
The Computational Complexity Column
by

Vikraman Arvind

Institute of Mathematical Sciences, CIT Campus, Taramani
Chennai 600113, India
arvind@imsc.res.in

http://www.imsc.res.in/~arvind

We revisit robust machines and helping oracles introduced by Uwe Schöning [23]
three decades ago. A robust oracle machine always accepts the same language,
regardless of the oracle. An oracle A is said to help a robust machine if oracle
access to A “speeds up” the machine and makes it polynomial-time bounded. Ro-
bust machines with helping oracles actually models interactive computation, and
can be seen as a precursor to interactive proofs. We discuss these connections
and point out how robust oracle machines relate to some recently defined classes
like oblivious NP and oblivious MA [15].

As we keep pace with new developments in the field, it is also worthwhile re-
calling some of the older ideas and results. Robust machines and helping oracles
are a nice example.

http://www.imsc.res.in
http://www.imsc.res.in
 arvind@imsc.res.in
http://www.imsc.res.in/~arvind

Robust OracleMachines revisited

V. Arvind ∗

1 Introduction
Let M be an oracle Turing machine and let L(MA) ⊆ Σ∗ denote the language accepted
by the machine M with oracle A, where Σ is a fixed alphabet and inputs are encoded
as strings in Σ∗.

Definition 1. [23]

• An oracle machine M is robust if L(MA) = L(M∅) for every oracle A ⊆ Σ∗.

• An oracle set A ⊆ Σ∗ helps a robust oracle machine M if MA is polynomial-time
bounded on all inputs.

What is the motivation for studying robust machines and helping oracles? We
quote excerpts from the article [23, Section 1]:

Typical algorithms for computationally hard problems like NP-
complete problems usually involve backtrack search . . . consider the sit-
uation that the algorithm is allowed to query an oracle during the com-
putation to receive information that might lead to faster search for the
solution. This situation can be thought of as some kind of man-machine
interaction. . . . This model only makes sense if we do not allow the al-
gorithm to rely on the oracle information such that changing the oracle
. . . would result in changing the final outcome of the algorithm.

This is an entirely new take on oracle machine computations, quite different from
relativization results that were prevalent in structural complexity theory in the 1980’s.
It provides an algorithmic motivation for the idea of interactive computation, and it is
perhaps the first time a notion of interactive computation was formulated and studied.
The notion of interactive proof systems [16], discovered soon after, has its motivation
in cryptography.

Once we have Definition 1, the natural question is which languages have robust
oracle machines with oracles that help? We can define the following complexity class
[23]:

∗Institute of Mathematical Sciences, Chennai, India arvind@imsc.res.in

arvind@imsc.res.in

Phelp = {LA(M) | M is a robust deterministic Turing machine and
A helps M}.

It turns out that Phelp coincides with NP ∩ coNP.

Theorem 2. [23] Phelp = NP ∩ coNP.

Proof Sketch. For the forward inclusion notice that it suffices to show Phelp is contained
in NP since Phelp is closed under complements. Suppose L ∈ Phelp. Then L = L(MA)
where M is a robust machine and A is a helping oracle. An NP machine can be easily
obtained from M by nondeterministically guessing the answers of oracle A and abort-
ing all computation paths at a suitable polynomial length. Since M is robust this NP
machine will not accept x < L. On the other hand, if x ∈ L then the path of cor-
rect guesses to the queries to A will result in an accepting computation of polynomial
length.

For the reverse inclusion, suppose L ∈ NP ∩ coNP. Let N be an NP machine for L
and N′ for L. We design an oracle

A = {〈x, y〉 | if x ∈ L then y is a prefix of an accepting path of N(x)
and if x < L then y is a prefix of an accepting path of N′(x)}.

The robust machine M is a polynomial-time procedure that on input x prefix
searches for accepting paths of either N(x) or N′(x) by making oracle queries 〈x, y〉. In
the end, if neither N(x) nor N′(x) accepts, M does a brute-force search to solve x.

�

Remark 3. Schöning’s work on robust machines sparked a lot of interest and related
research. An (incomplete) list of papers on this and related topics is [18, 6, 24, 7, 17,
10, 14, 21, 3]. In this article, we consider only some aspects of the topic.

