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Abstract

We overview some impossibility results and lower bounds on the com-
plexity of implementing software transactional memory, and explain their
underlying assumptions.

1 Introduction
As anyone with a laptop or an Internet connection knows, the multi-core revo-
lution is here, since almost any computing appliance contains several processing
cores. With the improved hardware comes the need to harness the power of con-
currency, since the processing power of individual cores does not increase. Ap-
plications must be restructured in order to reap the benefits of multiple processing
units, without paying a hefty price for coordination among them.

It has been argued that writing concurrent applications is significantly more
challenging than writing sequential ones, and Transactional memory (TM) has
been suggested as a way to deal with this difficulty. In the simplest form of TM,
the programmer need only wrap code with operations denoting the beginning and
end of a transaction. The transactional memory will take care of synchronizing
the shared memory accesses so that each transaction seems to execute sequentially
and in isolation.

Originally suggested as a hardware platform by Herlihy and Moss [29],
TM has resurfaced as a software mechanism a couple of years later. The first
software implementation of transactional memory was suggested by Shavit and
Touitou [43]; it provided, in essence, support for multi-word synchronization
operations on a static set of data items, in terms of a unary operation (LL/SC),
somewhat optimized over prior implementations, e.g., [9, 46]. Shavit and Touitou
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coined the term software transactional memory (STM) to describe their imple-
mentation.

Only when the termination condition was relaxed to obstruction freedom (see
Section 2.2), the first STM handling a dynamic set of data items was presented by
Herlihy et al. [28]. Work by Rajwar et al., e.g., [38, 41], helped to popularize the
TM approach in the programming languages and hardware communities.

Despite its simplicity, or perhaps because of it, transactional memory im-
plementations incur significant cost, as has been discovered in recent theoretical
work. This short survey describes several of these impossibility results and lower
bounds, and their interaction with various properties of transactional memory.

2 Formalizing TM
This section outlines how transactional memory can be formally captured, as well
as properties expected of it. A comprehensive in-depth treatment is provided by
Guerraoui and Kapałka [25].

The model encompasses at least two levels of abstraction: The high level has
transactions, each of which is a sequence of operations accessing data items. At
the low level, the operations are translated into executions in which a sequence of
events apply primitive operations (or primitives) to base objects, containing the
data and the meta-data needed for the implementation. (See Figure 1.)

A transaction is a sequence of operations executed by a single process on a
set of data items, shared with other transactions. Data items are accessed by read
and write operations; some systems also support other operations. The interface
also includes try-commit (tryC) and try-abort (tryA) operations, in which a trans-
action requests to commit or abort, respectively. If the response of try-commit is
commit, the writes of the transaction are ensured to take effect, and we say that the
transaction is committed. Any of these operations, not just try-abort, may cause
the transaction to abort, in which case, none of its writes take effect and we say
that the transaction is aborted. If the transaction is aborted not in response to
try-abort, we say that it is forcibly aborted.

The collection of data items accessed by a transaction is its data set; the items
written by the transaction are its write set, with the other items being its read set.

Figure 1: Levels of abstraction in transactional memory.



A software implementation of transactional memory (abbreviated STM) pro-
vides data representation for transactions and data items using base objects, and
algorithms, specified as primitives on the base objects. These procedures are fol-
lowed by asynchronous processes in order to execute the operations of transac-
tions. The primitives can be simple reads and writes, but also more sophisticated
ones, like cas or dcas, typically applied to memory locations, which are the base
objects for the implementation.

When processes invoke these procedures, in an interleaved manner, we obtain
executions, in the standard sense of asynchronous distributed computing (cf. [8]).
Executions consist of configurations, describing a complete state of the system at
some point in time, and events, describing a single step by an individual process,
including an application of a single primitive to base objects (possibly several
objects, e.g., in case of dcas).

The interval of a transaction T is the execution interval that starts at the first
event of T and ends at the last event of T . If T does not have a last event in
the execution, then the interval of T is the (possibly infinite) execution interval
starting at the first event of T . Two transactions overlap if their intervals overlap.

