which, in short, measures the minimal access probability of the

busiest node in the system. The load measures the quality of a quorum system:

low load translates to the busiest node being accessed rarely, which allows it to

perform other, unrelated tasks. Intuitively, the lower the load of a quorum system,

the better.

With each strategy (see Sec. 2), there is an associated load induced on each

node as well as the load on the entire quorum system. Given strategy σ, the

load on a given node si is the probability that si will belong to a quorum selected

according to strategy σ. The load of σ on a quorum system is defined as the

maximum load of each individual node. Finally, the (system) load of a quorum

system is the minimum load across all possible strategies.

Definition 2 (Load). Let QS be the quorum system over S . Then, we define the

following:

1. Load induced by strategy σ on node si ∈ S : lσ(si,QS) =
∑

si∈Q
σQS(Q).

2. Load induced by strategy σ on QS: Lσ(QS) = max
si∈S

lσ(si,QS).

3. Load of QS: L(QS) = min
σ
Lσ(QS) (minimum over all strategies σ).

In [56], Naor and Wool also prove the lower bound on the load of any quo-

rum system. Namely, they show that L(QS) ≥ max
{

1
m(QS)
,
m(QS)

n

}

, which implies

L(QS) ≥ 1/
√
n.

It is very important to highlight that a load of a given quorum system is inde-

pendent of any given protocol that might use this quorum system. On the other

hand, a given protocol might come with a given strategy σ and the associated load

induced by this strategy.

In a sense, the above definition of load is a best-case one because the con-

nection between strategies and load assumes that a quorum selected by a strategy

will always be accessed. This obviously does not account for possible failures

and/or asynchrony, which may prevent a selected quorum from being accessed.

The reader is referred to [56] for an extended definition of load that accounts for

failures. Moreover, Yu [65] proposes a definition of the load measure that extends

its scope beyond the best case, by studying the load under asynchrony where prob-

ing [59] of multiple quorums is typically needed before a quorum can be acquired,

which intuitively makes servers busier.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

3.3.2 Availability

Resilience. A fundamental availability measure of quorum systems is the re-

silience (sometimes also referred to as node vulnerability [13] or fault-tolerance

[48]). The resilience R(QS) of a quorum system QS is defined as the maximal

integer t such that, despite a failure of any t nodes in the system, there is a quorum

Q ∈ QS such that no node belonging to Q fails. Note that the Intersection property

implies R(QS) < m(QS). Namely, the failure of all nodes in any single quorum

implies at least one node failure in every quorum. Therefore, the resilience is

bounded by the minimal quorum cardinality.

Of particular importance are optimally resilient quorum systems. It is straight-

forward to show that no quorum system can have a resilience greater than
⌊

n−1
2

⌋

.

This is exactly the resilience of a majority coterie. We say that a quorum system

is t-resilient if and only if its resilience is at least t.

Finally, the definition of resilience can be extended beyond threshold failures

[17]. A quorum system QS is said to be resilient to set system F, if and only if

∀F ∈ F,∃Q ∈ QS : Q ∩ F = ∅.

Failure probability. Another availability measure, introduced by Peleg andWool

in [57], is the global failure probability, or simply the failure probability. In fact,

the failure probability (a.k.a. non-availability) of a quorum system QS, denoted

by Fp(QS), is in a sense dual to availability. In short, Fp(QS) is the probability

that no quorum in QS will have a non-faulty node. Here, p is the probability of

failure of each of the nodes in S , where it is assumed that failures are independent

with a uniform probability distribution. Moreover, here a failure is assumed to be

a detectable crash-stop failure.

More precisely, for each quorum Q ∈ QS denote by Fp(Q) the probability that

some node in Q fails. Clearly, as we assume p to be uniformly distributed, we

have Fp(Q) = 1 − (1 − p)|Q|. Then, failure probability is defined simply as

Fp(QS) =
∏

Q∈QS

Fp(Q).

In general, quorum system QS is considered to have good failure probability

if Fp(QS) tends to 0 for large values of n assuming p < 1/2.

Peleg and Wool also relate two availability measures, namely the resilience

and failure probability, by showing that Fp(QS) is at least e−Ω(R(QS)) [57]. More-

over, sinceR(QS) < m(QS) andm(QS) ≤ nL(QS), the tradeoff between resilience

and load is expressed as R(QS) < nL(QS). Finally, we can express the tradeoff

between the failure probability and the load [56]. Clearly, the failure probability is

at least the probability that all the nodes from the quorum containing the smallest

number of nodes fail, i.e., Fp(QS) ≥ pm(QS) ≥ pnL(QS).

 !" #$%%"&'()* &!" +, -.

 !!

3.3.3 Comparison

In Table 1 we overview the quality measures of the quorum systems presented in

Section 3.2 [46, 56].

QS L(QS) R(QS) Fp(QS)

Singleton 1 0 p

Majorities
⌈

n+1
2

⌉ ⌊

n−1
2

⌋

e−Ω(n)

FPP O(1√
n
) O(

√
n) 1*

Grid O(1√
n
) O(

√
n) 1*

B-Grid O(1√
n
) O(

√
n) O(e−

n1/4

2)

* For large values of n.