1.1 A Proof System Definition

We can give an equivalent definition of Phelp that is based on the idea of proof systems.
A language L is in Phelp if and only if there is a polynomial time bounded oracle

Turing machine M such that for any input x and any oracle A the output M(x) is in
{Acc,Re j, ?} and the following conditions of “soundness” and “completeness” hold:

Soundness: For every x ∈ Σ∗ and every oracle A:

MA(x) = Acc =⇒ x ∈ L
MA(x) = Re j =⇒ x < L

Completeness: There is an oracle Â such that MÂ(x) ∈ {Acc,Re j} for every
input x.

The equivalence with the original definition is straightforward. In this course of
this article we will see that robustn machines and helping oracles are, in fact, quite
closely connected to interactive proof systems.

2 One-sided help
The notion of one-sided helping oracles was introduced and studied by Ker-I Ko [18]
as a generalization of helping.

Definition 4. [18] A language L is in P1−help if there is a robust oracle machine M
accepting L, an oracle A and a polynomial time bound p(n) such that for all x ∈ Σ∗: if
x ∈ L then M(x) accepts x in p(|x|) time.

Notice that the helping oracle A helps only accepts “yes” instances in polynomial
time. Indeed, it is easy to see from the definition that the following holds.

Theorem 5. [18] P1−help = NP.

In his paper, Ko also studied the subclass P1−help[C] of P1−help when the helping
oracle is restricted to some language class C. For instance P1−help[NP] is the class of
languages in P1−help that have helping oracles in NP. It is easy to see that this is no
restriction as P1−help = P1−help[NP].

It is interesting to investigate the power of helping oracles that are known to be
not NP-hard. The class P1−help[A] for such oracles A would yield uniform subclasses
of NP that do not contain NP-complete sets. We note two further results from Ko’s
article here. He showed that the class P1−help[Sparse], where Sparse is the collection
of all polynomially sparse languages, does not contain NP-complete languages unless
the polynomial-time hierarchy collapses to the second level. He also showed that log∗-
sparse sets are “no helpers”, in the sense that they are powerless as helping oracles to
robust machines. A language S is said to be log∗-sparse if the number of strings in S
of length between n and 2n is bounded by a fixed constant k for every n > 0.

Theorem 6. [18]

• The class P1−help[Sparse] does not contain NP-complete languages unless PH =

Σ
p
2 .

• P1−help[S] = P for every log∗-sparse language S .

It is also interesting to consider the power of helping oracles that come from com-
plexity classes not known to contain NP. Recall that a language L is in ModkP if there
is an NP machine M such that

x ∈ L ⇐⇒ accM(x) . 0(mod k),

where accM(x) denotes the number of accepting paths of M on input x.
Ogihara [21] has examined the classes P1−help[ModkP], for prime k, and obtained

the following curious result.

Theorem 7. [21] A language L is in P1−help[ModkP], k prime, if and only if there is an
NP machine M that accepts L such that x ∈ L ⇐⇒ accM(x) . 0(mod k).

Remark 8. In general, it would be interesting to further investigate the classes
P1−help[C] and Phelp[C] for different language classes C.

3 Interactive proof systems
In this section we will start with observations from [24] on probabilistic robust ma-
chines. Then we will discuss its equivalence with MIP (where MIP stands for the
class of languages with multi-prover interactive protocols). Also, compare with the
definition of IP (the class of languages that have single prover interactive protocols).
Then we will discuss the [3] paper of interactive proof systems with bounded prover
complexity and also include comparisons with helping machines.

Noticing the connection to interactive proof systems, in [24] Schöning generalized
the class P1−help by allowing randomized robust computations. We recall the formal
definition.

Definition 9. [24] A languages L is in BPP1−help if there is a randomized polynomial-
time Turing machine M and an oracle A such that for all inputs x ∈ Σ∗:

• If x ∈ L then
Prob[MA(x) accepts] ≥ 3/4.

• If x < L then for all oracles B

Prob[MB(x) accepts] ≤ 1/4.

We now recall a quick definition of interactive proof systems. The reader can find
more details in complexity theory textbooks such as [1].

