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Abstract

Congestion games are a widely studied class of non-cooperative games.
In fact, besides being able to model many practical settings, they constitute a
framework with nice theoretical properties: Congestion games always con-
verge to pure Nash Equilibria by means of improvement moves performed
by the players, and many classes of congestion games guarantee a low price
of anarchy, that is the ratio between the worst Nash Equilibrium and the so-
cial optimum. Unfortunately, the time of convergence to Nash Equilibria,
even under best response moves of the players, can be very high, i.e., expo-
nential in the number of players, and in many setting also computing a Nash
equilibrium can require a high computational complexity.

Motivated by the above facts, in order to guarantee a fast convergence
to Nash Equilibria, in the last decade many computer science researchers
focused on special classes of congestion games (e.g., with linear or poly-
nomial delay functions), on simplified structures of the strategy space (e.g.,
on symmetric games in which all players share the same set of strategies or
on matroid congestion games in which the set of strategies constitutes a ma-
troid) and on the relaxation of the notion of Nash Equilibria (e.g., exploiting
the notion of ε-Nash Equilibria). We survey such attempts that, however,
only in some very specific cases have led to satisfactory results on the speed
of convergence to Nash Equilibria.

If we relax the constraint of reaching a Nash Equilibrium, and our goal
becomes that of reaching states approximating the social optimum by a
“low” factor, i.e., a factor being order of the price of anarchy, significantly
better results on the speed of convergence under best response dynamics can
be achieved.

Interestingly, in the more general asymmetric setting, fairness among
players influences the speed of convergence. For instance, considering the
fundamental class of linear congestion games, if each player is allowed
to play at least once and at most β times every T best responses, states
with approximation ratio O(β) times the price of anarchy are reached after
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T dlog log ne best responses, and such a bound is essentially tight also after
exponentially many ones. It is worth noticing that the structure of the game
implicitly affects its performances in terms of convergence speed: In partic-
ular, in the symmetric setting the game always converges to an efficient state
after a polynomial number of best responses, regardless of the frequency
each player moves with. Most of these results extend to polynomial and
weighted congestion games.

1 Introduction
Congestion games are used for modeling non-cooperative systems in which a set
of resources are shared among a set of selfish players. In a congestion game we
have a set of m resources and a set of n players. Each player’s strategy consists of a
subset of resources. The delay of a particular resource e depends on its congestion,
corresponding to the number of players choosing e, and the cost of each player i
is the sum of the delays associated with the resources selected by i. A congestion
game is called symmetric if all players share the same strategy set. A state of the
game is any combination of strategies for the players and its social cost, defined
as the sum of the players’ costs, denotes its quality from a global perspective. The
social optimum denotes the minimum possible social cost among all the states of
the game.

In the weighed version of the game, each player is assigned with a non-
negative weight and the congestion of each resource is the sum of the weights
of the player using that resource.

In this work we focus on a fundamental classes of congestion games, having
particular delay functions for their resources. In particular, we consider polyno-
mial delay function with maximum degree d. We are mainly interested in studying
and analyzing the time of convergence to solutions being a good approximation
of the optimum.

The paper is organized as follows: In the next section we provide the basic
notation and definitions. Section 3 surveys the state of the art on convergence
issues in congestion games. Section 4 is devoted to the study of the quality of the
solution reached after a move performed by each player, while in Section 5 it is
studied the speed of convergence to good solutions. Finally, Section 6 gives some
conclusive remarks and lists some interesting open problems.

2 Model and Definitions
A weighted congestion game G = (N, E, (wi)i∈N , (Σi)i∈N , ( fe)e∈E, (ci)i∈N) is a non-
cooperative strategic game characterized by the existence of a set E of resources



to be shared by the players in N = {1, . . . , n}.
Each player i has a weighted demand wi ∈ R

+. Since it is always possi-
ble to suitably scale all the weights, without loss of generality, we assume that
wi ≥ 1 for any i ∈ N; furthermore, we denote by W the sum of the weights of
all players, i.e. W =

∑
i∈N wi. Moreover, let us denote by wmax the maximum

weight. Σi is the strategy space of player i, and any strategy si ∈ Σi of player i
is a subset of resources, i.e. Σi ⊆ 2E. Given a strategy profile (also called state)
S = (s1, . . . , sn) and a resource e, we define the congestion θe(S ) on resource e
by θe(S ) =

∑
i∈N|e∈si

wi. A delay function fe : R+ 7→ R+ associates to resource e a
delay depending on its congestion, so that the cost of player i for the pure strategy
si is given by the weighted sum of the delays associated with resources in si, i.e.
ci(S ) =

∑
e∈si

wi fe(θe(S )).
In this paper we will focus on congestion games with polynomial delay func-

tions with maximum degree d and non-negative coefficients, that is for every re-
source e ∈ E the delay function is of the form fe(x) =

∑d
j=1 ae, jx j with ae, j ≥ 0 for

all j = 0, . . . , d. We call a congestion game linear if d = 1, that is fe(x) = aex + be

for every resource e ∈ E, with ae, be ≥ 0.
We call a congestion game unweighted whenever, for each player i ∈ N, wi =

1. In this case, the congestion θe(S ) on resource e is also denoted by ne(S ) and it
is equal to |{i ∈ N|e ∈ si}|, i.e., ne(S ) = θe(S ) = |{i ∈ N |e ∈ si}|.

Given the strategy profile S = (s1, . . . , sn), the social cost C(S ) of a given
state S is defined as the sum of all the players’ costs, i.e., C(S ) =

∑
i∈N ci(S ) =∑

e∈E θe(S ) fe(θe(S )). An optimal strategy profile S ∗ = (s∗1, . . . , s
∗
n) is one having

minimum social cost; we denote C(S ∗) by Opt. The approximation ratio of state S
is given by the ratio between the social cost of S and the social optimum, i.e., C(S )

Opt .
Moreover, given the strategy profile S = (s1, s2, . . . , sn) and a strategy s′i ∈ Σi, let
(S −i, s′i) = (s1, s2, . . . , si−1, s′i , si+1, . . . , sn), i.e., the strategy profile obtained from
S if player i changes its strategy from si to s′i .

A notable special class of congestion games is that of Network Congestion
Games, in which we are given a communication graph G whose edges are the
resources of the congestion game; each player is associated to a source and a des-
tination node of G and her strategies are given by all the resources corresponding
to the edges of the simple paths connecting her source with her destination in G.

Finally, a symmetric game is a game in which all the players share the same
set of strategies.

Each player acts selfishly and aims at choosing the strategy decreasing
its cost, given the strategy choices of other players. For a strategy profile
S = (s1, s2, . . . , sn), an improvement move of player i is a strategy s′i such that
ci(S −i, s′i) < ci(S ). A best response of player i in S is a strategy sb

i ∈ Σi yielding
the minimum possible cost, given the strategy choices of the other players, i.e.,
ci(S −i, sb

i ) ≤ ci(S −i, s′i) for any other strategy s′i ∈ Σi. Moreover, if no s′i ∈ Σi is



such that ci(S −i, s′i) < ci(S ), the best response of i in S is si.
A state S is a Nash equilibrium if for every player i ∈ N and all strategy

s′i ∈ Σi, ci(S ) ≤ ci(S −i, s′i), i.e., no player in N can improve her individual cost
by unilaterally changing her strategy. The price of anarchy (PoA) is the ratio
C(S )/Opt, where S is the worst Nash equilibrium, i.e. it is the approximation
ratio of the Nash equilibrium having maximum social cost. Notice that Nash
equilibria correspond to sinks in the Nash dynamics graph.

By extending the Nash dynamics and the Nash equilibrium concepts, it is pos-
sible to define their approximated versions as follows: Given a strategy profile
S = (s1, s2, . . . , sn), an ε-improvement move of player i is a strategy s′i such
that ci(S −i, s′i) < (1 − ε)ci(S ). S is an ε-Nash equilibrium if no player has
an ε-improvement move. An ε-better response of player i in S is either an ε-
improvement move, if it is available, or the current strategy si, otherwise. An
ε-better response dynamics any sequence of ε-better responses.

In Section 3 we will briefly survey the results achieved in the literature with re-
spect to the speed of convergence to Nash equilibria and ε-Nash equilibria. Then,
in the remainder of the paper, we will study the approximation ratio of states
reached after sequences of best responses, that we call a best response dynamics.