Table 1: Comparison of the load, resilience and failure probability for different

quorum systems.

Singleton is interesting when the individual node probability failure is high

(p > 1/2), when this simple quorum system offers the best failure probability.

Otherwise (assuming p < 1/2), Majorities has the best availability but poor load.

On the other hand, FPP and Grid have optimal load, yet their failure probability is

poor for large value of n. This is corrected by B-Grid, which has asymptotically

optimal failure probability. The data in Table 1 for B-Grid are given assuming

c =
√
n, r = ln(c) and p ≤ 1

3
.

Other quorum systems that combine optimal load with optimal failure proba-

bility include CWalls proposed by Peleg and Wool [58], Paths by Naor and Wool

[56] and Bazzi’s Triangle Lattice [15].

4 Byzantine Quorum Systems

So far we have discussed classical quorum systems, applicable in the context of

crash failures. However, if node failures can be arbitrary, also called Byzantine

[43], simple non-empty quorum intersections are not sufficient to guarantee con-

sistency. Intuitively, if an intersection between two quorums contains, for exam-

ple, a single node, and this node can be Byzantine, the Byzantine node can simply

violate consistency. As an illustration, assuming the Byzantine node is the sole

node in the intersection of a write and a read quorum, it can simply “forget” seeing

the write and cause inconsistencies in a read.

Although it has been known for some time that tolerating Byzantine failures

in, e.g., replication requires a larger fraction of correct nodes than tolerating crash

failures only does (see e.g., the seminal work by Lamport et al. [43]), the first

 !"#$% &' ()(!" "# $% $&'()*%

 !"

formal treatment of the problem of defining quorum systems in Byzantine context

was done by Malkhi and Reiter [47]. They define several types of Byzantine

quorum systems depending on the type of data the targeted application is designed

to store, as we explain in the following.

Byzantine quorum systems are specified not only with respect to a given set

of nodes S , but also assuming a given set system over S called adversary (also

called adversary structure [36] or fail-prone set [47]).

Definition 3 (Adversary). Given a set S , a set system B is an adversary for S if

and only if B ∈ B ∧ B′ ⊆ B⇒ B′ ∈ B.

Intuitively, the adversary is defined to capture all possible combinations of

simultaneously Byzantine nodes. In the following, we assume that an adversary

for S contains as its elements all possible subsets of nodes whose elements can be

simultaneously Byzantine. Armed with the above definition of the adversary, we

are ready to define Byzantine quorum systems.

4.1 Dissemination Quorum Systems

One of the families of Byzantine quorum systems proposed in [47] are dissemina-

tion quorum systems.

Definition 4 (Dissemination quorum systems). Given a set S and an adversary B

for S , a quorum system (over S) DQS is a dissemination quorum system over S if

and only if

(Byzantine intersection) ∀Q1,Q2 ∈ DQS,∀B ∈ B : Q1 ∩ Q2 * B.

Dissemination quorum systems were proposed in [47] with the aim of storing

self-verifying, also called authenticated, data. In short, authenticated data are data

that cannot be forged by a Byzantine node; in practice this feature is typically

implemented using digital signatures. We further discuss the use of dissemination

quorum systems in Section 4.3.

In [47], Malkhi and Reiter define a dissemination quorum system with an ad-

ditional availability property requiring resilience to B (see Sec. 3.3.2). While this

is clearly a necessary condition for the availability of a disseminating quorum sys-

tem and the liveness of an underlying service, it may prohibit some applications

which require a service to be safe, but not always live [61]. Therefore and to

maintain generality, in this paper, we choose to separate the definitions of quorum

systems (i.e., their intersection properties) from the availability considerations.

Denote by Bt a threshold adversary that contains all subsets of S of cardinality

at most t (Bt = {Q ⊆ S : |Q| ≤ t}). A special and particularly important case of

 !" #$%%"&'()* &!" +, -.

 !"

a dissemination quorum system, is a t-dissemination quorum system. Given the

adversary Bt, a dissemination quorum system is a t-dissemination quorum system

if its resilience is at least t.

It is straightforward to show that no t-dissemination quorum system can be

constructed if n ≤ 3t. On the other hand if, e.g., n = 3t + 1, an example of a

t-dissemination quorum system is a two-thirds majority quorum system: Maj 2
3
=

{Q ⊆ S : |Q| = n − t = 2t + 1}. In this context, Maj 2
3
is optimally resilient, with

the resilience expressed as a function of n: R(Maj 2
3
) =
⌊

n−1
3

⌋

. More generally, it

can be shown that, for n > 3t, DQSt =
{

Q ⊆ S : |Q| =
⌈

n+t+1
2

⌉}

is a t-dissemination

quorum system.

It can be also shown, along the lines of [50], that the lower bound on the load

of any t-dissemination quorum system tDQS is given by

L(tDQS) ≥ max

{

t + 1

m(tDQS)
,
m(tDQS)

n

}

,

which impliesL(tDQS) ≥
√

t+1
n
. More concretely, the load of the t-dissemination

quorum system DQSt defined above is L(DQSt) =
1
n

⌈

n+t+1
2

⌉

.

