
Book Introduction by the Authors
Invited by

Luca Aceto

luca.aceto@gmail.com
President of EATCS

Reykjavik University, Reykjavik, Iceland

luca.aceto@gmail.com

BOOK ANNOUNCEMENT:
Modeling and Analysis

of Communicating Systems
Jan Friso Groote1 and Mohammad Reza Mousavi2

1Department of Computer Science, Eindhoven University of Technology, The Netherlands
2Center for Research on Embedded Systems, Halmstad University, Sweden

1 Motivation

1.1 Subject Matter

Computer systems are becoming increasingly complex parallel, distributed, and
communicating devices. Unfortunately, human beings are notoriously weak in
thinking of and reasoning about concurrency scenarios [5]. Therefore, mathe-
matical modeling and analysis techniques are required to comprehend and design
them. This situation is similar to classical engineering disciplines, where math-
ematical comprehension is already for a long time the essential tool to engineer
artifacts.

In “Modeling and Analysis of Communicating Systems" [8], we put forward
a method for rigorous modeling and mathematical analysis of communicating and
concurrent systems. The primary focus of the book is to present formalisms,
methods and tools that are helpful in understanding and designing the complex
concurrent systems that surround us.

This book takes process algebras and in particular the notion of an atomic
action as a starting point. This basic formalism has been enriched with various
datatypes, including functions, sets, lists, reals, and quantifiers. In order to for-
mulate requirements, the modal µ-calculus is used, and is extended with data and
time, which as such is second to none when it comes to expressiveness.

Most of the theory in the book is presented as classical theory that can be
studied, understood and used by humans. But if it comes to the study and analysis
of actual behavior, this is generally so complex, that manually analyzing them is
not very effective. Therefore, the book is supported by an extensive and powerful
toolset, available from http://www.mcrl2.org.

On the toolset webpage, it can be seen that the method has been used to under-

http://www.mcrl2.org

stand, design and improve a whole range of systems, ranging from the software of
the Alma telescopes in Chili, the immense sensor control systems of the particle
accelerator of CERN in Switzerland, to the software in the cruise class solar car
Stella, which won the 2013 solar competition in Australia.

1.2 Distinguishing Features and Alternatives

This is certainly not the only textbook about modeling and analysis of concur-
rent systems. We mention a few of the best alternatives to our book and briefly
comment on how our book differs from them.

The textbooks by Baeten et al. [2], Aceto et al. [1], Roscoe [12] and Fokkink
[7] all provide excellent introductions to the theoretical foundations of the mod-
eling approach treated in our book. The recent book by Baier and Katoen [3], on
the other hand, provides an in-depth yet very accessible treatment of an analysis
technique advocated in this book, namely model checking.

The above-mentioned alternatives take a more theoretical approach in the pre-
sentation of similar formalisms and/or analysis techniques. However, our em-
phasis is to prepare to use the formalism in modeling and reasoning of actual
systems. The courses offered based on the present book have always been accom-
panied with practical projects in which the students apply the learned techniques
in modeling (somewhat simplified) industrial systems in the area of their respec-
tive program.

1.3 Organization of This Article

In this short article, we give an overview of the three parts of the book: modeling,
analysis and semantics in sections 2, 3, and 4 below, respectively. We conclude
in section 5, by reporting about our method and experience in using this book in
various courses.

2 Modeling

2.1 Behavioral Modeling

The first part of the book is about rigorous modeling. The modeling approach
advocated in this book is “behavioral modeling”, which is introduced in Chapter
2. Behavioral modeling focuses on specifying the interaction of the component or
the system under study at its interface. This approach is inspired by the seminal
work of pioneers such as Petri [11], Bekič [4], Milner [10], and Hoare [9]. In

6

yXXXXXXXz
YHH

HHj
23

8 7

14
14

root

1�����)
��
�

��	
��
�	qPP

PP
Pi

I@
@R

Figure 1: A set of distributed processes

order to reduce such specifications or compare them with their implementations,
different notions of behavioral equivalence are introduced in the same chapter.

Subsequently, an extensible language of abstract data types is introduced in
Chapter 3, which allows for parameterizing the interactions and specifying the
content of the messages being communicated at any desired level of abstraction.
The language of abstract data type offers built-in data types such as Booleans,
integers, and rational numbers with their typical operations, as well as sort con-
structors, e.g., for structured (enumerated) data types, lists, sets, bags and func-
tion sorts. One can also define arbitrary algebraic data types by specifying the
constructors and the operators on the sort.

Chapters 4 and 5 treat the process language. To give an idea about the kind
of specifications allowed in the process language and its associated data type lan-
guage, consider the distributed summing protocol depicted in figure 1. It consists
of an ad-hoc network in which each node contains a number. The nodes must com-
municate in such a way that all numbers in the nodes are added up after which the
root reports this sum.