The selfish behavior of players performing best responses can be modelled by
the (Best Response) Nash Dynamics Graph. Formally the Nash Dynamics Graph
associated to a congestion game G is a directed graph B = (V, A) where each
vertex in V corresponds to a strategy profile and there is an edge (S , S ′) ∈ A
with label i, where S ′ = (S −i, s′i) and s′i ∈ Σi, if and only if both the following
conditions are met: (i) s′i is a best response of i in S ; (ii) if S , S ′, s′i is also an
improvement move of i in S . Observe that B may contain loops, corresponding
to best response in which a player maintains her current strategy. A best response
walk is a directed walk in B.

To this aim, we must consider dynamics in which each player performs a best
response at least once in a given number T of best responses, otherwise one or
more players could be “locked out” for arbitrarily long and we could not expect
to bound the social cost of the state reached at the end of the dynamics:

Definition 1 (T -Minimum Liveness Condition). Given any T ≥ n, a best response
dynamics satisfies the T-Minimum Liveness Condition if each player performs at
least a best response every T consecutive responses.

We consider the following notions of best response walks, that are a refinement
of the ones introduced in [10, 21]; notice that all of them satisfy the Minimum
Liveness Condition above stated.

1-round walk: it’s a best response walk R =
((

S 0
R, S

1
R

)
,
(
S 1

R, S
2
R

)
,

. . . ,
(
S i

R, S
i+1
R

)
, . . . ,

(
S n−1

R , S n
R

))
in B of length n, where the edge (S i

R, S
i+1
R )



has label πR(i) for every 0 ≤ i ≤ n− 1, i.e. πR(i) is the player performing the
i-th best response of the walk. πR is such that every player performs exactly
a best response in R. S 0

R is said the initial state of R and S n
R its final state.

For simplicity we denote R by a sequence of states, i.e. R =
(
S 0

R, . . . , S
n
R

)
.

(`, β)-bounded covering walk: it’s a best response walk R =((
S 0

R, S
1
R

)
,
(
S 1

R, S
2
R

)
, . . . ,

(
S i

R, S
i+1
R

)
, . . . ,

(
S `−1

R , S `
R

))
in B of length `,

where the edge (S i
R, S

i+1
R ) has label πR(i) for every 0 ≤ i ≤ ` − 1, i.e.

πR(i) is the player performing the i-th best response of the walk. πR is
such that every player performs at least a best response and at most β best
responses in R. S 0

R is said the initial state of R and S `
R its final state. For

simplicity we denote R by a sequence of states, i.e. R =
(
S 0

R, . . . , S
`
R

)
. For

any i = 1, . . . , n, the last best response performed by player i in R is the
lastR(i)-th best response of R, leading from state S lastR(i)−1 to state S lastR(i).

Notice that β is a sort of (un)fairness index: If β is constant, it means that every
player plays at most a constant number of times in each T -covering and therefore
the dynamics can be considered fair.

Definition 2 ((T, β)-Fairness Condition). Given any T ≥ n, a best response dy-
namics satisfies the (T, β)-Fairness Condition if it ca be decomposed in k (`, β)-
bounded covering walks such that ` ≤ T for all such coverings.

When clear from the context, we will drop the index R from the notation,
writing S i, π and last(i) instead of S i

R, πR and last(i)R, respectively.
We will consider the following two scenarios:

1. all walks are assumed to start from an arbitrary initial state;

2. all walks are assumed to start from the “empty" state in which no receiver
has still selected its communication path from the source; in order to include
such a situation in the above framework we include an additional special
empty path ∅ in the strategies sets Pi, assuming that the only possible best
response moves from ∅ are the ones selecting a path of minimum payment
actually connecting the source to the receiver; all the notation and defini-
tions are trivially extended accordingly.

3 Related Work and Our Contribution
On the one hand, Rosenthal [23] has shown, by a potential function argument, that
for unweighted congestion games the natural decentralized mechanism known as



Nash dynamics, in which at each step some player performs an improvement step
switching her strategy to a better alternative, is guaranteed to converge to a pure
Nash equilibrium [22], i.e. a fixed point in which no player can perform an im-
provement step (note that in a Nash dynamics players play their improvement
steps sequentially, and not in parallel). On the other hand, weighted congestion
games do not necessarily admit a Nash equilibrium [20] unless specific settings
are considered (linear delay functions [18], singleton congestion games [17], ma-
troid congestion games [2]). With a little abuse of notation, also in the context of
weighted congestion games that do not admit a Nash equilibrium, we call Nash
dynamics the dynamics in which each player aims at minimizing its current cost,
given the strategic choices of all the other players. More formally, an exact real-
valued potential function Φ defined on the set of states of the game satisfies the
property that for each player i and each strategy s′i ∈ Σi of i in S , it holds that
ci(S −i, s′i) − ci(S ) = Φ(S −i, s′i) − Φ(S ). Unweighted congestion games admit (see
[23]) the (exact) potential function

Φ(S ) =
∑
e∈E

ne(S )∑
j=1

fe( j).

It is worth noticing that in unweighted congestion games with polynomial delays
with maximum degree d, for any state S , it holds Φ(S ) ≤ C(S ) ≤ (d + 1)Φ(S ).
Unfortunately, in general, weighted congestion games do not admit a potential
function; nevertheless, it is possible to show that weighted congestion games with
linear delays do (see [18]), and such a potential function is

Φ(S ) =
1
2

∑
e∈E

θe(S ) fe(θe(S )) +

n∑
i=1

∑
e∈si

wi fe(wi)

 .
It is worth noticing that in weighted linear congestion games, for any state S , it
holds Φ(S ) ≤ C(S ) ≤ 2Φ(S ).

Even in the unweighted setting in which Nash equilibria are guaranteed to
exist, Fabrikant et al. [12] show that such dynamics may require a number of
steps exponential in the number of players n in order to reach such an equilibrium.
Their analysis relates congestion games to local search problems by showing that
it is PLS-complete [11] to compute a Nash equilibrium for general unweighted
congestion games. Moreover from their completeness proof and from previous
results about local search problems, it follows that there exist congestion games
with initial states such that any improvement sequence starting from these states
needs an exponential number of steps in order to reach a Nash equilibrium. More
recently, Ackermann et al. [1] show that the previous negative result holds even in
the restricted case of linear unweighted congestion games. On the positive side,



Fabrikant et al. [12], by exploiting a reduction to the Min-cost flow problem,
show that it is possible to Compute a Nash equilibrium in symmetric Network
congestion games with non-decreasing delay function in polynomial time. Such a
result can be also extended to network congestion games in which all the players
share the same source (multicast games). Unfortunately, such a result does not
imply a fast convergence to Nash equilibria, as Ackermann et al. [1] show the
existence of network congestion games in which any sequence of improvement
moves is exponentially long in n. It is possible to obtain a polynomial convergence
by restricting the combinatorial structure of congestion games, in particular by
imposing that the strategy set of each player is the basis of a matroid; note that
load balancing games, in which every strategy is composed by only one resource,
belong to such a class of congestion games.

The negative results on computing equilibria in congestion games have lead to
the development of the concept of ε-Nash equilibrium, in which no player can de-
crease its cost by a factor of more than ε. Unfortunately, as shown by Skopalik and
Vöcking [24], also the problem of finding an ε-Nash equilibrium in (unweighted)
congestion games is PLS-complete for any ε, though, under some restrictions
on the delay functions, Chien and Sinclair [8] proved, for some classes of delay
functions including the polynomial ones, that in symmetric congestion games the
convergence to ε-Nash equilibrium is polynomial in the description of the game
and the minimal number of steps within which each player has a chance to move.

In order to measure the degradation of social welfare due to the selfish be-
havior of the players, Koutsoupias and Papadimitriou [19] defined the price of
anarchy as the worst-case ratio between the social cost in a Nash equilibrium and
that of a social optimum. The price of anarchy for congestion games has been
investigated by Awerbuch et al. [4] and Christodoulou and Koutsoupias [9]. They
both proved that the price of anarchy for congestion games with linear delays is
5/2.

The performances of Nash equilibria in unweighted and weighted congestion
games with polynomial delay functions have been investigated by Aland et al.
[3], who have provided a tight price of anarchy both for the unweighted case and
the weighted one. In particular they have improved the previous results due to
Awerbuch et al. [4] (for the weighted case) and Christodoulou and Koutsoupias
[9] (for the unweighted case).