2.1 Safety: Consistency Properties of TM
An STM is serializable if committed transactions appear to execute sequentially,
one after the other [39]. An STM is strictly serializable if this serialization order
preserves the order of non-overlapping transactions [39]. This notion is called
order-preserving serializability in [47], and is the analogue of linearizability [31]
for transactions.1

Opacity, suggested by Guerraoui and Kapałka [23], further demands that even
partially executed transactions, which may later abort, must be serializable (in an
order-preserving manner). Opacity also accommodates operations beyond read
and write.

While opacity is a stronger condition than serializability, snapshot isola-
tion [10] is a consistency condition weaker than serializability. Roughly stated,
snapshot isolation ensures that all read operations in a transaction return the most
recent value as of the time the transaction starts; the write sets of concurrent trans-
actions must be disjoint. (Cf. [47, Definition 10.3].) Riegel et al. [42] proposed to
use snapshot isolation for TM.

Virtual World Consistency (VWC), defined by Imbs et al. [32], is a weakening
of opacity, tailored for transactional memory. VWC allows aborted (and ongoing)

1 Linearizability, like sequential consistency [37], talks about implementing abstract data struc-
tures, and hence they involve one abstraction—from the high-level operations of the data structure
to the low level primitives. It also provides the semantics of the operations, and their expected
results at the high-level, on the data structure.



Figure 2: The relations between several TM and database consistency conditions.

transactions to observe mutually inconsistent views of the execution, as long as
each of them is consistent with some sequential execution of the committed trans-
actions in their “causal past”. A related condition, called Transactional Memory
Specification (referred to as TMS1), was suggested by Doherty et al. [16], also
considers each aborted transaction in isolation.

Figure 2 summarizes these conditions and the relations between them. Addi-
tional discussion of the relations between various TM and database consistency
conditions is given by Attiya and Hans [26].

2.2 Progress: Termination Guarantees for TM
One of the innovations of TM is in allowing transactions not to commit, when
they are faced with conflicting transactions, namely, transactions that access the
same data items. This, however, admits trivial implementations where no progress
is ever made. Finding the right balance between nontriviality and efficiency has
lead to several progress properties. They are first and foremost distinguished by
whether locking is accommodated or not.

When locks are not allowed, the strongest requirement—rarely provided—
is of wait-freedom, namely, that each transaction has to eventually commit. A
weaker property ensures that some transaction eventually commits, or that a trans-
action commits solo, for long enough time. The last property is called obstruction-
freedom [28] (see further discussion in [4]).

A lock-based STM (e.g., TL2 [15]) is often required to be (weakly) progres-
sive [24], namely, a transaction that does not encounter a conflicting transaction



must commit. (There is a conflict between two transactions, if both of them access
the same data item.)

Several lower bounds assume a minimal progress property, ensuring that a
transaction terminates successfully if it runs alone, from a situation in which no
other transaction is pending. This property is implied both by obstruction freedom
and by weak progressiveness.

Related definitions [18, 24, 34] further attempt to capture the distinction be-
tween aborts that are necessary in order to maintain the safety properties (e.g.,
opacity) and spurious aborts that are not mandated by the consistency property,
and to measure their ratio.

Strong progressiveness [24] ensures that even when there are conflicts, some
transaction commits. More specifically, an STM is strongly progressive if a trans-
action without nontrivial conflicts, namely, a conflict involving at least one write.
is not forcibly aborted, and if a set of transactions have nontrivial conflicts on a
single item then not all of them are forcibly aborted. (Recall that a transaction is
forcibly aborted, when the abort was not requested by a try-abort operation of the
transaction, i.e., the abort is in response to try-commit, read or write operations.)

Permissiveness tries to capture the number of unjustified, spurious aborts; it
requires a transaction to commit unless doing so violates correctness [20]; said
otherwise, this means that a transaction can abort or block only if committing
may violate correctness. A weaker condition, given by Fan et al. [40], says that
an STM is multi-version (MV)-permissive if a transaction is forcibly aborted (not
because it requests to abort) only if it is an update transaction that has a nontrivial
conflict with another update transaction.