The processes of the network interact via matching actions st, st (for start),
ans, ans (for answer) and the total sum is communicated using a rep (for report)
action. We think of the overbarred action as a sending activity, and plain (not
overbarred) action as a receiving action. The process X is described by means of
six parameters:

• i: the ID number of the process.

• t: the total sum computed so far by the process. Initially, it contains the
value that is the contribution of process i to the total sum.

• N: a list of neighbors to which the process still needs to send an st mes-
sage. Initially, this list contains exactly all neighbors. We write rem(j,N) to
remove neighbor j from list N.

• p: the index of the initiator, or parent, of the process. Variable p is also
called the parent link of i.

procX(i:N+, t:N,N:List(N), p,w, s:N) =
(s≈0)→

∑
j:N st(i, j)·X(i, t, rem(j,N), j, #(N)−1, 1)+∑

j:N(j∈N ∧ s≈1)→ st(j, i)·X(i, t, rem(j,N), p,w, s)+∑
j,m:N(s≈1)→ ans(i, j,m)·X(i, t + m,N, p,w−1, s)+∑
j:N(s≈1)→ st(i, j)·X(i, t,N, p,w−1, s)+

(i≈1 ∧ N≈[] ∧ w≈0 ∧ s≈1)→ rep(t)·X(i, t,N, p,w, 2)+
(i01 ∧ N≈[] ∧ w≈0 ∧ s≈1)→ ans(p, i, t)·X(i, t,N, p,w, 2);

Table 1: The behavior of a parameterized node X in the distributed summing
protocol

• w: The number of st and ans messages that the process is still waiting for.

• s: the state the process is in. The process can be in three states, denoted by
0, 1, and 2. If s equals 0, the process is in its initial state. If s equals 1, the
process is active. If s equals 2, the process has finished.

The specification of a parameterized node X in the distributed summing pro-
tocol is given in table 1. This specification has the shape of a recursive equation,
with a single variable at the left and the definition of a ‘body’ at the right. In
the first line of the definition of X, process i is in its initial state (s≈0) and an st
message is received from some process j, upon which j is stored as the parent
and s switches from 0 to 1, indicating that process i has become active. Since it
makes no sense to send start messages to one’s parent, j is removed from N. The
counter w is initialized to the number of neighbors of i, not counting process j.
In line 2, a message is sent to a neighbor j, which is thereupon removed from N.
In line 3, a sum is received from some process j via an ans message containing
the value m, which is added to t, the total sum computed by process i so far. The
counter w is decreased. In line 4 an st message is received from neighbor j. The
message is ignored, except that the counter w is decreased. In line 5 a rep(t) is
sent (in case i = 1), when process 1 is active, there are no more ans or st messages
to be received (formalized by the condition w = 0), and an st message has been
sent to all neighbors (formalized by the condition N≈[]). The status variable s
becomes 2, indicating that process 1 is no longer active. Line 6 is as line 5 but for
processes i , 1. Now an ans message is sent to parent p, containing the total sum
t computed by process i.

The system comprises the parallel composition of n copies of the process X
with distinct identifiers. The composition of these processes first enforces syn-
chronization on send and receive actions (resulting in the same actions postfixed
with an asterisk, e.g., ans∗(i, j,m) and st∗(i, j)) and subsequently hides the result
of the synchronization. We refer to Chapters 7 and 13 of the book for the com-

plete specification of this example as well as several other distributed and parallel
systems and protocols.

2.2 Correctness Properties
A logical language based on an extension of the modal µ-calculus is defined in
Chapter 6 for specifying correctness properties of systems. This extension allows
a.o. for data in the modal formulae, both as arguments of actions and as param-
eters/arguments of fixed point variables. This extension allows for very succinct
encoding of existing temporal logics such as LTL, CTL and CTL∗ [6].

Here are three typical examples of modal µ-calculus formulae that can be ver-
ified on the distributed summing protocol (before hiding the result of the synchro-
nizations among components):

νX.∀t:N.[!rep(t)]X ∧ 〈true〉true

[true?·(∃t:N.rep(t))·true?·(∃t:N.rep(t))]false

νY(n:N:=0). ∀i, j, t:N.[ans∗(i, j, t)]Y(t)∧
∀i, j, t:N.[!ans∗(i, j, t)]Y(n)∧
∀t:N.[rep(t)](t ≥ n)

The first formula given above, states that the protocol will not reach a deadlock
state before sending an outcome of the sum through the action rep(t). The second
formula specifies that the outcome of the sum can be announced at most once.
Finally, the third formula states that the reported sum is not less than the partial
sums announced through ans∗(i, j, t) actions.