Since negative results tend to dominate the issues relative to the complexity of
computing equilibria, also considering that in the more general setting of weighted
congestion games Nash equilibria may not be guaranteed to exist, another natural
arising question is whether efficient states (with a social cost constant or at least
comparable to the one of any Nash equilibrium) can be reached by best response
moves in a reasonable amount of time (e.g., [5, 10, 13, 14]). We measure the
efficiency of a state by the ratio among its cost and the optimal one, i.e., its ap-



proximation ratio. We generally say that a state is efficient when its approximation
ratio is within a constant factor from the price of anarchy.

Awerbuch et al. [5] have proved that for some classes of delay functions (in-
cluding the polynomial delay functions), sequences of moves reducing the cost
of each player by at least a factor of ε, converge to efficient states in a number
of moves polynomial in 1/ε and the number of players, under the minimal live-
ness condition that every player moves at least once every polynomial number of
moves. Under the same liveness condition, they also proved that exact best re-
sponse dynamics can guarantee the convergence to efficient states only after an
exponential number of best responses [5].

Nevertheless, we are able to show that best response dynamics in congestion
games with polynomial delays can actually fast converge to good solutions, pro-
vided that the dynamics obeys some mild constraint on the order of the moving
players.

Our Contribution. In this paper we first provide some preliminary result [6]
on the approximation ratio of the solutions achieved after a one-round walk in
linear congestion games. For one-round walks starting from the empty strategy
profile, we close the existing gap between the upper bound of 2 +

√
5 ≈ 4.24

given in [10] and the lower bound of 4 derived in [7] by providing a family of
instances yielding lower bounds approaching 2 +

√
5 as the number of players

goes to infinity. The construction and the analysis of these instances require non-
trivial arguments.

Then, we focus on the more general setting in which the dynamics start from
a generic state.

We show [13, 14] that, for weighted congestion games with polynomial de-
lays, the approximation ratio achieved after a sequence of k O(1)-bounded cov-

ering walks is O
(
Wd( d

d+1 )k−1
)

and Ω

(
Wd( d

d+1 )k−1

k

)
(which is asymptotically matching

for constant values of k), where W is the sum of the players’ weights. As a con-
sequence, we prove that, for any given d, Θ(log log W) O(1)-bounded covering
walks are necessary and sufficient to achieve a constant factor approximate solu-
tion.

Finally, we completely characterize [15] how the frequency with which each
player participates in the game dynamics affects the possibility of reaching effi-
cient states. In particular, we close the most important open problem left open
by [5] and [13, 14] for linear congestion games. On the one hand, in [5] it is
shown that, even after an exponential number of best responses, states with a very
high approximation ratio, namely Ω

( √
n

log n

)
, can be reached. On the other hand,

in [13, 14] it is shown that, under the minimal liveness condition in which every
player moves at least once every T steps, if players perform best responses such
that each player is allowed to play at most β = O(1) times any T steps (notice



that β = O(1) implies T = O(n)), after T dlog log ne best responses a state with a
constant factor approximation ratio is reached. The more β increases, the less the
dynamics is fair with respect to the chance every player has of performing a best
response: β measures the degree of unfairness of the dynamics. The important left
open question was that of determining the maximum order of β needed to obtain
fast convergence to efficient states: We answer this question by proving that, after
T dlog log We best responses, the dynamics reaches states with an approximation
ratio of O(β). Such a result is essentially tight since we are also able to show that,
for any ε > 0, there exist congestion games for which, even for an exponential
number of best responses, states with an approximation ratio of Ω(β1−ε) are ob-
tained. Therefore, β constant as assumed in [13, 14] is not only sufficient, but
also necessary in order to reach efficient states after a polynomial number of best
responses. Furthermore, in the special case of symmetric congestion games with
linear delays, we show that the unfairness in best response dynamics does not af-
fect the fast convergence to efficient states; namely, we prove that, for any β, after
T dlog log We best responses efficient states are always reached.

4 One-Round Analysis [6]
Christodoulou et al. [10] proved that for any linear congestion game and 1-round
walk (S 0, S 1, . . . , S n) with S 0 = ∅, it holds C(S n) ≤ (2 +

√
5)Opt ≈ 4.24Opt. Sur-

prisingly enough, the best known lower bound is the one derived by Caragiannis
at al. [7] for the restricted case of load balancing on identical servers, which poses
C(S n) ≥ 4Opt− ε, for any ε > 0. We close this gap by proving that, for any ε > 0,
there always exist a linear congestion game and a 1-round walk (S 0, S 1, . . . , S n),
with S 0 = ∅, such that C(S n) ≥ (2 +

√
5 − ε)Opt.

Given three positive integers n, k and o, with n ≥ 2k + o − 1 and k ≥ 2o, we
define the game Gn,k,o in which there are n players, m = n + 1 resources and each
player i ∈ [n] possesses exactly two strategies si and s′i defined according to the
following scheme.

• si = {ei} and s′i = {ei+1} ∪

k+i⋃
j=k+1

{e j}, for any i ∈ [k − 1];

• sk = {ek} and s′k =

2k⋃
j=k+1

{e j};

• si =

i⋃
j=k+1

{e j} and s′i =

k+i⋃
j=i+1

{e j}, for any k + 1 ≤ i ≤ k + o;



Figure 1: The set of strategies available to each player in the game G22,8,3. Rows
are associated with players, while columns with resources. White and black cir-
cles represent the first and the second strategy, respectively.

• si =

i⋃
j=i−o+1

{e j} and s′i =

min{k+i,m}⋃
j=i+1

{e j}, for any k + o + 1 ≤ i ≤ n.

A small example in which n = 22, k = 8 and o = 3 is shown in Figure 1.
For any j ∈ [m] we associate the linear latency function f j(x) = a j · x with

resource e j, where each a j is obtained as a solution of the following system of
linear equations.

A =


eq1

eq2

. . .
eqn

where each eqi is defined as follows:

• a1 − a2 − ak+1 = 0,

• 2ai − ai+1 −

k+i∑
j=k+1

(
(k + i − j + 1)a j

)
= 0 ∀ i = 2, . . . , k − 1,



Figure 2: The coefficient matrix B generated by the game G22,8,3.

• 2ak −

2k∑
j=k+1

(
(2k − j + 1)a j

)
= 0,

• (k + 1)
i∑

j=k+1

a j −

m∑
j=i+1

(
(k + i − j + 1)a j

)
= 0 ∀ i ∈ {k + 1, . . . , k + o},

• (k + 1)
i∑

j=i−o+1

a j −

min{k+i,m}∑
j=i+1

(
(k + i − j + 1)a j

)
= 0 ∀ i ∈ {k + o + 1, . . . , n}.

Note that the definition of each equality is such that, for any i ∈ [n], both
strategies are equivalent for player i, provided all players j < i have chosen s′j and
all players j > i have not entered the game yet.

Let B be the n×m coefficient matrix defining system A. The matrix B generated
by the game G22,8,3 is shown in Figure 2.

Let a = (a1, . . . , am)T . In order for our instance to be well defined, we need
to prove that there exists at least a strictly positive solution to the homogeneous
system Ba = 0.

Lemma 1. The system of linear equations Ba = 0 admits a strictly positive solu-
tion.



We claim that the strategy profile in which all players choose the second of
their strategies is a possible outcome for a 1-round walk starting from the empty
strategy profile.

Lemma 2. For any game Gn,k,o, there exists a 1-round walk (S 0, S 1, . . . , S n) such
that S 0 = ∅ and S n = (s′1, . . . , s

′
n).

Proof. The claim is a direct consequence of the definition of system A. �

For our purposes, we do not have to explicitly solve system A, but only need
to prove some properties characterizing its set of solutions. We do this in the next
two lemmas.

Lemma 3. In any solution of system A it holds a1 ≤ 4
2k∑

j=k+1

a j.

Lemma 4. In any solution of system A it holds

(k + 1)
m∑

i=m−o+1

((i − m + o)ai) ≤
k3

n − 2k − o + 1

m−o∑
i=k+1

ai.

We can now prove our main result.

Theorem 1. For any ε > 0, there exist a linear congestion game Gn,k,o and a
1-round walk (S 0, S 1, . . . , S n), with S 0 = ∅, such that C(S n) ≥ (2 +

√
5 − ε)Opt.

