
The Concurrency Column
by

Nobuko Yoshida

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ
n.yoshida@imperial.ac.uk, http://mrg.doc.ic.ac.uk/

http://www.doc.ic.ac.uk/
http://www.doc.ic.ac.uk/
n.yoshida@imperial.ac.uk
http://mrg.doc.ic.ac.uk/


Recreational FormalMethods:
Designing Vacuum Cleaning Trajectories

Frits Vaandrager
Institute for Computing and Information Sciences

Radboud University Nijmegen
F.Vaandrager@cs.ru.nl

Freek Verbeek
Department of Computer Science

Open University of The Netherlands
Freek.Verbeek@ou.nl

Abstract

We study an example due to Wooldridge of a small robotic agent that will
vacuum clean a room. The room is an n × n grid and at any point the robot
can move forward one step or turn right 90 degrees. The problem is to find a
deterministic strategy for the robot in which (1) its next action only depends
on its current square and orientation (one of north, west, south, east), and
(2) all squares are visited infinitely often. We use a model checker and a
SAT solver to find such strategies, and a proof assistant to exhibit certain
symmetries in the problem.

1 Introduction
In his textbook on multiagent systems, Wooldridge [6] describes an example of
a small robotic agent that will clean up a room. Figure 1 illustrates the vacuum
world in which this robot operates. It is assumed that the room is a 3 × 3 grid,
and that the robot always starts in square (0, 0) facing north. The agent can suck
up dirt, move forward to the next square, or turn right 90◦. The goal is to traverse
the room continuously searching for dirt and removing dirt. Wooldridge asks for
the construction of a deterministic, memoryless strategy which, given the current
square and orientation (one of north, west, south, east), and given whether the
robot observes dirt, specifies the next action of the agent (one of suck, forward,

F.Vaandrager@cs.ru.nl
Freek.Verbeek@ou.nl


Figure 1: Vacuum world

turn). Assuming that all actions of the robot have their intended effect, this strat-
egy should ensure that the robot will visit all squares infinitely often. Wooldridge
gives a partial specification of such a strategy using a number of rules. The first
rule states that if the agent is at location (x, y) and it perceives dirt, then the pre-
scribed action is to suck up dirt.

In(x, y) ∧ Dirt(x, y) −→ Do(suck)

This rule takes priority over all other possible behaviors of the agent. Next four
rules are listed which state that the robot will move from (0, 0) to (0, 1) to (0, 2)
and then to (1, 2):

In(0, 0) ∧ Facing(north) ∧ ¬Dirt(0, 0) −→ Do(forward)
In(0, 1) ∧ Facing(north) ∧ ¬Dirt(0, 1) −→ Do(forward)
In(0, 2) ∧ Facing(north) ∧ ¬Dirt(0, 2) −→ Do(turn)

In(0, 2) ∧ Facing(east) −→ Do(forward)

According to Wooldridge, “similar rules can easily be generated that will get the
agent to (2, 2), and once at (2, 2) back to (0, 0).” The first author, however, while
diligently preparing a lecture on robotics for a freshman class, failed to find these
rules. The problem is how to return to (0, 0) after (2, 2) has been reached. While
on the way back, the robot may not revisit any square and orientation where it
has been before: in such a case, since the robot is memoryless, it will continue
forever on a loop that does not contain square (0, 0). It appears that, after the
robot has followed the initial rules specified by Wooldridge, it has painted itself
in a corner and can never return to (0, 0). It is not even obvious that there exists
a deterministic, memoryless strategy for the robot that visits all squares infinitely
often.



Figure 2: Uppaal model

This note describes how we tackled this problem using a model checker, a SAT
solver, and even a proof assistant. The models and logical theories that we de-
scribe are available at the URL http://www.mbsd.cs.ru.nl/publications/
papers/fvaan/vacuumworld/.

2 Model Checking
The problem of finding strategies for the vacuum cleaning robot can easily be
encoded in a model checker. We constructed a model using the Uppaal tool [2].
Figure 2 displays the main template of our model. The model is parametrized by
a constant n, which specifies the size of the grid. We use variables x and y, which
range over type pos = {0, , . . . , n − 1}, to store the current position of the robot,
and a variable d, which ranges over type dir = {N, W, S, E}, to store the current
orientation. Initially, x and y equal 0, and d equals N. There are two transitions in
the model, turn_act! and forward_act!. In the turn transition, the orientation
d is updated using the function rotate, given by rotate(N) = E, rotate(E) = S,
rotate(S) = W and rotate(W) = N. A forward transition is only enabled when there
is a square in front of the robot, to prevent that the robot will hit the wall. In the
model we abstract away from the dirt sucking as this is irrelevant for our problem.