Strong progressiveness and MV-permissiveness are incomparable: The former
allows a read-only transaction to abort, if it has a conflict with another update
transaction, while the latter does not guarantee that at least one transaction is not
forcibly aborted in case of a conflict.

Figure 3 shows the relations between these progress conditions.

Remark 1. Strictly speaking, these properties are not liveness properties in the
traditional sense [36], since they can be checked in finite executions.

2.3 Performance Indicators
There has been some theoretical attempts to predict how well will TM implemen-
tations scale, resulting in definitions that postulate behaviors that are expected to
yield superior performance.



Figure 3: Relations between progress conditions for transactional memory.

2.3.1 Disjoint-Access Parallelism

The most accepted such notion is disjoint-access parallelism, capturing the re-
quirement that unrelated transactions progress independently, even if they occur
at the same time. That is, an implementation should not cause two transactions,
which are unrelated at the high-level, to simultaneously access the same low-level
shared memory.

We explain what it means for two transactions to be unrelated through a con-
flict graph that represents the relations between transactions. The conflict graph
of an execution interval I is an undirected graph, where vertices represent trans-
actions whose execution intervals intersect, and edges connect transactions that
share a data item. Two transactions T1 and T2 are disjoint access if there is no
path between the vertices representing them in the conflict graph of their execu-
tion intervals; they are strictly disjoint access if there is no edge between these
vertices.

Below is the conflict graph for six transactions: T1 with data set {A, B,C}, T2
with data set {A,D}, T3 with data set {D, E}, T4 with data set {F, L}, T5 with data
set {L} and T6 with data set {J}.

In this example, the data sets of T1 and T2 intersect, as do the data sets of T2
and T3, while the data sets of T1 and T3 do not intersect. Hence, T1 and T3 are
strictly disjoint access, but they are not disjoint access.



Two events contend on a base object o if they both access o, and at least one of
them applies a nontrivial primitive to o. (A primitive is nontrivial if it may change
the value of the object, e.g., a write or cas; otherwise, it is trivial, e.g., a read.)
Transactions concurrently contend on a base object o if they have pending events
at the same configuration that contend on o.

Property 1 (Disjoint access parallelism (weak)). An STM implementation is
(weakly) disjoint-access parallel if two transactions concurrently contend on the
same base object only if they are not disjoint access.

This definition captures the first condition of the disjoint-access parallelism
property of Israeli and Rappoport [33], in accordance with most of the literature
(cf. [30]). It is somewhat weaker, as it allows two processes to apply a trivial
primitive on the same base object, e.g., read, even when executing disjoint-access
transactions. Moreover, this definition only prohibits concurrent contending ac-
cesses, allowing transactions to contend on a base object o at different points of
the execution. A stronger requirement is:

Property 2 (Disjoint access parallelism (strong)). An STM implementation is
disjoint-access parallel if two transactions concurrently access the same base ob-
ject only if they are not disjoint access.

The original disjoint-access parallelism definition [33] also restricts the impact
of concurrent transactions on the step complexity of a transaction.

For additional definitions and discussion, see [6].

2.3.2 Invisibility of Reads

It is expected that many typical applications will generate workloads that include
a significant portion of read-only transactions. This includes, for example, trans-
actions to search a data structure, and find whether it contains a particular data
item.

Many STMs attempt to optimize read-only transactions, and more generally,
the implementation of read operations inside the transaction. By their very nature,
read operations, and even more so, read-only transactions, need not leave a mark
on the shared memory, and therefore, it is desirable to avoid writing in such trans-
actions, i.e., to make sure that reads are invisible, and certainly, that read-only
transactions do not write at all.

Remark 2. Dice et al. [14] refer to a transaction as having invisible reads even
if it writes, but the information is not sufficiently detailed to supply the exact de-
tails about the transaction’s data set. (In their words, “the STM does not know
which, or even how many, readers are accessing a given memory location.”) This
behavior is captured by the stronger notion of an oblivious STM [5].



2.3.3 Makespan Ratio

Some transactional memories come with a scheduler, determining which transac-
tion to abort when there is a danger of violating consistency. One way to eval-
uate a transactional scheduler, borrowed from scheduling theory, is to measure
its makespan, namely, the total time it takes to complete all the transactions in a
specific workload.