Proof. For a fixed integer n � 0, set k = b 4
√

nc and o = b 3−
√

5
2 kc. Note that, for

a sufficiently big n, these values are consistent with the definition of Gn,k,o since
n ≥ 2k + o − 1 and k ≥ 2o.

Consider the sum of all the equations defining system A together with the
dummy one a1 = a1. We obtain the equation

k∑
i=1

2ai + (k + 1)o
m∑

i=k+1

ai − (k + 1)
m∑

i=m−o+1

((i −m + o)ai) =

k∑
i=1

ai +
k(k + 1)

2

m∑
i=k+1

ai

which yields

k∑
i=1

ai = (k + 1)
(

k
2
− o

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i − m + o)ai). (1)

Let S ∗ = (s1 . . . , sn) be the strategy profile in which all players choose the first
of their strategies. Because of Lemma 2, we have that there exists a 1-round walk



(S 0, S 1, . . . , S n) such that S 0 = ∅ and S n = (s′1, . . . , s
′
n). By comparing the social

costs of S n and S ∗, we obtain

C(S n)
Opt

≥
C(S n)
C(S ∗)

≥

k∑
i=2

ai + k2
m∑

i=k+1

ai

k∑
i=1

ai + o2
m∑

i=k+1

ai

,

where we have exploited the fact that Opt ≤ C(S ∗) ≤
∑k

i=1 ai + o2 ∑m
i=k+1 ai.

By using Equality 1, we get

C(S n)
Opt

≥

k∑
i=2

ai + k2
m∑

i=k+1

ai

k∑
i=1

ai + o2
m∑

i=k+1

ai

=

(
(k + 1)

(
k
2 − o

)
+ k2

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i − m + o)ai) − a1

(
(k + 1)

(
k
2 − o

)
+ o2

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i − m + o)ai)

≥

(
(k + 1)

(
k
2 − o

)
+ k2 + k3

n−2k−o+1 − 4
) m∑

i=k+1

ai

(
(k + 1)

(
k
2 − o

)
+ o2 + k3

n−2k−o+1

) m∑
i=k+1

ai

,

where, in the last inequality, we have used Lemmas 3 and 4 together with the
fact that for any four positive numbers α, β, γ and δ such that α ≥ β and γ ≥ δ, it
holds α+δ

β+δ
≥

α+γ

β+γ
.

For n going to infinity, by considering only the dominant terms, we ob-

tain limk→∞
C(S n)
Opt ≥ limk→∞

k( k
2−o)+k2

k( k
2−o)+o2 = limk→∞

√
5−2
2 k2+k2

√
5−2
2 k2+ 7−3

√
5

2 k2
= limk→∞

√
5

2 k2

5−2
√

5
2 k2

=
√

5
5−2
√

5
= 2 +

√
5, which implies the claim. �

Some numerical results, obtained on particular games, are shown in Figure 3.
It is possible to appreciate there that the value of k may be chosen much higher
than the bound b 4

√
nc fixed in the proof of Theorem 1. This is due to the fact that,

for the sake of simplicity, the bound proved in Lemma 4 is really far from being
tight.



n k o S UM(S n)
S UM(S ∗)

70 8 3 4.001152
100 8 3 4.012482
500 80 30 4.185590
700 80 30 4.208719

1000 100 38 4.216734
1500 100 38 4.220854
2000 200 76 4.224342
3000 300 114 4.226854

Figure 3: Lower bounds on the approximation ratio of the solution achieved after
a 1-round walk starting from the empty strategy profile in the games Gn,k,o for
some particular values of n, k and o.

5 Convergence to Good Solutions

In this section we provide upper and lower bounds to the approximation ratio
of the states reached after a dynamics satisfying the (T, β)-Minimum Liveness
Condition, starting from an arbitrary state and composed by a number of best
responses polynomial in n.

We first provide (in Subsection 5.1) an upper bound to the the social cost of the
state achieved after a best response dynamics satisfying the (T, β)-Fairness condi-
tion with β = O(1) and starting from an arbitrary state, and then (in Subsection
5.2) we deal with the case of general values of β.

All the results hold for congestion games having polynomial delay functions
with non-negative coefficients and maximum degree d, i.e. for every e ∈ E,
fe(x) =

∑d
j=0 ae, jx j with ae, j ≥ 0 for all j = 0, . . . , d. Without loss of general-

ity, we can assume that for every e ∈ E, fe(x) = xde with 0 ≤ de ≤ d.
In fact, given a congestion game G having polynomial delays with coefficients

being non-negative integers and maximum degree d, it is possible to obtain an
equivalent congestion game G′ (i.e, a congestion game having a Nash Dynamics
Graph isomorphic to the one ofG and in which any strategy profile S ′ correspond-
ing to the strategy profile S ofG is such that for every player i ∈ N, ci(S ) = ci(S ′)),
having the same set of players and delay functions of the form fe(x) = xde in the
following way. For each resource e in G, we include in G′ a set Ae, j of ae, j re-
sources for j = 0, . . . , d with delay function fe(x) = x j; moreover, given any
strategy set si ∈ Σi in G, i = 1, . . . , n, we build a corresponding strategy set s′i ∈ Σ′i
(inG′) by including in s′i , for each e ∈ si, all the resources in the sets Ae = ∪d

j=0Ae, j.
If the coefficients ae, j are rationals (not all being integers) we can perform a

similar reduction by exploiting a simple scaling argument.



Finally, if the coefficients are real numbers (not all being rationals), we can
obtain from a congestion game G a new game G′ with coefficients being rationals
by approximating the real numbers with a sufficiently high precision so that any
best response of G corresponds to a “quasi”-best response of G′, up to an additive
ε depending on the precision of the considered approximation.

Moreover, we can also assume without loss of generality that all the player
weights are at least 1, by suitably scaling all the weights if the considered game
does not satisfy such a property.

Therefore, in the sequel of this section we will consider, for every e ∈ E,
fe(x) = xde , with d = maxe de and wi ≥ 1 for every i = 1, . . . , n.

5.1 β = O(1) [14]
The following claim, whose proof can be found in [16] (Lemma 3.6 of [16], with
γ = 1

2 ) will be useful in the sequel.

Claim 1 ([16]). For every pair of reals x, y ≥ 0 and every integer d ≥ 1, it holds
xd ≥ 1

2d−1 (x + y)d − yd.

Let R =
(
S 0, . . . , S `

)
be a (T, β)-bounded covering walk. Given the op-

timal strategy profile S ∗, since the i-th moving player π(i) before moving can
always select the strategy she would use in S ∗, cπ(i)(S i) (that is the player’s
cost immediately after her best response) can be suitably upper bounded by∑

e∈s∗
π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de
. In order to state our results we define the following

function

ρ(R) =
∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de
,

which, by the same argument explained earlier, clearly represents an upper bound
to

∑`
i=1 cπ(i)(S i).

Lemmas 5 and 6 provide a lower and an upper bound to ρ(R), respectively.
From such Lemmas, we can easily derive the approximation achieved after a
(T, β)-bounded covering walk.

Lemma 5. For any β ≥ 1, given a (T, β)-bounded covering walk R ending in S `,
it holds ρ(R) ≥ C(S `)

(d+1) .

Proof. Since the players perform best responses, inequality (2) below holds. In
order to justify inequality 3, let us consider a resource e. Recall that the cost
cπ(i)(S i) incurred by a player π(i) on e is wπ(i) fe(θe(S i)); since fe is a non decreasing
function and θe(S i) is given by the sum of the players already on e at S i−1 plus wπ(i),
the sum of all the cost that players using e incur on e can be lower bounded by



considering the resource used by many players each having infinitesimal weight;
thus, the summation

∑
e∈E

∑
i∈{1,...,`}|e∈sπ(i)

wπ(i)θ
de
e (S i) can be replaced by the integral∫ θe(S `)

x=0
xdedx. Therefore, by recalling the definition of ρ(R),

ρ(R) =
∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de

≥
∑̀
i=1

cπ(i)(S i) (2)

=
∑
e∈E

∑
i∈{1,...,`}|
e∈sπ(i)

wπ(i)θ
de
e (S i)

≥
∑
e∈E

∫ θe(S `)

x=0
xdedx (3)

≥
1

(d + 1)

∑
e∈E

θde+1
e (S `) =

C(S `)
(d + 1)

.