An auxiliary array variable strategy records, for each position (i, j) and
orientation k, the current strategy value, which is either undefined, forward
or turn. Initially, strategy[i][j][k] is undefined for all i, j and k. Once
strategy[i][j][k] is set to either turn or forward, it can never be changed
again. We also use auxiliary variables tcount and fcount to count the total
number of turns and forward moves, respectively.

Using the Uppaal verifier, we established that if the robot follows the rules
specified by Wooldridge, it indeed paints itself in a corner. In fact, since the
following Uppaal query does not hold for our model, there does not even exist a

http://www.mbsd.cs.ru.nl/publications/papers/fvaan/vacuumworld/
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/vacuumworld/


Figure 3: Two strategies with 12 (left) and 16 turns (right)

strategy that follows the rules for (0, 0) and (0, 1):

E<> (x==0 && y==0 && d==N &&
forall (i:pos) forall (j:pos) visited(i,j) &&
strategy[0][0][N]==forward && strategy[0][1][N]==forward)

Here E <> is Uppaal notation for the temporal operator ∃� and means “there
exists a run leading to a state satisfying”. Predicate visited(i, j) evaluates to
true if the robot has visited square (i, j), that is, strategy[i][j][k] is defined for
some orientation k. By omitting the last two conjuncts in the above query, we can
instruct the Uppaal verifier to search for strategies that visit all squares infinitely
often. Figure 3 shows two strategies found by Uppaal. The strategy on the right
was (independently) also discovered by Bart van Thiel, one of the students from
the robotics class. The two strategies of Figure 3 differ since the left one makes
12 turns whereas the right one makes 16 turns. Clearly, the number of turns in any
strategy must be a multiple of 4. Using Uppaal we found that in fact all strategies
contain either 12, 16 or 20 turns. Figure 4 shows two strategies, found by Uppaal,
which both make 20 turns. These strategies differ since the left one contains 12
forward moves whereas the right one has 14 forward moves. It is easy to see that
the number of forward moves in any strategy must be an even number. Using
Uppaal we found that all strategies contain either 10, 12 or 14 forward moves.

In theory it is easy to enumerate all strategies using Uppaal: one repeatedly
asks Uppaal whether there exists a strategy that is different from all strategies
found thus far. In practice, however, this is quite involved, requiring either manual
entry of all strategies as part of queries, or a nontrivial script which transforms
Uppaal traces into queries. In order to obtain a complete overview of all possible
strategies we therefore found it convenient to use a different tool.



Figure 4: Two strategies with 20 turns and 12 (left) resp. 14 (right) forward moves

3 Constraint Solving
To enumerate vacuum cleaning strategies, we reformulate the problem: we need
to find a path of length p that traverses a set of states Q and has to satisfy certain
constraints. We then solve this problem for all p such that l ≤ p ≤ h with l and
h some conservatively estimated lower and higher bounds. The constraints can
be formulated as a propositional satisfiability (SAT) problem. We therefore use
zChaff [4], an automated solver for SAT problems.

For our SAT formulation of finding a vacuum cleaning strategy, we formalize
the vacuum world as a labeled transition system.

Definition 3.1. A labeled transition system (LTS) is a tripleL = (Q, A,→), where
Q is a set of states, A is a set of actions, and→⊆ Q×A×Q is a set of transitions.
We write q

a
−→ q′ if (q, a, q′) ∈→, and q→ q′ if there exists an a ∈ A s.t. q

a
−→ q′.

Fix a grid size n. Then our vacuum cleaning world is described by the LTS
V = ({0, 1, . . . , n−1}×{0, 1, . . . , n−1}×{N, W, S, E}, {forward, turn},→), where re-
lation→ contains the following transitions, for x, y ∈ [0, n−1] and d ∈ {N, W, S, E},

(x, y, d)
turn
−−→ (x, y, rotate(d))

(x, y, N)
forward
−−−−−→ (x, y + 1, N) if y < n − 1

(x, y, E)
forward
−−−−−→ (x + 1, y, E) if x < n − 1

(x, y, S)
forward
−−−−−→ (x, y − 1, S) if y > 0

(x, y, W)
forward
−−−−−→ (x − 1, y, W) if x > 0

The SAT formulation of our problem introduces a Boolean variable for each
pair (q, t), with q a state and t a natural number such that 0 ≤ t < p. We denote



Figure 5: Another strategy with 20 turns and 12 forward moves found by zChaff

the Boolean variable corresponding to (q, t) with 〈q, t〉. The intended semantics is
that Boolean variable 〈q, t〉 is true iff the vacuum cleaner is in state q at time slot
t. All constraints are expressed in terms of these Boolean variables:
The strategy begins in (0, 0, N):