4.2 Masking Quorum Systems

In [47], Malkhi and Reiter also proposed masking quorum systems with the goal

of storing unauthenticated data. As we discuss in Section 4.3, relying on mask-

ing quorum systems to store unauthenticated data revealed not to be necessary,

because unauthenticated data can be stored in a consistent manner using dissem-

ination quorum systems only. However, designing storage protocols for storing

unauthenticated data is arguably much simpler when using masking instead of

dissemination quorum systems.

Masking quorum systems are defined as follows:

Definition 5 (Masking quorum systems). Given a set S and an adversary B for S ,

a quorum system (over S) MQS is a masking quorum system over S if and only if

(M-Byzantine intersection) ∀Q1,Q2 ∈ MQS,∀B1, B2 ∈ B : Q1 ∩ Q2 * B1 ∪ B2.

Given the above definition, it is straightforward to see that masking quorums

are a further refinement of disseminating quorums: all masking quorum systems

are also disseminating quorum systems, but, the opposite does not hold. Anal-

ogously to t-dissemination quorum systems, we can define t-masking quorum

system [47] as masking quorum systems for the threshold adversary Bt with the

resilience of at least t. It is straightforward to show that no t-masking quorum

 !"#$% &' ()(!" "# $% $&'()*%

 !"

system tMQS can be constructed if n ≤ 4t. For n > 4t, it can be shown [47]

that MQSt =
{

Q ⊆ S : |Q| =
⌈

n+2t+1
2

⌉}

is a t-masking quorum system. The load of

this quorum system is L(MQSt) =
1
n

⌈

n+2t+1
2

⌉

and is achieved by the strategy that

assigns uniform probabilities across all quorums.

More generally, the lower bound on the load of any t-masking quorum sys-

tem tMQS is given by L(tMQS) ≥ max
{

2t+1
m(MQS)

,
m(tMQS)

n

}

, implying L(tMQS) ≥
√

2t+1
n

.

Opaque masking quorum systems. In [47] Malkhi and Reiter also propose

a specific variant of masking quorum systems designed for the case where the

adversary is opaque, in a sense that the adversary is fixed, yet not known to cor-

rect nodes. Roughly speaking, this quorum system provides an invariant stating

that the count on the number of correct nodes in an intersection of any two quo-

rums will be higher (or equal) to the number of stale nodes in any given quorum

plus the number of Byzantine nodes. One of the main results in [47] related to

opaque masking quorums is that no Bt-resilient opaque quorum systems can be

constructed with less than 5t nodes. An example of an implicit use of an opaque

masking quorum system is the safe storage implementation of Jayanti et al. [39].

For more details on opaque masking quorum systems the reader is referred to [47].

4.3 Usage

Byzantine quorum systems have been widely used in asynchronous read/write

storage emulations, typically projected to the threshold failure model. In [47],

Malkhi and Reiter also proposed a single-writer multi-reader regular storage con-

struction for storing authenticated data using dissemination quorum systems in

which both reads and writes access a given quorum only once. This approach

was further extended by the same authors in [49] to implement multi-writer multi-

reader atomic storage relying again on dissemination quorum systems and data

authentication. The improvement in terms of supporting multiple writers and pro-

viding stronger semantics came at the price of having to access quorums twice in

each read and write.

In contrast to dissemination quorum systems, masking quorum systems were

designed to store unauthenticated data. In this setting, Malkhi and Reiter proposed

in [47] a single-writer multi-reader safe storage construction in which read and

write operations accessed a quorum only once.

However, Martin and Alvisi showed an atomic storage implementation in [53]

that stores unauthenticated data but uses only dissemination quorums. Not sur-

prisingly, the protocol of Martin and Alvisi, called SBQ-L (Small Byzantine Quo-

rums with Listeners), used much more involved techniques than its counterpart of

 !" #$%%"&'()* &!" +, -.

 !"

Malkhi and Reiter that stores authenticated data [49]. Following the work by Mar-

tin and Alvisi, many storage constructions that use disseminating quorum systems

to store unauthenticated data were proposed, typically with the goal of reducing

complexity. These include safe and regular storage constructions of Abraham et

al. [5] and Guerraoui and Vukolić [32], as well as the atomic storage construction

of Aiyer et al. [8].

However, masking quorum systems are arguably simpler to use in unauthen-

ticated storage constructions. This was formally proved by Abraham et al. [5],

who showed that, in our terminology, any consistent (i.e., safe) storage that stores

unauthenticated data in a disseminating, non-masking, quorum must have write

operations access a quorum more than once in the worst case. The same re-

sult was also shown for read operations [5, 32]. Using masking quorums helps

achieve simpler design (recall here the safe implementation of Malkhi and Reiter

[47]), but it comes with the price of lower resilience and higher load, as we already

discussed. In this context, masking quorum systems were used in the atomic stor-

age construction of Bazzi and Ding [14] and the regular one of Abraham et al

[4]. Bazzi used a variation of masking quorum systems in the synchronous model

[16].

Disseminating quorum systems, in particular Maj 2
3
(assuming B⌊ n−1

3
⌋), underly

many other Byzantine fault-tolerant protocols beyond storage, including replica-

tion protocols. Examples include the seminal work of Castro and Liskov [19], or

the replication protocols of Cowling et al. [23].