Reducing the makespan is a major challenge, since transactions are often
aborted and restarted. Measuring the makespan of a workload by itself is not
indicative for the performance of a transactional scheduler, since the workload
might be inherently sequential. Instead, the performance of a transactional sched-
uler is evaluated by the ratio, over all possible workloads, between its makespan
and the makespan of an optimal, clairvoyant scheduler that knows the list of re-
source accesses that will be performed by each transaction, as well as its release
time and duration [3, 21]. This idealistic transactional scheduler captures the in-
herent makespan needed to perform the workload, under complete knowledge,
and the ratio captures the cost of the lack of this knowledge.

3 TM Lower Bounds and Impossibility Results
This section overviews research on the inherent complexity of TM. This includes
several impossibility results showing that certain properties simply cannot be
achieved by a TM, and a few worst-case lower bounds showing that other proper-
ties put a high price on the TM, often in terms of the number of steps that should
be performed, or as bounds on the local computation involved.

3.1 Inherent Cost of TM Implementations
An early result demonstrates the additional cost of opacity over serializability,
namely, the cost of making sure that the values read by a transaction are consis-
tent as it is in progress (and not just at commit time, as done in many database
implementations). Guerraoui and Kapałka [23] showed that the number of steps
in a read operation is linear in the size of the invoking transaction’s read set, as-
suming that reads are invisible, the STM keeps only a single version of each data
item, and is progressive (i.e., it never aborts a transaction unless it conflicts with
another pending transaction). In contrast, when only serializability has to be guar-
anteed, the values read can be validated only at commit time, leading to significant
savings.

Another way to study the complexity of TM implementations is to prove lower
bounds on objects that can be derived from them, for example, atomic snapshot



objects [1]. Attiya et al. [2] have shown that if a wait-free implementation of
an m-component snapshot object from historyless objects is space optimal, then
its step complexity is in Ω(m). This follows from lower bounds for a new, more
general class of implementations from base objects of any type.

Not all kinds of steps are created equal, and some steps involve more expensive
synchronization than others, for example, those that force a memory barrier to oc-
cur. Kuznetsov and Ravi [35] have shown that if an STM implementation ensures
a high degree of concurrency, i.e., it is permissive, then the number of expensive
synchronization steps performed by a transaction is linear in its read-set size. The
paper also demonstrates that only a constant number of synchronization steps is
needed in each transaction of a strongly progressive STM; note that such STMs
provide limited degree of concurrency. Nevertheless, even in strongly progressive
STMs, a transaction must protect (e.g., by using locks or strong synchronization
primitives) an amount of data that is linear in its write-set size.

3.2 The Consensus Number of TM
Consensus is a core problem in distributed computing, requiring processes to
agree on one of their inputs. The consensus number of a data structure [27] is the
maximal number of processes that can solve consensus using copies of the data
structure (and read/write registers); the universality of consensus means that an
object with consensus number c can wait-free implement every other data struc-
ture, for c processes, and that there are problems (specifically, consensus) that
have no wait-free solution from the data structure (and read / write registers), for
more than c processes.

Guerraoui and Kapałka [22] have shown that lock-based and obstruction-free
TMs can solve consensus for at most two processes, that is, their consensus num-
ber is 2. An intermediate step shows that such TMs are equivalent to shared
objects that fail in a very clean manner [4]. Roughly speaking, this is a consen-
sus object providing a familiar propose operation, allowing a thread to provide an
input and wait for a unanimous decision value; however, the propose operation
may return a definite fail indication, which ensures that the proposed value will
not be decided upon. Intuitively, an aborted transaction corresponds to a propose
operation returning false. To get the full result, further mechanisms are needed to
handle the long-lived nature of transactional memory.