�

Lemma 6. For any β ≥ 1, given a (T, β)-bounded covering walk R, it holds ρ(R) ≤
β(W + wmax)dOpt.

Proof. By the definition of ρ(R), it holds

ρ(R) =
∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de

≤
∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)(W + wmax)de

≤ (W + wmax)d
∑̀
i=1

|s∗π(i)|wπ(i)

≤ β(W + wmax)dOpt, (4)

where (4) holds by observing that Opt ≥ 1
β

∑`
i=1 |s

∗
π(i)|wπ(i).

�

As an immediate consequence of Lemmas 5 and 6, Apxβ1(G) ≤ β(d + 1)(W +

wmax)d. Lemmas 7 and 8 will be useful to extend such result to a (T, β)-bounded k-
covering walk P = 〈R1, . . . ,Rk〉 by exploiting the relationship among two consec-
utive walks. To this aim, recalling that R =

(
S 0, . . . , S `

)
, we define the following



function

H(R) =
∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)θ
de
e (S 0).

By exchanging the order of the summations, we obtain

H(R) =
∑
e∈E∗

θde
e (S 0)xe,

where xe =
∑

j∈Xe
wπ( j) and Xe =

{
i ∈ {1, . . . , `}|e ∈ s∗π(i)

}
. Informally speaking,

H(R) represents the sum over all the moves in the covering walk R of the weighted
delay that the moving player π(i) would experience in the initial state S 0 of R on
her optimal strategy s∗π(i).

Clearly, as it can be noticed by their definition, H(R) and ρ(R) are correlated
and Lemma 7 (resp. Lemma 8) will provide a lower bound (resp. an upper bound)
to ρ(R) in terms of H(R′) (resp. H(R)), where R and R′ are two consecutive cov-
ering walks, that is the final state of R coincides with the initial one of R′.

Roughly speaking, on the one hand, Lemma 7 shows that the ratio between
H(R′) and Opt is significantly less than the one between Γ(R) and Opt; in other
words, recalling that Γ(R) is an upper bound to

∑`R
i=1 cπR(i)(S i

R) and that H(R′) is
the sum over all the moves in R′ of the delays that the moving players would
experience, in the first state of R′, on her optimal strategies, we are able to show
that in the first state of the next covering R′ the congestion on the resources used

in the considered optimal solution is such that H(R′)
Opt ≤ β(d + 1)

(
(d + 1)ρ(R)

Opt

) d
d+1 .

On the other hand, Lemma 8 shows that the ratio between Γ(R′) and Opt is not
much greater than the one between H(R′) and Opt. ; in other words, H(R′), even
if referring to the delay in the first state of R′, can be already considered as an
“approximated" bound to Γ(R′), that is in turn an upper bound to

∑`R′

i=1 cπR′ (i)(S
i
R′).

Therefore, the combination of Lemmata 7 and 8 gives that the ratio between Γ(R′)
and Opt is significantly less than the one between Γ(R) and Opt.

In fact, by combining k − 1 times the results of Lemmata 7 and 8, Theorem 2
finally derives an upper bound to Apxβk(G).

Lemma 7. For any β ≥ 1, given two consecutive (`, β)-bounded covering walks R
and R′ such that the final state of R coincides with the initial one of R′, it holds

H(R′)
Opt

≤ β(d + 1)
(
(d + 1)

ρ(R)
Opt

) d
d+1

.

Proof. Since the final state S ` of R corresponds to the initial state of R′, and
recalling that each player can perform at most β best response within the same



(`, β)-bounded covering walk, we obtain

H(R′) ≤ β
∑
e∈E∗

θde
e (S `)θe(S ∗)

≤ β

d∑
j=0

∑
e∈E∗:de= j

θ j
e(S

`)θe(S ∗)

≤ β
∑

e∈E∗:de=0

θe(S ∗) +

+β

d∑
j=1


 ∑

e∈E∗:de= j

(θ j
e(S

`))
j+1

j


j

j+1

·

·

 ∑
e∈E∗:de= j

(θ j+1
e (S ∗))


1

j+1
 (5)

= β
∑

e∈E∗:de=0

θe(S ∗) +

β

d∑
j=1


 ∑

e∈E∗:de= j

(θ j+1
e (S `))


j

j+1

·

·

 ∑
e∈E∗:de= j

(θ j+1
e (S ∗))


1

j+1


≤ βOpt + β

d∑
j=1

((
C(S `)

) j
j+1 Opt

1
j+1

)

= β

d∑
j=0

((
C(S `)

) j
j+1 Opt

1
j+1

)

≤ β

d∑
j=0

((d + 1)
ρ(R)
Opt

Opt
) j

j+1

Opt
1

j+1

 (6)

= β

d∑
j=0

((d + 1)
ρ(R)
Opt

) j
j+1

Opt


≤ β(d + 1)

(
(d + 1)

ρ(R)
Opt

) d
d+1

Opt.



where (5) follows from Hölder’s inequality, stating that, for r and s such that
1
r + 1

s = 1,
q∑

j=1

a jb j ≤

 q∑
j=1

ar
j


1/r  q∑

j=1

bs
j


1/s

,

by replacing r with
(

d+1
d

)
and s with (d + 1), and (6) follows from Lemma 5.

�

Lemma 8. For any β ≥ 1, given a (`, β)-bounded covering walk R, it holds

H(R) ≥
(

1
2d−1 −

d
α

)
ρ(R) − β

(
(αβ)d + 1

)
Opt,

for any α > d 2d−1.

Proof. In order to lower bound H(R) with respect to ρ(R), we define the following
suitable potential function hi(R) =

∑
e∈E∗ ge(S i)x>i

e for i ∈ {0, . . . , `}, where for a
generic state S , ge(S ) = max{0, fe(θe(S )) − fe(αβθe(S ∗))} and x>k

e =
∑

j∈X>k
e

wπ( j)

where X>k
e =

{
i ∈ {k + 1, . . . , `}|e ∈ s∗π(i)

}
. Informally speaking, such a potential

function takes into account the delay due to the congestion of the not yet moving
players during walk R above a “virtual" congestion frontier given by all the values
αβne(S ∗). Let ∆i(R) = hi−1(R) − hi(R) for i ∈ {1, . . . , `}. Notice that by the defini-
tion of the potential function hi(R), since h`(R) = 0,

∑`
i=1 ∆i(R) = h0(R) ≤ H(R),

that is a lower bound for
∑`

i=1 ∆i(R) is also a lower bound for H(R); therefore, in
the following we focus on lower bounding

∑`
i=1 ∆i(R).

Consider a generic step i in walk R, in which player π(i) performs a best
response by selecting resources in si

π(i) and let us bound from below the value
of ∆i(R) by evaluating how much player π(i) removes from hi−1(R) and how
much she adds to hi(R). Player π(i) in order to obtain hi(R) removes at least∑

e∈s∗
π(i)

wπ(i)ge(S i−1) from hi−1(R), due to the decrease of the coefficients x>(i−1)
e to

x>i
e . Let us evaluate how much player π(i) adds to hi(R). Player π(i) increases the

value of hi(R) only by resources whose congestion is above the virtual frontier
after player π(i) plays her best response. Thus for each resource e ∈ si

π(i) such
that θe(S i) > αβθe(S ∗), the increase of hi(R) is equal to

(
ge(S i) − ge(S i−1))

)
x>i

e

which, by the definition of ge, is equal to
(

fe(θe(S i)) − fe(θe(S i−1))
)

x>i
e . Since

fe is convex, such quantity is at most
(
θe(S i) − θe(S i−1)

)
f ′e (θe(S i))x>i

e , that is
equal to wπ(i) f ′e (θe(S i))x>i

e , where f ′e is the derivative of fe. Moreover since
x>i

e ≤ xe ≤ βθe(S ∗) ≤ θe(S i)/α, we obtain that the increase for each resource e
is at most wπ(i) f ′e (θe(S i))θe(S i)/α. Thus, considering the previous quantity as an



upper bound of the increase for all the resources in si
π(i), player π(i) in order to

obtain hi(R) adds at most 1
α

∑
e∈s∗

π(i)
wπ(i) f ′e (θe(S i))θe(S i) to hi−1(R). Therefore,

∆i(R) ≥
∑

e∈s∗
π(i)

wπ(i)ge(S i−1)

−
1
α

∑
e∈si

π(i)∩E∗

wπ(i) f ′e (θe(S i))θe(S i).