Martin et al. proposed in [51] variants of dissemination and masking quo-

rum systems that account for the distinction between read and write quorums.

They also proposed the construction of threshold-based disseminating and mask-

ing quorum systems with as few as 2t+1 and 3t+1 nodes, respectively. To achieve

this, these quorum systems sacrifice the resilience of write quorums but maintain

read quorums t-resilient. Bazzi [17] also extends the notion of Byzantine quo-

rum systems, defining non-blocking quorum systems in the context of studying

the asynchronous access cost of quorum systems.

5 Probabilistic Quorum Systems

Brewer’s CAP theorem [27] states that, in short, no distributed system can provide

consistency, high availability and partition tolerance. As we already discussed,

the defining point of quorum systems is consistency. Moreover, quorum systems

aim at providing high availability. However, this means that quorum systems

cannot imply partition tolerance (this is intuitive from the requirement for the

non-empty quorum intersections). This is one of the reasons modern large-scale

distributed systems, including cloud computing systems, for which availability

 !"#$% &' ()(!" "# $% $&'()*%

 !"

and partition tolerance are of paramount importance, relax consistency guarantees

only to provide eventual consistency [63]. The natural question that arises is, how

do quorum systems fit into this picture? Did they become obsolete?

The answer to the first question is twofold. First, systems that rely on eventual

consistency must provide consistency, albeit only eventually, when a partition in

the system is repaired. To achieve this, these systems resort to some quorum

systems even if only eventually (this also gives a negative answer to the second

question above).

Second, quorum systems researchers have been aware of such issues associ-

ated with the limited availability of classical, strongly consistent, quorum systems

for a long time [64]. Recall here that, for any quorum system QS: a) the resilience

R(QS) is at most
⌊

n−1
2

⌋

(where n is the number of nodes in the system), and b) the

failure probability Fp(QS) tends to 1 when the individual failure probability p is

greater than 1/2.

To cope with this, probabilistic quorum systems were proposed. In short,

these quorum systems aim to improve availability by relaxing probabilistically

the Intersection property. In the following, we first discuss ǫ-intersecting quorum

systems of Malkhi et al. [48], and then briefly overview more recent work on

highly available quorum systems.

5.1 ǫ-Intersecting Quorum Systems

The pioneer work in the context of probabilistic quorum systems was that of

Malkhi et al. [48]. This work introduced ǫ-intersecting quorum systems with

a subtle refinement of the Intersection property of classical quorum systems that

allows non-intersection with a certain probability ǫ. 1

More precisely, ǫ-intersecting quorum systems can be defined as follows:

Definition 6 (ǫ-intersecting Quorum System). Given a set S = {s1, s2 . . . sn} (n ≥
1), let ǫIQS be a set system and let σ be a strategy for ǫIQS with an associated

probability ǫσ. Then, a tuple 〈ǫIQS, σ〉 is an ǫ-intersecting quorum system over S

if and only if

(ǫ-intersection) ∀Q1,Q2 ∈ ǫIQS : P(Q1 ∩ Q2 , ∅) ≥ 1 − ǫσ.

While ǫ-intersecting quorum systems cannot guarantee consistency, they can,

often transparently, substitute classical quorums in existing implementation if

strong consistency is not mandatory. Malkhi et al demonstrate this by giving

1Note that, strictly speaking, probabilistic quorum systems are not classical quorum systems

(as they may violate the Intersection property), unlike Byzantine quorum systems.

 !" #$%%"&'()* &!" +, -.

 !"

a simple safe single-writer multi-reader storage implementation as an illustra-

tion [48] in which both read and write access a given probabilistic quorum only

once. As expected, such an implementation violates consistency with probability

ǫσ [48].

The load of an ǫ-intersecting quorum system 〈ǫIQS, σ〉 is simply the load

induced by strategy σ on ǫIQS, i.e., L(〈ǫIQS, σ〉) = Lσ(ǫIQS). In [48], Malkhi

et al. generalize the lower bound on load given by Naor and Wool in [56] (see

Sec. 3.3.1) by showing that L(〈ǫIQS, σ〉) ≥ max
{

1−√ǫσ
Eσ[|Q|] ,

Eσ[|Q|]
n

}

, where Eσ[|Q|] is
an expectation of accessed quorum size for quorums Q ∈ ǫIQS taken over strategy

σ.2 Then, it is simple to show that L(〈ǫIQS, σ〉) ≥ 1−√ǫσ√
n

.

Clearly, with ǫσ small, ǫ-intersecting quorum systems provide marginally bet-

ter load than classical quorum systems, in general. However, ǫ-intersecting quo-

rum system allow construction of quorum systems that combine both (close to)

optimal load and Ω(n) resilience, which is not possible with classical quorum

systems. Namely, Malkhi et al. suggest in [48] an ǫ-intersecting quorum system

(denoted by ǫIQSl
√
n) in which the quorums are all sets of size l

√
n, with a strategy

chosen uniformly at random and where constant l is chosen to make ǫ sufficiently

small. It can be shown [48] that the probability of two such probabilistic quorums

have an empty intersection is:

P(Q ∪ Q′ = ∅) = (n−l
√
n

l
√
n)

(n
l
√
n)
≤ e−l

2

,

which makes ǫIQSl
√
n an e−l

2

-intersecting quorum system. Since ǫIQSl
√
n can tol-

erate up to n − l
√
n crashes its resilience is Ω(n) (notice here how the probabilis-

tic intersection property relaxes the m(QS) upper bound on resilience). Finally,

failure probability of ǫIQSl
√
n is less than e−Ω(n) for p ≤ 1 − l√

n
[48], which is

asymptotically optimal and if p ≥ 1/2 strictly better than failure probability of

any classical quorum system.