Definition 10. Let V be a probabilistic polynomial-time machine and p a polynomial.
A language L is in the class MIP if there is multiprover interactive protocol such that
for every positive integer n and x ∈ Σn:

• If x ∈ L then there exist provers P1, P2, . . . , Pp(n) such that

Prob[P1, . . . , Pp(n) make V accept] ≥ 3/4.

• If x < L then for all provers P′1, P
′
2, . . . , P

′
p(n) such that

Prob[P′1, . . . , P
′
p(n) make V accept] ≤ 1/4.

We note that IP is the subclass of MIP when the interactive protocol allows only a
single prover. Two seminal results in the area of interactive proof systems are: IP =

PSPACE [25, 20] and MIP = NEXP [5].
It turns out that the class BPP1−help coincides with MIP, which is the class of

languages that have multiprover interactive proof systems. This was actually dis-
covered in [5] as an “oracle” characterization of MIP in the course of the proof that
MIP = NEXP [5].

Theorem 11. [5] BPP1−help = MIP.

An interesting point that arises in interactive protocols is the complexity of the
“honest provers” Pi, 1 ≤ i ≤ p(n) for a given language L. Let us denote by IP[C]
and MIP[C], the subclasses of IP and MIP, respectively, consisting of languages with
honest provers that are polynomial-time Turing reducible to some set in C. With this
notation we recall some known results here:

• PSPACE = IP[PSPACE] [11, 25].

• PPP
⊆ IP[PP] [20].

• NEXP = MIP[EXPNP] [5].

• ⊕P and PH are contained in IP[⊕P] [4].

Regarding the fourth containment above more can be said. In fact, since
BPP1−help[⊕P] = MIP[⊕P] = IP[⊕P], it follows that BPP1−help[⊕P] = BPP⊕P =

BP · ⊕P. It is interesting to compare this with Theorem 7, which is about deterministic
robust machines helped by ⊕P oracles.

3.1 Interactive proof systems with provers in P/poly

The class MIP[P/poly] is an interesting uniform subclass of P/poly. It was investigated
in [3], and we recall observations from that paper in this subsection.

Proposition 12. BPP ⊆ MIP[P/poly] ⊂ P/poly.

As noted in [14, 24], for any class of languages C we have BPP1−help[C] = MIP[C].
In particular, we have:

Proposition 13. BPP1−help[P/poly] = MIP[P/poly].

It follows as a consequence that P1−help[P/poly] is contained in MIP[P/poly]. One
might wonder if MIP[P/poly] could contain more languages than BPP. However, it
turns out that MIP[P/poly] contains all sparse sets in NP.

Theorem 14. All sparse sets in NP are contained in P1−help[P/poly].

Proof Sketch. et S ∈ NP be a sparse set. Suppose N is an NP machine accepting S .
Let S =n denote the strings of length n in S . For each s ∈ S =n, let ws denote the leftmost
accepting path in N(s). We can ensure by padding that |wx| = p(|x|) for each input
x ∈ S , for a fixed polynomial p. We include the string 〈s, y, 0n〉 in the helping oracle
Â for every prefix y of the string ws, for each s ∈ S =n and each n. As S is sparse, it
follows that Â ∈ P/poly.

Now, let x be an input instance for S . We construct a deterministic robust Turing
machine M that queries a given oracle A, for strings of the kind 〈x, y, 0|x|〉, to guide a
prefix search for the leftmost accepting path wx of N(x). Once wx is constructed, M
accepts iff N(x) accepts along wx. Clearly, Â is a helping oracle for M which proves
that S is in P1−help[P/poly]. �

Now, since P1−help[P/poly] ⊆ MIP[P/poly], the existence of sparse NP sets not in
BPP would imply that BPP is a proper subclass of MIP[P/poly]. Applying a standard
translation technique [9] we can obtain the following.

Theorem 15. If NE is not contained in BPE then BPP is a proper subset of
MIP[P/poly].

On the other hand, we stress that MIP[P/poly] is a small complexity class. It is
shown in [3] that, like BPP, MIP[P/poly] is also low for Σ

p
2 : i.e. sets in MIP[P/poly]

are powerless as oracle to Σ
p
2 . More precisely,

Theorem 16. ΣA
2 = Σ

p
2 for all A ∈ MIP[P/poly].