〈(0, 0, N), 0〉

The strategy ends in (0, 0, N):

〈(0, 0, N), p − 1〉

The strategy is connected:

∀q, t < p − 1 · 〈q, t〉 =⇒
∨

∃a·q
a
−→ q′

〈q′, t + 1〉

The strategy is covering:

∀x, y · ∃d, t · 〈(x, y, d), t〉

The strategy contains no duplicates other than the starting position:

∀q, t0, t1 > t0 · 〈q, t0〉 ∧ q , (0, 0, N) =⇒ ¬〈q, t1〉

Within one second, zChaff finds 28 solutions, ranging from the smallest (12
turns, 12 forward moves) to the most complex (20 turns, 14 forward moves). How-
ever, many solution are symmetric. There are four variants of the left strategy in
Figure 3, which can be obtained by rotating the entire strategy 90, 180 and 270
degrees. Rotation and reflection variants of the right strategy of Figure 3 occur



eight times, variants of the left strategy of Figure 4 four times, and variants the
right strategy of Figure 4 eight times. The only really new strategy found with
zChaff, which has four incarnations, is displayed in Figure 5.

In order to obtain insight in these symmetries, we found it convenient to use a
different tool.

4 Symmetries
In this section, we take a closer look at the symmetries that are present in the
vacuum cleaning world. The proofs of all the theorems and lemmas in this section
have been checked using the proof assistant Isabelle [5]. First we give a slightly
more abstract characterization of the strategies Wooldridge asks for.

Definition 4.1. Let L = (Q, A,→) be an LTS. A cycle of L is a sequence σ =

q1, . . . , qk of states such that, for all i < k, qi → qi+1 and qk → q1. A cycle is
minimal if all states occurring in it are pairwise different.

Definition 4.2. Let Q be a a set of states, let σ be a sequence of states from Q, and
let ≡ be an equivalence relation on Q. We say that σ covers ≡ if each equivalence
class C of ≡ contains a state that occurs in σ.

Let ≈ be the equivalence relation that deems two states of the vacuum world
LTSV equivalent if they belong to the same square on the grid:

(x, y, d) ≈ (x′, y′, d′) ⇔ x = x′ ∧ y = y′.

Then the strategies Wooldridge asks for correspond to minimal cycles of the LTS
V that cover ≈. Observe that the requirement that a strategy starts with (0, 0, N)
is not essential since any minimal cycle ofV that covers ≈ contains (0, 0, N), and
any state on a cycle can be turned into the initial state by shifting states.

An automorphism is an isomorphism from an object to itself. It preserves the
structure and captures a symmetry present in an object.

Definition 4.3. An automorphism for an LTS L = (Q, A,→) is a bijection f :
Q→ Q such that, for all q, q′ ∈ Q and for all a ∈ A, q

a
−→ q′ iff f (q)

a
−→ f (q′).

The next theorem states that the function R that takes the whole vacuum world
LTS and rotates it 90◦ to the right is an automorphism.

Theorem 4.4. Let R be the function on states ofV given by

R(x, y, d) = (y, n − 1 − x, rotate(d)).

Then R is an automorphism for vacuum worldV.



Theorem 4.5. Let f be an automorphism for an LTS L and let σ be a cycle of L.
Then f (σ) is a cycle of L. Moreover, if σ is minimal then f (σ) is also minimal.

Lemma 4.6. Let f be a bijection on a set of states Q, let ≡ be an equivalence
relation on Q such that ∀q, q′ ∈ Q : q ≡ q′ implies f (q) ≡ f (q′) (≡ is a congruence
for f ), and let σ be a sequence of states in Q that covers ≡. Then f (σ) covers ≡.

Suppose σ is a minimal cycle of V that covers ≈. By Theorems 4.4 and 4.5,
R(σ) is a minimal cycle ofV. Since bijection R trivially is a congruence for ≈, it
follows by Lemma 4.6 that R(σ) covers ≈. Thus automorphism R maps strategies
to strategies.

With the rotation automorphism R we capture most but not all the symmetries
in our vacuum world. Besides rotation of a strategy, we also must consider the
reflection of a strategy in the axis x = 1/2n. The mirror image of a strategy in
which the robot only takes right turns, is a strategy in which the robot only takes
left turns. However, in order to obtain a strategy with right turns again we can
reverse the direction in which the edges are traversed. Mathematically, we need a
notion of “autocontramorphism” to capture these symmetries.