5.2 Related Work

Besides the crash variant of ǫ-intersecting quorum systems, Malkhi et al. present

in [48] the application of ǫ-intersection property to Byzantine quorum systems,

namely to dissemination and masking quorum systems. Merideth and Reiter [55]

complement this work by analyzing probabilistic intersections in the context of

opaque masking quorum systems.

One issue with ǫ-intersecting quorum systems is that they do not account for

the network adversary that controls the system scheduler in, e.g., asynchronous

2In other words, Eσ[|Q|] =
∑

Q j∈QS

σ j|Q j|.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

system. Intuitively, such an adversary could always violate the probabilistic inter-

section guarantees by, e.g., partitioning the writer and the reader and two quorums

eQ1 and eQ2 by arbitrarily delaying messages sent by the writer to nodes in eQ2

and by the reader to eQ1.

Yu [65] explicitly acknowledges this issue, and proposes an alternative def-

inition of probabilistic quorum systems, called signed quorum systems. Signed

quorum system are not defined around access strategies (for these can be dis-

turbed by the scheduler); in Yu’s approach, a strategy is implicit and dictated by

the scheduler and failures in the system. In short, signed quorum systems allow

both positive and negative node ids in a quorum, where negative ids denote nodes

that are suspected to be faulty and cannot be accessed.3 Signed quorum systems

require quorums to intersect, or non-intersecting quorums to differ in at least 2α

node states (signs) for some integer α. The probability of having an empty in-

tersection between two quorums is then the probability that two clients assess at

least 2α nodes in different states which is lower for larger values of α.

Finally, we note that Aiyer et al. [7] argue that Yu’s approach remains vulner-

able to the adversarial scheduler issue and propose k-quorum protocols to boost

availability of classical quorum systems. In short, k-quorum protocols use classi-

cal quorum systems yet allow the writer to lazily contact the writer quorum such

that all nodes from a quorum are contacted during k ≥ 1 consecutive writes (vs.

k = 1 in the classical approach), which allows the reader to return one of the last

k ≥ 1 written values.

6 Refined Quorum Systems

A lot of attention in distributed computing is focused on optimizing common-case

system behavior. The typical research goal in this context is to provide reliable, ro-

bust and consistent service under worst-case system conditions, i.e., asynchrony,

large number of failures and high contention, and at the same time have such a

service perform efficiently in the common-case, characterized by synchrony, few

failures, and possibly even low contention. Distributed protocols proposed in this

context include (i) replication protocols, both crash-tolerant ones such as Lam-

port’s Fast Paxos [42] and Byzantine fault-tolerant ones such as Q/U [3], Zyzzyva

[40] or Aliph [30]; (ii) atomic read/write storage protocols of Goodson et al. [29]

and Guerraoui et al. [31]; (iii) consensus protocols of Martin and Alvisi [52] and

Zielinski [66], and (iv) the atomic broadcast protocol of Ramasamy and Cachin

[60]. A typical goal of such protocols is to minimize the number of quorum ac-

cesses in the common case. Ideally, a given quorum should be accessed only once,

3In other words, signed quorum systems assume a failure detector [20].

 !" #$%%"&'()* &!" +, -.

 !

in particular in the common case.

It turns out that these protocols, in particular those that target optimal re-

silience, rely in the worst case on classical (e.g., majorities) and dissemination

quorum systems (e.g., Maj 2
3
). However, in the common case, these protocols

typically require quorums that are to be accessed only once to have larger inter-

sections with other quorums to maintain consistency. In general, the nature of

such larger quorum intersections is not captured by classical, dissemination or

even masking quorum systems.

A general characterization of such quorum systems, called refined quorum

systems, was proposed by Guerraoui and Vukolić [33]. Refined quorum systems

refine classical and Byzantine quorum systems further and distinguish three dif-

ferent quorum classes. Intuitively, in the common case, a distributed object imple-

mentation can expedite an operation accessing a first-class quorum by allowing it

to access such a quorum only once, whereas quorums of the second and the third

class must be accessed at least twice and three times, respectively. Refined quo-

rum systems are designed for use both in the Byzantine failure model (assuming

unauthenticated data) and in the simple crash failure model (assuming adversary

B = {∅}).
Refined quorum systems are defined as follows [33]:

Definition 7 (Refined quorum systems). Given a set S and an adversary B for S ,

a set system (over S) RQS is a refined quorum system over S , if and only if there

are two set systems QC1 and QC2, such that QC1 ⊆ QC2 ⊆ RQS and

(Class-1 inters.) ∀Q1,Q
′
1
∈ QC1,∀Q ∈ RQS,∀B1, B2 ∈ B : Q1∩Q′

1
∩Q * B1∪B2,

(Class-2 inters.) ∀Q1 ∈ QC1,∀Q2 ∈ QC2,∀Q ∈ RQS,∀B1, B2 ∈ B :

(Q2 ∩ Q * B1 ∪ B2)
∨

(Q1 ∩ Q2 ∩ Q * B1), and

(Class-3 (Byzantine) inters.) ∀Q,Q′ ∈ RQS,∀B ∈ B : Q ∩ Q′ * B.