2.3 Timed Behavior
The underlying language also supports timed actions and timed processes. How-
ever, to make the presentation more accessible time and timed specification are
treated separately in Chapter 8. If the axioms of timed systems are different from
their untimed variants, this is briefly indicated in the earlier chapters. In addition
to the extension of the specification language with time, the timed extensions of
various notions of behavioral equivalence as well as the timing extensions to the
modal µ-calculus with data are presented in this chapter.

The theory offers a full set of axioms to manipulate timed processes, and meth-
ods to determine whether timed modal formulas are valid on processes. Although,
there are a number of experimental tools that allow verification of timed systems,
these are not yet available in the standard distribution of the toolset.

3 Analysis

3.1 Axioms and transformation rules

The book offers numerous process algebraic axioms and equalities on modal for-
mulae. But these alone are not sufficient to verify actual processes. Hence, a
wealth of methods and techniques have been provided to prove behavioral speci-
fications equal, and to show that specifications satisfy modal requirements.

3.2 Linear Processes Equations

The workhorse for all verifications is the elimination of parallelism from processes
by transforming processes into linear process equations. The book sketches how
this is done using the so-called Greibach Normal Form. The principles of these
methods are explained in Chapters 9 and 10.

When processes are linearized, they are far easier to manipulate. Notions such
as invariants, which are tricky to define for arbitrary processes, can very naturally
be defined on linear processes.

Linear processes are so effective that they form the heart of the toolset. Every
process is first linearized, before any other operation can be applied to it. Be-
fore generating a state space, it is often wise to investigate and transform a linear
process, because this easily leads to a substantial reduction of the state space.
For instance by (automatically) proving a linear process τ-confluent, which is the
prerequisite for a form of partial order reduction, exponential reductions of the
generated labeled transition systems can be obtained.

The book contains a theorem, explaining how arbitrary constellations of linear
processes can be combined into a single linear process. For example, the dis-
tributed summing protocol specified in section 2.1 is translated using this theorem
in the description in table 2. Without going into detail about the particulars of
this formulation, the expression in table 2 encompasses the complete distributed
summing protocol for an arbitrary number of processes using an arbitrary ad hoc
network for communication.

3.3 Cones and foci proof technique

The book contains a chapter on a very effective proof technique to show that an
implementation is equal to a specification. This technique is called the cones and
foci technique and it is presented in chapter 12. In the case of the distributed sum-
ming protocol, it is used to show that under certain sanity conditions, the linear
process equation shown in table 2 is equivalent to the following linear process:

L-Impl(n:N+, t:N+→N,n:N+→List(N), p,w, s:N+→N) =
(n(1)≈[] ∧ w(1)≈1 ∧ s(1)≈1)→ rep(t(1))·L-Impl(s=s[1→2])+∑

i, j:N+(s(i)≈1 ∧ i ∈ n(j) ∧ s(j)≈1 ∧ i0 j ∧ i≤n ∧ j≤n)→
int·L-Impl(n=n[j→rem(i,n(j)), i=rem(j,n(i))]),

p=p[i→ j],w=w[i→#n(i)−1], s=s[i→1])+∑
i, j:N+(s(i)≈1 ∧ i ∈ n(j) ∧ s(j)≈1 ∧ i0 j ∧ i≤n ∧ j≤n)→
int·L-Impl(n=n[j→rem(i,n(j))],w=w[i→w(i)−1])+∑

j:N+(n(j)≈[]∧w(j)≈0∧s(j)≈1∧s(p(j))≈1∧ j01∧ j0p(j)∧ j≤n∧p(j)≤n)→
int·L-Impl(t=t[p(j)→t(p(j)) + t(j)],w=w[p(j)→w(p(j))−1], s=s[j→2]).

Table 2: Linearization of the distributed summing protocol

procDSum(n:N+, t0:N+→N,n0:N+→List(N+)) = rep(
∑n

i=1 t0(i))·δ

The above-given process sends a rep message with as the only parameter an
integer that is the sum of the original numbers in the nodes, denoted by

∑n
i=1 t0(i).

After this, it turns into deadlock, denoted by δ. This process can be considered as
an obviously correct specification of the distributed summing protocol and hence
the equivalence proof provides clear evidence of correctness for our original spec-
ification presented in section 2.1. In chapter 13 of the book the cones and foci
method is applied to various other distributed systems, including to the third slid-
ing window protocol by Andrew Tanenbaum.

3.4 Model Checking

A method to verify the correctness of a model is to verify whether it satisfied the
specified modal µ-calculus properties. In order to perform this type of verification,
one can combine the linearized version of the model and its modal µ-calculus
property into a Parameterized Boolean Equation System (PBES).