3.2 Oblivious NP

In [15], in their study of fixed circuit lower bounds for different complexity classes, the
authors considered the notion of oblivious classes and specifically considered oblivious
versions of NP and MA.

Definition 17. [15] A language L is in oblivious NP if there is a polynomial-time
computable binary relation R, a polynomial p(n), and for all n there is a witness wn ∈

Σp(n) such that x ∈ Σn: x ∈ L if and only if R(x,wn) = 1.

The class oblivious MA is similarly defined when the binary relation R is relaxed
to be computable in randomized polynomial time with one-sided error.

Theorem 18. Oblivious NP coincides with P1−help[P/poly].

Proof Sketch. uppose L is in P1−help[P/poly] witnessed by a polynomial-time bounded
robust machine M and helping oracle A ∈ P/poly. For inputs of length n the robust ma-
chine M makes queries to the oracle of length bounded by p(n) for a fixed polynomial
p. Let wn denote the concatenation of all advice strings upto length p(n). Then we can
define the required binary relation R from the robust machine M such that x ∈ L ∩ Σn

if and only if R(x,wn) = 1.
Conversely, suppose L is in oblivious NP. We define the “helping” oracle Â consist-

ing of all pairs 〈0n, i, b〉 where b is the ith bit of wn for 1 ≤ i ≤ p(n). The corresponding
robust machine M on input x ∈ Σn will query the oracle A to extract all the bits of the
string wn and then compute R(x,wn) to decide if x ∈ L. Clearly, M is robust with Â as
one-sided helping oracle for accepting L. �

Likewise, we can easily show that oblivious MA coincides with BPP1−help[P/poly].

4 Self-helpers
We now consider the notion of self-helping defined by Ko [18] and discuss its con-
nection to program checkers. Program result checking is another idea emanating from
work on interactive proofs.

Definition 19. [18] A language L ⊆ Σ∗ is a self-helper if L is in Phelp[L].

Integer factorization provides a nice example in this context. For ev-
ery positive integer n we are interested in computing the function fact(n) =

〈(p1, e1), (p2, e2), . . . , (pk, ek)〉, such that p1 < p2 · · · < pk are distinct primes and
n =

∏
i pei

i . Furthermore, we can assume some standard binary encoding of fact(n)
such that |fact(n)| = c.dlog ne for a fixed constant c. We associate with fact(n) the
language:

Lfact = {〈n, b, i〉 | 1 ≤ i ≤ c.dlog ne and the ith bit of fact(n) is b}.

Clearly, by construction, integer factorization and Lfact are polynomial-time equiv-
alent.

Lemma 20. The language Lfact is a self-helper.

Proof Sketch. he polynomial-time robust machine M on input 〈n, α, i〉 will query the
given oracle, say A, for each 〈n, b, j〉, where b ∈ {0, 1} and 1 ≤ j ≤ c.dlog ne. For any
i, if both 〈n, 0, j〉 and 〈n, 1, j〉 are in A or both are not in A then the oracle A is bad
and the machine M will output ? and stop. Otherwise, from the answers to all queries
the machine M can construct fact(n) = 〈(p1, e1), (p2, e2), . . . , (pk, ek)〉 and verify that
n =
∏

i pei
i and p1 < p2 < · · · < pk. If the verification fails the machine will output

? and stop. If it succeeds the machine M will accept 〈n, α, i〉 iff it agrees with the

oracle A’s answer. Clearly the machine M is robust and accepts Lfact. Furthermore, the
language Lfact clearly helps M. �

The notion of self-helping is connected to an interesting philosophical question:
can there be a nonconstructive proof of P = NP? In other words, is it possible that we
obtain a “mathematical proof” that SAT is polynomial-time solvable, but we do not
have the actual algorithm? The first place where this question was studied is attributed
to Levin [19] (in [13, 12]). The following definition is helpful.