Note that the Class-3 intersection property is the Byzantine intersection prop-

erty of dissemination quorum systems (see Def. 4) and it is required to hold for

all refined quorums. There are also two special classes of refined quorums: class

1 quorums, that belong to QC1 and class 2 quorums that belong to QC2 \ QC1.

Moreover, the remaining quorums from RQS \ QC2 are called class 3 quorums.

The above definition is given for the special (yet the most interesting) case where

QC1 , ∅.
Refined quorum systems were used in [33] to implement common-case la-

tency optimal SWMR atomic storage and consensus protocols. As we already

intuited, these protocols have the property that when a class 1 quorum is available

they require such a quorum to be accessed only once in the common case (in the

 !"#$% &' ()(!" "# $% $&'()*%

 !"

case of storage this subsumes synchrony and no contention). Otherwise, the pro-

tocols gracefully degrade to require 2 (resp., 3) accesses in case a class 2 (resp., 3)

quorum is available. An important aspect of the intersection properties of refined

quorum systems is that they are also necessary which makes the implementations

of [33] optimal.

The intuition behind the Class-1 intersection property can roughly be summa-

rized in the requirement that the intersection X between two class 1 quorums Q1

and Q′
1
accessed only once by e.g., the writer and the reader, must have enough in-

formation for a subsequent reader accessing quorum Q, so that the latter does not

return the stale value. Intuitively, X and Q should intersect here just like masking

quorums do since data is not authenticated.

The intuition behind the Class-2 intersection property is more involved: we

explain it here assuming a write accessing a class 1 quorum Q1 and a read rd that

accesses a class 2 quorum Q2, followed by another read rd′ that accesses a class

3 quorum Q. The key idea here is that rd is allowed to access class 2 quorum Q2

twice. Moreover, in the common case, the reader will know which value it should

return already after the first access of Q2. Then, in the second access, the reader

can ‘confirm’ the value by writing it back to quorum Q2. In case Q2 has a masking-

like intersection with class 3 quorums, including Q (see the first condition in the

disjunction), this is sufficient for rd′ not to miss the value read by rd. On the other

hand, such a masking-like quorum intersection of class 2 quorums is not always

necessary. Namely (see the second condition in the disjunction), if intersections

between class 1 quorums and Q2 act like dissemination quorums with respect to

class 3 quorums, it is sufficient that the reader “authenticates” the data by writing

the value for the second time in the intersection X = Q1 ∩ Q2 when it accesses

Q2 for the second time. Here, roughly speaking, writing the value in nodes in

X (at least) twice (once by the writer and once by the reader) has the effect of

strengthening and confirming unauthenticated data so the masking intersection is

no longer required.

For the full details behind refined quorum systems, the reader is referred to

[33]. Here, we give two important instantiations of refined quorums that assume

the threshold adversary Bt.

First, assume that all quorums are class 1 quorums. Then the Class 1 inter-

section property implies the other two. Moreover, it is not difficult to see that no

t-resilient refined quorum system can be constructed unless n > 5t. Assuming

n = 5t + 1, we can construct a refined quorum system in which all subsets of size

n− t = 4t+ 1 are quorums. This is exactly the quorum system used in latency effi-

cient replication protocols that require 5t+1 servers [3, 52]. These protocols were

one of the very first to provide a latency-optimized service requiring a quorum to

be accessed only once.

However, it turns out that paying the price of 5t+1 servers is not necessary. Fix

 !" #$%%"&'()* &!" +, -.

 !"

t, assume n = 3t + 1 and consider a refined quorum system in which QC1 = {S }
and QC2 = {Q ⊆ S : |Q| ≥ n − t = 2t + 1}. It is not difficult to show that such

quorum system indeed satisfies the properties of Definition 7: the set of all nodes

is a class 1 quorum whereas any two-third majority is a class 2 quorum. This

quorum system was used in, e.g., Zyzzyva [40] to allow an optimally resilient

replication protocol expedite a common-case operation accessing all servers. In

refined quorum system terminology, the set of all servers is in this case a class 1

quorum; therefore, it can safely be accessed only once.

7 Concluding Remarks

In this paper, we gave a brief overview of the evolution of quorum systems, re-

flected through the refinements of the original non-empty intersection property of

quorums. We also emphasized the impact these refinements have on two funda-

mental applications: distributed storage and replication.

Bearing in mind that our goal was not to provide a comprehensive overview of

all aspects of quorum systems, let alone all protocols that make use of the quorum

notion, we highlight some of these additional aspects not addressed in this paper.

One practical problem that arises when quorums are cast from into a real sys-

tem is the problem of quorum deployment introduced by Gilbert and Malewitz

[28]. This problem raises the question of using quorums optimally, with the goal

of determining the mapping from the real nodes in the network to the abstract

nodes in the quorum specification. This is tightly related to the problem of quorum

placement in networks as discussed by Gupta et al. [34]. For more information

on these aspects, the reader is referred to a recent related survey of Merideth and

Reiter [54].