Solving such a PBES provides an answer to the verification problem, which is
either positive, i.e., the model is correct with respect to the specified properties, or
negative, in which case the modal requirement is not valid for the process. There
are numerous ways to solve parameterized boolean equation systems, varying
from well-known fixed point iteration, Gaussian elimination, to the recognition
of particular patterns of PBESs for which known solutions exist. The structure of
PBESs and the methods for solving them are explained in Chapter 14 of the book.

4 Semantics

The last chapter of the book is dedicated to the formal (mathematical) semantics
of the various formalisms presented throughout the book. There is a type system
to determine well-typedness of all formalisms. Data specifications are provided
with a model-class semantics. Processes are characterized by a structural opera-
tional semantics. Modal µ-calculus formulae are provided with a typical logical
fixed point semantics in terms of the states in transitions of a transition system.
Parameterized Boolean Equation Systems are also characterized by a logical fixed
point semantics.

4.1 Appendices

The book is provided with a number of appendices. These contain a primer for
the use of the toolset, all defining equations for the built-in data types, a complete
syntax of all formalisms used by the tools and answers to all exercises in the book.

5 Conclusions

We have used this textbook to teach various graduate level courses with students
from very different backgrounds (such as computer science, electrical engineering
and mechanical engineering). The students by and large appreciated the resulting
courses and used the learned techniques successfully to specify cyber-physical
systems in their domains. In order to allow the students with different back-
grounds (than computer science) to develop a feeling about the concepts taught
in these courses, we have cut on the number of subjects and chapters treated. For
an easy 5 ects credit masters course, we teach the first 6 chapters of the book. For
more advanced masters courses, chapters 8 to 12 and chapter 14 can additionally
be included.

We always run the course in parallel with a practical project. In such a project
students design a (sometimes slightly simplified) controller for an actual device.
The student starts with informally specifying the behavioral properties of the sys-
tem under design. They subsequently model the requirements as modal formulas,
and the behavior of the controller as an mCRL2 specifications. Subsequently,
they must prove all requirements to hold on the controller, often detecting and
improving flaws, both in the controller and the requirements. The end result is an
abstract high quality design of the controller, which is an excellent basis for an
implementation.

Acknowledgments Many people contributed directly or indirectly to this book.
We are thankful for all those that have been contributing to the field of concur-
rency, both in the form of tools and theory, for constantly pushing the technologi-
cal barriers in this field forward. For finalizing the final drafts of this book, thanks
go to Sjoerd Cranen, Veronica Gaspes, Jeroen Keiren, Michel Reniers, and Erik de
Vink for their careful proofreading. We have received valuable feedback from var-
ious students and colleagues throughout the process of teaching and writing. Also
the MIT press staff have provided valuable feedback and fantastic cooperation in
the process of editing and publishing the book. In particular, we are thankful to
Virginia Crossman, Marc H. Lowenthal, and Marie Lufkin Lee.

References
[1] L. Aceto, A. Ingolfsdottir, K.G. Larsen, and J. Srba. Reactive systems: mod-

elling, specification and verification. Cambridge University Press, Cambridge,
U.K., 2007.

[2] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process algebra: Equational theo-
ries of communicating processes. Cambridge tracts in theoretical computer science,
Vol. 50. Cambridge University Press, Cambridge, U.K., 2010.

[3] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, Cambridge,
MA, 2008.

[4] H. Bekič. Towards a mathematical theory of processes. In Programming languages
and their definitions: H. Bekič (1936–1982). Lecture notes in computer science,
Vol. 177 (pp. 156–167), Springer-Verlag, Berlin, Germany, 1984.

[5] M. Ben-Ari and Y. Ben-Davied Kolikant. Thinking Parallel: The Process of Learn-
ing Concurrency. Proceedings of the 4th Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Education (ITiCSE 1999), pp. 21–24,
ACM Press, 1999.

[6] S. Cranen, J.F. Groote, and M.A. Reniers. A linear trans-
lation from CTL∗ to the first-order modal µ-calculus.
https://www.sharelatex.com/project/5444fff6c1f7e0511439397e Theoretical
Computer Science, 412(28):3129–3139, 2011.

[7] W.J. Fokkink. Modelling distributed systems. Texts in theoretical computer science.
Springer-Verlag, Berlin, Germany, 2007

[8] J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Sys-
tems. MIT Press, Boston, MA, USA, 2014.

[9] C.A.R. Hoare. Communicating sequential processes. Prentice Hall, Englewood
Cliffs, NJ, 1985.

[10] R. Milner. Communication and concurrency. Prentice Hall, Englewood Cliffs, NJ,
1989.

[11] C.A. Petri. Kommunikation mit automaten. Ph.D. thesis, Institut fuer Instrumentelle
Mathematik, Bonn, Germany, 1962.

[12] A.W. Roscoe. Understanding concurrent systems. Springer-Verlag, Berlin, Ger-
many, 2007.

	BEATCS_113___Book_intro_Kazuo