3.3 Providing Disjoint-Access Parallelism
Guerraoui and Kapałka [22] prove that obstruction-free implementations of soft-
ware transactional memory cannot ensure strict disjoint-access parallelism. This
property requires transactions with disjoint data sets (with strict disjoint access)



Strict DAP Strong DAP DAP
Opacity Obstruction

-freedom [22]
Linearizability Wait-freedom [17]
Strict Invisible, wait
serializability -free reads [6]
Snapshot Obstruction Invisible, wait
isolation -freedom [11] -free reads [6]

Table 1: Impossibility of achieving disjoint access parallelism (DAP). The table
entry shows the progress condition needed for proving the result.

not to access a common base object. This notion is stronger than disjoint-access
parallelism (Property 1), which allows two transactions with disjoint data sets to
access the same base objects, provided they are connected via other transactions.
Note that the lower bound does not hold under this more standard notion, as Her-
lihy et al. [28] present an obstruction-free and disjoint-access parallel STM.

The result that obstruction-free implementations of software transactional
memory cannot ensure strict disjoint-access parallelism, has been extended in sev-
eral important ways.

For the stronger case of wait-free read-only transactions, the assumption of
strict disjoint-access parallel can be replaced with the assumption that read-only
transactions are invisible. Specifically, an STM cannot be disjoint-access parallel
and have invisible read-only transactions that always terminate successfully [6].
A read-only transaction not only has to write, but the number of writes is linear
in the size of its read set. Both results hold for strict serializability, and hence
also for opacity. With a slight modification of the notion of disjoint-access paral-
lelism, i.e., strong disjoint-access parallelism (Property 2), these results also hold
for serializability and snapshot isolation.

In fact, even the original result of Guerraoui and Kapałka [22] holds with snap-
shot isolation: Bushkov et al. [11] have shown that it is impossible to ensure strict
disjoint-access parallelism and obstruction-freedom even if we weaken safety to
ensure only snapshot isolation.

Another extension, by Ellen et al. [17], shows that transactional memory im-
plementations cannot ensure both disjoint-access parallelism and wait-freedom;
this assumes that the TM requires a process to re-execute its transaction if it has
been aborted and that the TM guarantees that each transaction is aborted only a
limited number of times.

Table 1 summarizes these impossibility results.



3.4 Privatization
An important goal for STM is to access certain items by simple reads and writes,
without paying the overhead of the transactional memory. It has been shown [19]
that, in many cases, this cannot be achieved without prior privatization [44, 45],
namely, invoking a privatization transaction, or some other kind of a privatizing
barrier [14].

Attiya and Hillel [5] have proved that, unless parallelism (in terms of progres-
siveness) is greatly compromised or detailed information about non-conflicting
transactions is tracked (the STM is not oblivious), ensuring that no transaction
writes to privatized data, incurs a cost (in terms of memory location accessed),
which is linear in the number of items that are privatized.

3.5 Avoiding Aborts
An early result by Guerraoui et al. [20] shows that ensuring opacity, together
with permissiveness is NP-hard. Similarly, Keidar and Perelman [34] prove that
an opaque, strongly progressive STM requires NP-complete local computation,
while a weaker, online notion requires visible reads.

The competitive ratio of the makespan is another way to measure the number
of unnecessary aborts. It has been shown that the best competitive ratio achieved
by simple transactional schedulers is Θ(s), where s is the number of data items [3].

Attiya and Milani [7] studied the makespan of transactional scheduling under
read-dominated workloads. These common workloads include read-only trans-
actions, i.e., those that only observe data, and late-write transactions, i.e., those
that update only towards the end of the transaction. This work shows that while
read-only transactions are easily handled to achieve good makespan, late-write
transactions significantly deteriorate the competitive ratio of any non-clairvoyant
scheduler, assuming it takes a conservative approach to conflicts.

3.6 Limiting Progress
Local progress is a liveness property, which states that every process which is
not parasitic (i.e., does not keep executing transactional operations without ever
attempting to commit) and does not crash, makes progress. Bushkov et al. [12]
defined this notion and proved that no TM implementation can ensure both opacity
and local progress; in fact, the result holds also under the assumption of strict
serializability.

Moreover, Crain et al. [13] have proved that opacity is incompatible even with
probabilistic permissiveness, assuming reads are invisible. This means that there



is no probabilistically permissive STM system that implements opacity while en-
suring read invisibility. In contrast, probabilistic permissiveness can be obtained
with the weaker condition, VWC [13].
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