Acknowledgments

I thank Christian Cachin for valuable comments and Charlotte Bolliger for im-

provements on the readability of this manuscript.

References

[1] coterie. In Merriam-Webster Online Dictionary. Retrieved April 27, 2010 from

http://www.merriam-webster.com/dictionary/coterie.

[2] quorum. In Merriam-Webster Online Dictionary. Retrieved April 27, 2010 from

http://www.merriam-webster.com/dictionary/quorum.

 !"#$% &' ()(!" "# $% $&'()*%

 !!

[3] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,

and Jay J. Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings of

the 20th ACM symposium on Operating systems principles, pages 59–74, October

2005.

[4] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Wait-free regular

storage from Byzantine components. Inf. Process. Lett., 101(2):60–65, 2007.

[5] Ittai Abraham, Gregory V. Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk

paxos: optimal resilience with Byzantine shared memory. Distributed Computing,

18(5):387–408, 2006.

[6] D. Agrawal and A. El Abbadi. Efficient solution to the distributed mutual exclu-

sion problem. In Proceedings of the 8th annual ACM Symposium on Principles of

distributed computing, pages 193–200, New York, NY, USA, 1989. ACM.

[7] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. On the availability of

non-strict quorum systems. In Proceedings of the 19th International Conference on

Distributed Computing, pages 48–62, 2005.

[8] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. Bounded wait-free imple-

mentation of optimally resilient Byzantine storage without (unproven) cryptographic

assumptions. In Proceedings of the 21st International Symposium on Distributed

Computing, pages 7–19, September 2007.

[9] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The

totem single-ring ordering and membership protocol. ACM Trans. Comput. Syst.,

13(4):311–342, 1995.

[10] Hagit Attiya. Robust simulation of shared memory: 20 years after. Bulletin of the

European Association for Theoretical Computer Science EATCS, (100):99–113, Feb

2010.

[11] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in

message-passing systems. J. ACM, 42(1):124–142, 1995.

[12] Hagit Attiya and Jennifer Welch. Distributed Computing. Fundamentals, Simula-

tions, and Advanced Topics. McGraw-Hill, 1998.

[13] Daniel Barbara and Hector Garcia-Molina. The vulnerability of vote assignments.

ACM Trans. Comput. Syst., 4(3):187–213, 1986.

[14] Rida Bazzi and Yin Ding. Non-skipping timestamps for Byzantine data storage

systems. In Proceedings of the 18th International Symposium on Distributed Com-

puting, pages 405–419, Oct 2004.

[15] Rida A. Bazzi. Planar quorums. Theor. Comput. Sci., 243(1-2):243–268, 2000.

[16] Rida A. Bazzi. Synchronous Byzantine quorum systems. Distrib. Comput.,

13(1):45–52, 2000.

[17] Rida A. Bazzi. Access cost for asynchronous Byzantine quorum systems. Dis-

tributed Computing, 14(1):41–48, 2001.

 !" #$%%"&'()* &!" +, -.

 !"

[18] Kenneth P. Birman and Robert V. Renesse. Reliable Distributed Computing with the

ISIS Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA, 1994.

[19] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive

recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[20] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable

distributed systems. 43(2):225–267, March 1996.

[21] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: A high perfor-

mance scheme for maintaining replicated data. IEEE Trans. on Knowl. and Data

Eng., 4(6):582–592, 1992.

[22] Gregory Chockler, Rachid Guerraoui, Idit Keidar, and Marko Vukolić. Reliable

distributed storage. IEEE Computer, 42(4):60–67, 2009.

[23] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira. HQ replication: A hybrid quorum protocol for Byzantine fault tolerance.

In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-

tations, pages 177–190, November 2006.

[24] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in a parti-

tioned network: a survey. ACM Comput. Surv., 17(3):341–370, 1985.

[25] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed

system. J. ACM, 32(4):841–860, 1985.

[26] David K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th

ACM symposium on Operating systems principles, pages 150–162, December 1979.

[27] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[28] Seth Gilbert and Grzegorz Malewitz. The quorum deployment problem. In 8th In-

ternational Conference on Principles of Distributed Systems, pages 316–330, 2004.

[29] Garth Goodson, Jay Wylie, Gregory Ganger, and Michael Reiter. Efficient

Byzantine-tolerant erasure-coded storage. In Proceedings of the International Con-

ference on Dependable Systems and Networks, pages 135–144, 2004.

[30] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next

700 BFT protocols. In Proceedings of the 5th ACM SIGOPS/EuroSys European

Conference on Computer Systems, pages 363–376, 2010.

[31] Rachid Guerraoui, Ron R. Levy, and Marko Vukolić. Lucky read/write access to ro-

bust atomic storage. In Proceedings of the International Conference on Dependable

Systems and Networks, pages 125–136, June 2006.

[32] Rachid Guerraoui and Marko Vukolić. How Fast Can a Very Robust Read Be? In

Proceedings of the 25th ACM Symposium on Principles of Distributed Computing,

pages 248–257, July 2006.