Definition 4.7. An autocontramorphism for an LTS L = (Q, A,→) is a bijection
f : Q→ Q such that, for all q, q′ ∈ Q and for all a ∈ A, q

a
−→ q′ iff f (q′)

a
−→ f (q).

Theorem 4.8. Let F be the function on states ofV given by

F(x, y, d) = (n − 1 − x, y, flip(d)),

where function flip is defined by flip(N) = S, flip(E) = E, flip(S) = N, and flip(W) = W,
Then F is an autocontramorphism for vacuum worldV.

Theorem 4.9. Let f be an autocontramorphism for an LTS L and let σ be a cycle
of L. Then f (σ) is a cycle of L. Moreover, if σ is minimal then f (σ) is also
minimal.

Suppose σ is a minimal cycle of V that covers ≈. By Theorems 4.8 and 4.9,
F(σ) is a minimal cycle of V. Since bijection F trivially is a congruence for ≈,
it follows by Lemma 4.6 that F(σ) covers ≈. Thus autocontramorphism F maps
strategies to strategies.

Modulo the symmetries induced by rotation automorphism R and reflection
autocontramorphism F, the 28 vacuum cleaning strategies found by zChaff reduce
to the 5 strategies displayed in Figures 3, 4 and 5.



5 Snake Tilings

Now that we have a full understanding and classification of the vacuum cleaning
strategies for a 3 × 3 grid, the natural question arises whether we can also solve
this problem for arbitrary m × n grids, for m, n ≥ 1. Model checking and SAT
solving can only compute strategies in case m and n are small: Uppaal runs out of
memory for a 5× 5 grid, and the largest instance that we could solve using zChaff

was a 7 × 7 grid.
We can at least prove the existence of vacuum cleaning strategies for arbitrary

m × n grids using “tiles” with incoming and outgoing arrows. Figure 6 illustrates
a tiling scheme that we may use to obtain a strategy for an arbitrary m × n grid,
for m, n even and at least 4. The idea is that we can duplicate tile B m−4

2 times to
obtain a bottom row of length m. The B∗C pattern can then be copied to the two
rows above. Next the row of tile D can be copied n−4

2 times leading to a tiling of
the m×n grid. Using similar tiling patterns one can prove the existence of vacuum
cleaning strategies for arbitrary m × n grids.

The tilings of Figure 6 are closely related to the work of Kari [3] on infinite
snake tiling problems, except that the trajectories (“snakes”) of Kari may also
turn left and do not have to return to their starting state. Similar tilings were also
studied by Adleman et al. [1] in their work on self-assembly.

Figure 6: A tiling for m × n grids, with m, n ≥ 4 even



6 Conclusion
The vacuum world example of Wooldridge [6] serves as a nice illustration of how
the combined use of various tools and techniques from theoretical computer sci-
ence may help to solve a problem.

We do not expect that this note will revolutionize the vacuum cleaning indus-
try. After all, why would one impose the restriction that a vacuum cleaning robot
may only turn right when electric motors just as easily run forward as backward?
Why would one restrict to memoryless strategies when memory is so cheap and
just adding a single bit to the domain of strategies makes it trivial to design sched-
ules that visit each square infinitely often? Our strategies are also based on the
unrealistic assumption that the floor is empty and without obstacles like tables
and chairs that must be avoided.

The trajectories of Figures 3, 4 and 5 have some aesthetic quality and may
serve as a basis for design of tilings, e.g. a long snake that bites itself in the tail.

The moral of our story is that authors of wonderful textbooks should be careful
with the use of phrases like “similar rules can easily be generated”. The risk is
that colleagues will publish a note in the Bulletin of the EATCS pointing out that
in fact the generation of such rules is impossible or at least tricky.

References
[1] Leonard M. Adleman, Jarkko Kari, Lila Kari, and Dustin Reishus. On the decidabil-

ity of self-assembly of infinite ribbons. In FOCS, pages 530–537. IEEE Computer
Society, 2002.

[2] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Håkansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. Uppaal 4.0. In QEST 2006, 11-14 September 2006,
Riverside, CA, USA, pages 125–126. IEEE Computer Society, 2006.

[3] Jarkko Kari. Infinite snake tiling problems. In DLT 2002, Kyoto, Japan, September
18-21, 2002, Revised Papers, LNCS 2450, pages 67–77. Springer, 2002.

[4] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In DAC ’01, pages 530–535, New
York, NY, USA, 2001. ACM.

[5] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. CoRR,
cs.LO/9301106, 1993.

[6] Michael Wooldridge. An Introduction to MultiAgent Systems, 2nd edition. John Wiley
& Sons Ltd, 2009.


	Introduction
	Model Checking
	Constraint Solving
	Symmetries
	Snake Tilings
	Conclusion