Finally, since ge(S i−1) ≥ fe(θe(S i−1)) − fe(αβθe(S ∗)) for every e ∈ E∗, it follows
that

∆i(R) ≥
∑

e∈s∗
π(i)

wπ(i)

(
fe(θe(S i−1)) − fe(αβθe(S ∗))

)
−

1
α

∑
e∈si

π(i)∩E∗

wπ(i) f ′e (θe(S i))θe(S i). (7)

Since fe(x) = xde with de ≥ 0, we obtain

∆i(R) ≥
∑

e∈s∗
π(i)

wπ(i)

(
θde

e (S i−1) − (αβ)deθde
e (S ∗)

)
−

1
α

∑
e∈si

π(i)∩E∗

dewπ(i)θ
de
e (S i)

≥
∑

e∈s∗
π(i)

wπ(i)

(
θde

e (S i−1) − (αβ)deθde
e (S ∗)

)
−

d
α

cπ(i)(S i).

Since players perform best responses,

cπ(i)(S i) ≤
∑

e∈s∗
π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de
; (8)

moreover, wπ(i) ≤ θe(S ∗) for every e ∈ s∗π(i); thus, by using Claim 1 in (9), it follows
that

∆i(R) ≥
∑

e∈s∗
π(i)

wπ(i)

(
θde

e (S i−1) − (αβ)deθde
e (S ∗)

)
−

d
α

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de



≥
∑

e∈s∗
π(i)

wπ(i)

(
1

2de−1

(
θe(S i−1) + wπ(i)

)d

−wde
π(i) − (αβ)deθde

e (S ∗)
)

−
d
α

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de
(9)

≥

(
1

2d−1 −
d
α

) ∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de

−
(
(αβ)d + 1

) ∑
e∈s∗

π(i)

wπ(i)θ
de
e (S ∗).

By summing up the values ∆i(R), we obtain

∑̀
i=1

∆i(R)

≥

(
1

2d−1 −
d
α

) ∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)

(
θe(S i−1) + wπ(i)

)de

−
(
(αβ)d + 1

) ∑̀
i=1

∑
e∈s∗

π(i)

wπ(i)θ
de
e (S ∗)

≥

(
1

2d−1 −
d
α

)
ρ(R) − β

(
(αβ)d + 1

)
Opt,

and thus, since H(R) ≥
∑`

i=1 ∆i(R), the claim follows.
�

Theorem 2. For any k ≥ 1 and any given d ≥ 1, in every polynomial conges-
tion game G with delay functions having maximum degree d, it holds that the
approximation ratio of the state reached after k (`, β)-bounded covering walks is

O
(
Wd( d

d+1 )k−1
)
.

Proof. Let P = 〈R1, . . . ,Rk〉 be the sequence of k (`, β)-bounded covering walks.
From Lemma 8 we obtain that for each R j with j = 2, . . . , k it holds that for any
α > d 2d−1

H(R j) ≥
(

1
2d−1 −

d
α

)
ρ(R j) − β

(
(αβ)d + 1

)
Opt. (10)



Furthermore, by applying Lemma 7 we obtain that for each R j with j = 2, . . . , k it
holds

H(R j) ≤ β(d + 1)
(
(d + 1)

ρ(R j−1)
Opt

) d
d+1

Opt. (11)

By combining (10) and (11) we achieve a relation between ρ(R j)
Opt and ρ(R j−1)

Opt for
every j = 2, . . . , k

ρ(R j)
Opt

≤ β

(
α2d−1

α − d 2d−1

)
·

·

(d + 1)
(
(d + 1)

ρ(R j−1)
Opt

) d
d+1

+

+
(
(αβ)d + 1

))
(12)

for any α > d 2d−1.
From the previous inequalities (12) (for j = 2, . . . , k), since β = O(1), we obtain
that for constant values of α and d it holds

ρ(Rk)
Opt

= O


(
ρ(R1)
Opt

)( d
d+1 )k−1 . (13)

By applying Lemma 5 to ρ(Rk) and Lemma 6 to ρ(R1) in (13), since β = O(1), by
constant value of d we obtain that the cost of the final state of walk P is

O
((

(W + wmax)d
)( d

d+1 )k−1

Opt
)
,

and thus the approximation is

ApxO(1)
k (G) = O

(
Wd( d

d+1 )k−1
)
.

�

The following corollary is an immediate consequence of Theorem 2.

Corollary 1. For any polynomial congestion game G with d = O(1), a best re-
sponse dynamics satisfying the (T, β)-Fairness Condition converges from any ini-
tial state to a state having approximation ratio O(1) in at most log log W best
responses.

Now we provide an almost matching lower bound to the approximation ratio
achieved after a (`, β)-bounded k-covering walk.



Theorem 3. For any d ≥ 1 there exists a congestion game G with polyno-
mial delay functions having maximum degree d such that the approximation ratio

achieved after k (`, β)-bounded covering walks is Ω

(
Wd( d

d+1 )k−1

k

)
.

Proof. Given any integers k and c, we consider a congestion game G defined on
a set of n = m(k + 1) players having weight equal to 1 (i.e. W = n) and m(k + 2)
resources, with m = c(d+1)k

. The set of players can be partitioned into k + 1 sets
P0, . . . , Pk, each containing m players, i.e. P j = {p1

j , . . . , pm
j } for j = 0, . . . , k; the

set of resources can be partitioned into k + 2 sets T0, . . . ,Tk+1 each containing m
resources, i.e. T j = {e1

j , . . . , e
m
j } for j = 0, . . . , k + 1, and such that each resource

has delay function f (x) = xd.
The strategy set of player pi

j (the i-th player of set P j) consists of two strate-
gies: the left strategy and the right strategy. The left strategy for player pi

j of set
P j ( j = 0, . . . , k) consists of the only resource ei

j belonging to set T j.
The right strategy of each player in P0 is T1; in order to define the right strate-

gies of the remaining players, we need some additional definitions.

Let bi, j =

⌊
i

m( d
d+1 ) j

⌋
; for each j = 2, . . . , k, we partition the set T j into m

m( d
d+1 ) j−1

(by the definition of m it is an integer) blocks T 0
j , . . . ,T

m

m( d
d+1 ) j−1 −1

j . The right strat-

egy for player pi
j of set P j ( j = 1, . . . , k − 1) is T bi, j

j+1. Notice that, by the definition
of bi, j, the number of players in P j having as their right strategy block T h

j+1 for

a fixed h is m( d
d+1 ) j

, and for any resource in such a block, the number of players
whose right strategy contains it is m( d

d+1 ) j

.
Let us compute the social cost of the configuration obtained after k walks

starting from the state in which all the players select their right strategy.
We assume that, during all the walks, the players of set P j perform their best

response before the ones of set P j−1 for j = 1, . . . , k, and for every i = 0, . . . , k
players pi

j ∈ P j perform their best response in increasing order with respect to i.
Let us consider walk R j, j = 1, . . . , k. We now show by induction on the

number of walks that the players belonging to Px, x = j, . . . , k, choose their right
strategy, while the ones belonging to Px, x = 0, . . . , j−1, choose their left strategy.

Assume by induction that this is true until R j−1; we now show that it holds also
for R j.

• The players belonging to Px, x = j, . . . , k, do not change their (right) strat-
egy. In fact, on the one hand, by the inductive hypothesis, since each re-
source in their right strategies is used by m( d

d+1 )x

players, their right strat-

egy has a cost m( d
d+1 )x

·
(
m( d

d+1 )x)d
= m

dx

(d+1)x−1 . On the other hand, always



by the inductive hypothesis, their left strategies (composed by a unique
resource) is used by m( d

d+1 )x−1

players and therefore has a cost equal to(
m( d

d+1 )x−1
)d

= m
dx

(d+1)x−1 .

• The players belonging to P j−1 select their left strategies. In fact, on the one
hand, since their right strategy is composed by m( d

d+1 ) j−1

resources, it has a
cost at least m( d

d+1 ) j−1

. On the other hand, by the inductive hypothesis, their
left strategies (composed by a unique resource) is free, and therefore has a
cost equal to 1.

• The players belonging to Px, x = 0, . . . , j − 2, do not change their (left)
strategy where they have a delay equal to 1 (i.e. the minimum possible one
in such an instance).