Definition 21. [13] By P constructively equal to NP is meant that an algorithm is
known that computes, from the index and time-bound of an NP machine M, the index
of a deterministic polynomial-time Turing machine for L(M). Furthermore, a language
A is constructively NP-hard if a polynomial-time many-one reduction from SAT to A
is known.

More generally, for a computational problem X (which is not known to be
polynomial-time computable nor is any superpolynomial time lower bounds known
for it) can we prove a theorem of the kind “If X is polynomial-time computable then it
is constructively polynomial-time computable”?

This is made precise in [12] as an algorithm design problem: A computational
problem X is P-time self-witnessing if we can design an algorithm A for X with
the property that if there exists some polynomial-time algorithm B for X then A is
a polynomial-time algorithm for X.

Levin [19] first noticed that integer factorization has such an algorithm. Indeed, it
is a simple consequence of the fact that Lfact is a self-helper. In general, we have the
following easy to prove observation.

Theorem 22. [2] If we have designed a robust oracle machine M for a set A such that
A is a self-helper w.r.t. M then A has the P-time self-witnessing property defined above.

It is an interesting open problem if an NP-complete set has the P-time self-
witnessing property. One way to prove this would be by showing that NP-complete
sets are self-helpers, but that would imply NP = coNP because self-helpers are in
NP∩coNP. However, it is easy to show that every NP-complete set A is a “one-sided”
self-helper: i.e. A ∈ P1−help[A] for NP-complete sets A [18].

4.1 Graph Minor Theorem

The Graph Minor Theorem due to Robertson and Seymour [22] is a celebrated monu-
mental result in graph theory. We recall the statement and discuss how it is connected
to self-helping oracles.

A graph H is a minor of a graph G (denoted H ≤m G), if is H can be obtained
from G by a sequence of zero or more edge-contractions, edge-deletions, or vertex-
deletions of G. Clearly, ≤m forms a preorder on graphs (it is not a partial order because
antisymmetry is only upto isomorphism).

A class K of graphs is minor-closed if for every G ∈ K every minor of G also
belongs toK . For instance, given a family of graphs {Gi}i≥0 we can defineK to consist
of all graphs G such that Gi 6≤m G for all i ≥ 0. Clearly, K is a minor-closed family of
graphs and is defined by the list Gi of excluded minors.

Conversely, if K is any minor-closed family of graphs then it can be characterized
by a list of excluded minors {Gi}i≥0: we can simply let Gi, i ≥ 0 be the set of all graphs
not in K .

The Graph Minor Theorem asserts that every minor-closed family of graphs can be
characterized by a finite list of excluded minors.

Theorem 23 (Graph Minor Theorem). [22] Every minor-closed family of graphs can
be characterized by a finite list of excluded minors.

In the course of their proof (spread over 500 pages and twenty articles), Robertson
and Seymour also gave an O(n3) time algorithm for checking if H is a minor of G, for
every fixed graph H. Here n is the number of vertices in G, and the big-Oh hides a
superpolynomial constant depending on H.

Consequently, for any minor-closed familyK of graphs, there is an O(n3) algorithm
to check if G ∈ K . We only need to check for each excluded minor H that H 6≤m G.
A curious aspect of this algorithm is that the list of excluded minors for K may be
unknown! Moreover, the list, though finite, might be astronomically large!

This question was studied in [13] who show how to deal with this problem in
many cases. Specifically, we explain an algorithm adapted from [13], in the context of
self-helping oracles, that works correctly for certain minor-closed families K , without
knowing explicitly the list of excluded minors.

Let G1 ≺ G2 ≺ . . . be a total ordering on all undirected graphs such that Gi ≺ G j

iff either (i) |V(Gi)| < |V(G j)|, or (ii) |V(Gi)| = |V(G j)| and |E(Gi)| < |E(G j)|, or (iii)
|V(Gi)| = |V(G j)| and |E(Gi)| = |E(G j)| and Gi lexicographically precedes G j.

Theorem 24. [13] Suppose K is a minor-closed family of graphs such that

• K ∈ Phelp[K] witnessed by a robust oracle machine M.

• The robust machine M has the additional property that for any input graph G
the machine M queries the oracle only for graphs G′ such that G′ ≺ G.