[33] Rachid Guerraoui and Marko Vukolić. Refined quorum systems. Distributed Com-

puting, 2010. http://dx.doi.org/10.1007/s00446-010-0103-7.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

[34] Anupam Gupta, Bruce M. Maggs, Florian Oprea, and Michael K. Reiter. Quorum

placement in networks to minimize access delays. In Proceedings of the 24th annual

ACM symposium on Principles of distributed computing, pages 87–96, New York,

NY, USA, 2005. ACM.

[35] Maurice Herlihy. A quorum-consensus replication method for abstract data types.

ACM Trans. Comput. Syst., 4(1):32–53, 1986.

[36] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable

in secure multi-party computation (extended abstract). In Proceedings of the 16th

annual ACM symposium on Principles of distributed computing, pages 25–34, 1997.

[37] Ron Holzman, Yosi Marcus, and David Peleg. Load balancing in quorum systems.

SIAM J. Discret. Math., 10(2):223–245, 1997.

[38] T. Ibaraki and T. Kameda. A theory of coteries: Mutual exclusion in distributed

systems. IEEE Trans. Parallel Distrib. Syst., 4(7):779–794, 1993.

[39] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free

shared objects. Journal of the ACM, 45(3):451–500, 1998.

[40] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. Zyzzyva: Speculative Byzantine fault tolerance. ACM Trans. Comput. Syst.,

27(4):1–39, 2009.

[41] Leslie Lamport. On interprocess communication. Distributed computing, 1(1):77–

101, May 1986.

[42] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[43] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals prob-

lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[44] Nancy A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[45] M. Maekawa. A
√
N algorithm for mutual exclusion in decentralized systems. ACM

Trans. Comput. Syst., 3(2):145–159, 1985.

[46] Dahlia Malkhi. Quorum Systems. The Encyclopedia of Distributed Computing, J.

Urban and P. Dasgupta, eds., Kluwer Academic, 2000.

[47] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Com-

puting, 11(4):203–213, 1998.

[48] Dahlia Malkhi, Michael Reiter, Avishai Wool, and Rebecca Wright. Probabilistic

quorum systems. Inf. Comput., 170(2):184–206, 2001.

[49] Dahlia Malkhi and Michael K. Reiter. Secure and scalable replication in phalanx. In

Proceedings of the 17th Symposium on Reliable Distributed Systems, pages 51–58,

1998.

[50] Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and availability of

Byzantine quorum systems. SIAM J. Comput., 29(6):1889–1906, 2000.

 !" #$%%"&'()* &!" +, -.

 !"

[51] J-P. Martin, L. Alvisi, andM. Dahlin. Small Byzantine quorum systems. In Proceed-

ings of the International Conference on Dependable Systems and Networks, pages

374–383, June 2002.

[52] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. IEEE Trans.

Dependable Secur. Comput., 3(3):202–215, 2006.

[53] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal Byzantine stor-

age. In Proceedings of the 16th International Conference on Distributed Computing,

pages 311–325, October 2002.

[54] Michael G. Merideth andMichael K. Reiter. Selected Results from the Latest Decade

of Quorum Systems Research. In Bernadette Charron-Bost, Fernando Pedone, and

André Schiper, editors, Replication: Theory and Practice, LNCS, vol. 5959, pages

185-206. Springer, 2010.

[55] Michael G. Merideth and Michael K. Reiter. Probabilistic opaque quorum sys-

tems. In Proceedings of the 21st International Conference on Distributed Com-

puting, pages 403–419, 2007.

[56] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum sys-

tems. SIAM J. Comput., 27(2):423–447, 1998.

[57] David Peleg and Avishai Wool. The availability of quorum systems. Inf. Comput.,

123(2):210–223, 1995.

[58] David Peleg and Avishai Wool. Crumbling walls: A class of practical and efficient

quorum systems. Distributed Computing, 10(2):87–97, 1997.

[59] David Peleg and Avishai Wool. How to be an efficient snoop, or the probe complex-

ity of quorum systems. SIAM J. Discrete Math., 15(3):416–433, 2002.

[60] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous

Byzantine-fault-tolerant atomic broadcast. In Proceedings of the 9th International

Conference on Principles of Distributed Systems, pages 88–102, December 2005.

[61] Rodrigo Rodrigues, Petr Kouznetsov, and Bobby Bhattacharjee. Large-scale Byzan-

tine fault tolerance: safe but not always live. In Proceedings of the 3rd workshop

on on Hot Topics in System Dependability, page 17, Berkeley, CA, USA, 2007.

USENIX Association.

[62] Robert H. Thomas. A majority consensus approach to concurrency control for mul-

tiple copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979.

[63] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

[64] Avishai Wool. Quorum systems in replicated databases: Science or fiction? Bulletin

of the IEEE Technical Committee on Data Engineering, 21:3–11, 1998.

[65] Haifeng Yu. Signed quorum systems. Distributed Computing, 18(4):307–323, 2006.

[66] Piotr Zielinski. Optimistically terminating consensus: All asynchronous consensus

protocols in one framework. In Proceedings of The 5th International Symposium on

Parallel and Distributed Computing, pages 24–33, 2006.