Thus, in the final state of walk Rk, all the players in Pk are using their right
strategy consisting of m( d

d+1 )k

resources in Tk+1. Moreover, each of such resources
is used by m( d

d+1 )k

players, and it follows that the social cost of the final state of

walk Rk is at least m ·
(
m( d

d+1 )k
)d
· m( d

d+1 )k

= m · md( d
d+1 )k−1

. Since the configuration
in which each player uses her left strategy costs n,

Apx1
k(G) ≥

m · md( d
d+1 )k−1

n
= Ω

Wd( d
d+1 )k−1

k

 .
�

5.2 General β [15]
In this subsection, we focus on the special case of congestion games with linear
delays, and completely characterize how the fairness of the dynamics affects the
time of convergence to good solutions, approximating an optimal one by a con-
stant factor.

Since the dynamics satisfies the (T, β)-Fairness Condition, we can decompose
it into k (`, β)-bounded coverings R1, . . . ,Rk.

Consider a generic (`, β)-bounded covering R =
(
S 0, . . . , S `

)
. Given an op-

timal strategy profile S ∗, since the t-th player π(t) performing a best response,
before doing it, can always select the strategy she would use in S ∗, her immediate
cost cπ(t)(S t) can be suitably upper bounded as

∑
e∈s∗

π(t)

(
θe(S t−1) + wπ(t)

)
.

By extending and strengthening the technique of [13, 14], we are able to prove
that the best response dynamics satisfying the (T, β)-Fairness Condition fast con-
verges to states approximating the social optimum by a factor O(β). It is worth



noticing that, by exploiting the technique of [13, 14], only a worse bound of O(β2)
could be proved. In order to obtain an O(β) bound, we need to develop a different
and more involved technique, in which also the functions ρ and H, introduced in
[13, 14], have to be redefined: roughly speaking, they now must take into account
only the last move in R of each player, whereas in [13, 14] they were accounting
for all the moves in R.

We now introduce functions ρ and H, defined over the set of all the possible
(`, β)-bounded coverings:

• Let ρ(R) =
∑n

i=1 wi
∑

e∈s∗i

(
θe(S lastR(i)−1) + wi

)
;

• let H(R) =
∑n

i=1 wi
∑

e∈s∗i
θe(S 0).

Notice that ρ(R) is an upper bound to the sum over all the players of the cost
that she would experience on her optimal strategy s∗i just before her last move in R,
whereas H(R) represents the sum over all the players of the delay on the moving
player’s optimal strategy s∗i in the initial state S 0 of R. Moreover, since players
perform best responses, it holds that, for any i = 1, . . . , n,

ci(S lastR(i)) ≤
∑
e∈s∗i

(
θe(S lastR(i)−1) + wi

)
(14)

and, any summing over all players, we obtain that
∑n

i=1 ci(S lastR(i)) ≤ ρ(R), i.e.
ρ(R) is an upper bound to the sum of the immediate costs over the last moves
of every players. Finally, it is worth noticing that, by inverting the order of the
summations, H(R) =

∑
e∈E θe(S 0)θe(S ∗).

The upper bound proof is structured as follows. Lemma 9 relates the social
cost of the final state S ` of a (`, β)-bounded covering R with ρ(R), by showing
that C(S `) ≤ 2ρ(R). Let R and R be two consecutive (`, β)-bounded coverings;
by exploiting Lemmata 10 and 11, providing an upper (lower, respectively) bound
to H(R) in terms of ρ(R) (ρ(R), respectively), Lemma 12 proves that ρ

Opt rapidly

decreases between R and R, showing that ρ(R)
Opt = O

(√
ρ(R)
Opt + β

)
. In the proof of

Theorem 1, after deriving a trivial upper bound equal to O(W) for ρ(R1), Lemma
12 is applied to all the k − 1 couples of consecutive (`, β)-bounded coverings of
the considered dynamics satisfying the (T, β)-Fairness Condition.

Similarly to Lemma 5 and Lemma 7, the following lemmata show that the
social cost at the end of any (`, β)-bounded covering R is at most 2ρ(R), and that
H(R′)
Opt is significantly less than ρ(R)

Opt for two consecutive coverings R and R′.

Lemma 9. For any β ≥ 1, given a (`, β)-bounded covering R, C(S `) ≤ 2ρ(R).



Lemma 10. For any β ≥ 1, given two consecutive (`, β)-bounded covering walks
R and R′ such that the final state of R coincides with the initial one of R′, it holds,
H(R′)
Opt ≤

√
2ρ(R)

Opt .

In Lemma 11 we are able to relate ρ(R) and H(R) by strengthening the tech-
nique exploited in [13, 14].

Lemma 11. For any β ≥ 1, given a (`, β)-bounded covering R, ρ(R)
Opt ≤ 2 H(R)

Opt +4β+3.

Proof. Let N̄ be the set of players changing their strategies by performing best
responses in R. First of all, notice that if the players in N̄ never select strategies
used by some player in S ∗, i.e. if they select only resources e such that θe(S ∗) = 0,
then, by recalling the definitions of ρ(R) and H(R), we would obtain

ρ(R) =

n∑
i=1

wi

∑
e∈s∗i

(
θe(S lastR(i)−1) + wi

)
=

n∑
i=1

wi

∑
e∈s∗i

(
θe(S 0) + wi

)
≤

n∑
i=1

wi

∑
e∈ s∗i

θe(S 0) +
∑
e∈s∗i

wi


=

∑
e∈ E

θe(S 0)θe(S ∗) +

n∑
i=1

∑
e∈s∗i

w2
i

≤
∑
e∈ E

θe(S 0)θe(S ∗) +
∑
e∈E

θ2
e(S ∗)

= H(R) + Opt,

and the claim would easily follow for any β ≥ 1.
In the following our aim is that of dealing with the generic case in which

players moving in R can increase the congestion on resources e such that θe(S ∗) >
0.

For every resource e ∈ E, we focus on the congestion on such a resource above
a “virtual" congestion frontier ge = 2βθe(S ∗).

We assume that at the beginning of covering R each resource e ∈ E has a delay
equal to δ0,e = max

{
θe(S 0) + θe(S ∗), ge

}
, and we call δ0,e the delay of level 0 on

resource e. ∆0 =
∑

e∈E δ0,e · θe(S ∗) is an upper bound to H(R). We refer to ∆0 as
the total delay of level 0. Moreover, it holds that

∆0 =
∑
e∈E

max
{
θe(S 0) + θe(S ∗), 2βθe(S ∗)

}
· θe(S ∗)



≤
∑
e∈E

(
θe(S 0) + θe(S ∗)

)
· θe(S ∗) + 2β

∑
e∈E

θ2
e(S ∗) (15)

= H(R) + (2β + 1)Opt.

The idea is that the total delay of level 0 can induce on the resources a conges-
tion (over the frontier ge) contributing to the total delay of level 1, such a delay a
congestion contributing (always over the frontier ge) to the total delay of level 2,
and so on.

More formally, for any p ≥ 1 and any e ∈ E, we define δp,e as the delay of
level p on resource e; we say that a delay δp,e of level p on resource e is induced
by an amount xp−1,e of delay of level p − 1 if some players (say, players in Np−1,e)
moving on e can cause such a delay of level p on e because they are experimenting
a delay of level p−1 on the resources of their optimal strategies equal to xp−1,e. In
other words, xp−1,e is the overall delay of level p−1 on the resources in the optimal
strategies of players in Np−1,e used in order to induce the delay δp,e of level p on
resource e.

For every i = 1, . . . , n, since players perform best responses, player i, in order
to select a strategy si, must suffer a delay when selecting her optimal strategy s∗i
at least equal to the cost of the selected strategy si. In the following, we will
assume that a player i can perform a best response selecting a strategy si if her
cost for strategy s∗i computed according to the delays δp,e (e ∈ s∗i , p ≥ 0) is at least
her cost for strategy i. Such a delay is initially induced, for every e ∈ s∗i , by the
congestion θe(S 0); the additive term θe(S ∗) in the definition of δ0,e is due to the
fact that, before performing her best response, player i weight might not belong to
θe(S 0), while wi has to be taken into account when computing the delay suffered
by i when selecting her optimal strategy s∗i .

We have to clarify how a total delay belonging to various levels is exploited in
order to induce the delay of a given level, say level p, on a resource, say resource
e. In fact, only at the beginning we can assume that all the delay is of level 0
and therefore it is entirely used in order to induce a delay of level 1, while at a
generic move the delay on a resource can belong to different levels. Consider a
best response si of a generic player i, with e ∈ si; if D is the total amount of delay
needed in order to select resource e (delay D is belonging to some resources of
s∗i ), we assume that the amount of the induced delay of a given level p on resource
e is proportional to the amount of delay of level p − 1 contained in D.

Assume that resource e has a congestion α ≥ ge and that player i is selecting
strategy si with e ∈ si. The delay of e increases of wi, and in order to perform
such a best response, player i has to suffer a cost equal to D = wi(α + wi) on her
optimal strategy. We have that wi(α+ wi) ≥ αwi, i.e., the delay on s∗i used in order
to increase the delay on e is at least α times the amount of the increase.

If α < ge and α+wi > ge, the delay of e increases of ε, with ε = α+wi−ge < wi



and in order to perform such a best response, player i has to suffer a cost equal to
D = wi(ge + ε) > ε(ge + ε) on her optimal strategy. Therefore, we again obtain
that the delay on s∗i used in order to increase the delay on e is at least α times the
amount of the increase.

Since we are assuming that the amount of the induced delay of a given level p
on resource e is proportional to the amount of delay of level p− 1 contained in D,
we obtain that

δp,e ≤
xp−1,e

α
≤

xp−1,e

ge
. (16)

For any p, the total delay of level p is defined as ∆p =
∑

e∈E δp,e · θe(S ∗).
Moreover, for any p ≥ 1, we have that∑

e∈E

xp−1,e ≤ β∆p−1 (17)

because each player can move at most β times in R and therefore the total delay of
level p − 1 can be used at most β times in order to induce the total delay of level
p.

We also have that ρ(R) ≤
∑∞

p=0 ∆p + Opt, because
∑∞

p=0 δp,e is an upper bound
on the delay of resource e during the whole covering R.

In the following, we bound
∑∞

p=0 ∆p from above.

∆p =
∑
e∈E

δp,e · θe(S ∗) ≤
∑
e∈E

xp−1,e

ge
· θe(S ∗) =

∑
e∈E

xp−1,e

2βθe(S ∗)
· θe(S ∗) ≤

∆p−1

2
,

where the first inequality holds by inequality (16), and the last inequality holds by
inequality (17).

We thus obtain that, for any p ≥ 0, ∆p ≤
∆0
2p and

∑∞
p=0 ∆p ≤ 2∆0. Therefore,

ρ(R) ≤
∞∑

p=0

∆p + Opt ≤ 2∆0 + Opt.

Finally, the claim follows by combining this upper bounds to ρ(R) with the
upper bound to ∆0 derived in (15).

�

By combining Lemmata 10 and 11, the following lemma, showing that ρ(·)
Opt fast

decreases between two consecutive coverings, holds.

Lemma 12. For any β ≥ 1, given two consecutive (`, β)-bounded coverings R and

R, ρ(R)
Opt ≤ 2

√
2ρ(R)

Opt + 4β + 3.



By applying Lemma 12 to all the couples of consecutive (`, β)-bounded cov-
erings, we are now able to prove the following theorem.

Theorem 4. Given a weighted congestion game with linear delay functions, any
best response dynamics satisfying the (T, β)-Fairness Condition converges from
any initial state to a state S such that C(S )

Opt = O(β) in at most T dlog log We best
responses.

Proof. Given a best response dynamics satisfying the (T, β)-Fairness Condition,
let R1, . . . ,Rk be the k (`, β)-bounded coverings in which it can be decomposed.
By applying Lemma 12 to all the pairs of consecutive (`, β)-bounded coverings R j

and R j+1, for any j = 1, . . . , k − 1 we obtain

ρ(R j+1)
Opt

≤ 2

√
2
ρ(R j)
Opt

+ 4β + 3.

By combining all the above inequalities for j = 1, . . . , k−1 and by performing
some basic algebraic manipulations, for any constant value of d we obtain that
ρ(Rk)
Opt = O

(
2k−1
√

ρ(R1)
Opt + β

)
. Thus, by Lemma 9, the cost of the final state S of walk

Rk is such that
C(S )
Opt

= O

 2k−1

√
ρ(R1)
Opt

+ β

 .
By the definition of ρ(R), since

∑
e∈E θe(S ∗) ≤

∑
e∈E θ

2
e(S ∗) = Opt, for any

possible (`, β)-bounded covering R it holds that

ρ(R) =

n∑
i=1

wi

∑
e∈s∗i

(
θe(S last(i)−1) + wi

)
≤

n∑
i=1

wi

∑
e∈s∗i

(W + W)

= 2W
n∑

i=1

wi|s∗i | ≤ 2W
∑
e∈E

θe(S ∗) ≤ 2WOpt.

Therefore, ρ(R1)
Opt ≤ 2W and we obtain C(S )

Opt = O
(

2k−1√
W + β

)
.

It is worth noticing that log log W (`, β)-bounded coverings are sufficient in
order to obtain C(S )

Opt = O(β). Since every (`, β)-bounded covering, by its definition,
contains at most T best responses, the claim follows. �

It is also possible to prove the following lower bounds.

Theorem 5. For any ε > 0, there exist a linear congestion game G and an initial
state S 0 such that, for any β = O(n−

1
log2 ε ), there exists a best response dynamics

starting from S 0 and satisfying the (T, β)-Fairness Condition such that for a num-
ber of best responses exponential in n the cost of the reached states is Ω(β1−ε ·Opt).



By choosing β =
√

n and considering a simplified version of the proof giv-
ing the above lower bound, it is possible to prove the following corollary. In
particular, it shows that even in the case of best response dynamics verifying an
O(n)-Minimum Liveness Condition, the speed of convergence to efficient states
is very slow; such a fact implies that the T -Minimum Liveness condition cannot
precisely characterize the speed of convergence to efficient states because it does
not capture the notion of fairness in best response dynamics.

Corollary 2. There exist a linear congestion gameG, an initial state S 0 and a best
response dynamics starting from S 0 and satisfying the O(n)-Minimum Liveness
Condition such that for a number of best responses exponential in n the cost of the

reached states is always Ω

(
4√n

log n · Opt
)
.

In the symmetric case, the unfairness in best response dynamics does not affect
the speed of convergence to efficient states. In particular, we are able to show that,
for any β, after T dlog log We best responses an efficient state is always reached.

Theorem 6. Given a linear weighted symmetric congestion game, any best re-
sponse dynamics satisfying the T-Minimum Liveness Condition converges from
any initial state to a state S such that C(S )

Opt = O(1) in at most T dlog log We best
responses.

6 Conclusions and Future Work
In this work we have surveyed the state of the art about convergence issues in
congestion games, with a special focus on the results concerning the speed of
convergence of best response dynamics. In particular, we have shown that in
congestion games with polynomial delays fair dynamics, in which each player is
allowed to player at least once and at most a constant number of times every T
best responses, fast converges to solutions approximating the optimum by a factor
proportion to the price of anarchy.

Moreover, we have completely characterized how, in weighted congestion
games with linear delays, the frequency with which each player participates in
the game dynamics affects the possibility of reaching states with an approxima-
tion ratio within a constant factor from the price of anarchy, within a polynomially
bounded number of best responses. We have shown that, while in the asymmet-
ric setting the fairness among players is a necessary and sufficient condition for
guaranteeing a fast convergence to efficient states, in the symmetric one the game
always converges to an efficient state after a polynomial number of best responses,



regardless of the frequency each player moves with. We conjecture that such re-
sults can be extended to broader classes of congestion games, such as congestion
games with polynomial delay functions.

It is worth to note that our techniques provide a much faster convergence to
efficient states with respect to previous results in the literature. In particular, in
the symmetric setting, Theorem 6 shows that best response dynamics leads to
efficient states much faster than how ε-Nash dynamics (i.e., sequences of moves
reducing the cost of a player by at least a factor of ε) leads to ε-Nash equilibria
[8]. Furthermore, also in the more general asymmetric setting, Theorem 4 shows
that the same holds for fair best response dynamics with respect to ε-Nash ones
[5].

An interesting open question is that of studying the time of convergence to
solutions approximating by a low factor the optimum with respect to other social
function, such as the maximum cost among the players. Finally, considering other
kinds of dynamics (such as coalitional responses in which two or more players
coordinate in order to decrease their costs) is a left open problem that deserves
further research effort.
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