Then, from M we can design a deterministic polynomial-time decision procedure
for K (which does not require finding the entire list of excluded minors for K).

Proof Sketch. We can assume M is polynomial-time bounded and outputs one of
Acc,Re j, ?. We describe the polynomial-time decision procedure, call it A, for the
minor-closed family K . Let G be an input instance whose membership in K we need
to decide. As K is a minor-closed family, by the Graph Minor Theorem it is charac-
terized by a finite (but unknown) list of excluded minors. In the course of its execution
the decision procedure will discover a subset E of these excluded minors. To begin

with we can assume E = ∅. If at any stage H ≤m G for some H ∈ E then we can reject
G and stop (because H is an excluded minor).

If H 6≤m G for any H in the current set E, the decision procedure simulates the
robust machine M on input G answering the oracle queries with oracle KE defined as
follows:

KE = {G′ | H ⊀ G′ for all H ∈ E}.

Notice that KE ⊃ K . Thus, G′ < KE implies G′ < K but not, in general, the other
direction. In the end, if M accepts the input G then the decision procedure A also
accepts (because M is robust andK is a self-helper which means the “yes” outputs are
correct). Now, suppose M with oracle KE outputs “no”. If all the queries are correctly
answered by oracle KE then the “no” answer is correct because the machine is robust.
That means E is not the complete list of excluded minors. On the other hand, if some
“yes” answers by oracleKE are incorrect that also implies E is not the complete list of
excluded minors. In either case, the algorithmA will run an enumeration of all graphs
in ≺ order and look for the first graph G′ such that G′ < K . This is the first graph
G′ < E in the ≺ order rejected by the machine M with ∅ as oracle. By the Graph Minor
Theorem we know that E is a fixed set of constant size. If the maximum number of
vertices in a graph in E is c then the above enumeration takes time 2c2 ˙poly(n). Hence
the overall running time is polynomial in n.

�

4.2 Program Checkers

We briefly mention connections to the notion of program result checking defined by
Blum and Kannan [8]. We first recall the formal definition.

Definition 25. [8] A computational problem π is said to be checkable if there is a
randomized polynomial-time oracle Turing machine Cπ such that for any deterministic
program P that halts on all inputs and purports to solve π, and input instance x of π
and security parameter 1k the following hold

• If P(y) = π(y) for all inputs y then Cπ(x, 1k) = 1 with probability 1.

• If P(x) , π(x) then with probability at least 1 − 1/2k Cπ(x, 1k) outputs P is
incorrect.

The problem π is deterministically checkable if Cπ is a deterministic oracle Turing
machine.

A host of natural computational problems is shown to have efficient program
checkers in [8] and many subsequent papers. Standard complexity-theoretic examples
include the Permanent, complete problems for ⊕P, PSPACE, and EXP.

It is easy to prove that integer factorization has a deterministic checker using the
fact that Lfact is a self-helper. Indeed, it can be shown that a decision problem π is
deterministically checkable iff it is a self-helper.

References
[1] S. Arora, B. Barak. Computational Complexity: A modern approach. Cambridge

University Press, New York, USA, 2009.

[2] V. Arvind. Constructivizing membership proofs in complexity classes. Intl Journal
of Foundations of Computer Science, 8(4):433-442, 1997.

[3] V. Arvind, J. Köbler, R. Schuler. On helping and interactive proof systems. Intl.
Journal of Foundations of Computer Science, 6(2): 137-153, 1995.

[4] L. Babai, L. Fortnow. Arithmetization: a new method in structural complexity.
Computational Complexity, 1:41-66, 1991.

[5] L. Babai, L. Fortnow, C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:1-40, 1991.

[6] J. Balcázar. Only smart oracles help. Technical report LSI-88-9, Universitat Politèc-
nica de Catalunya, 1988.

[7] J. Balcázar. Self-reducibility structures and solutions of NP problems. Revista
Matematica de la Universidad Complutense de Madrid, 2:175-184, 1989.

[8] M. Blum, S. Kannan. Designing programs that check their work. Journal of the
ACM, 42(1):269-291, 1995.

[9] R. Book. Tally languages and complexity classes. Information and Control, 26:186-
193, 1974.

[10] J.Y. Cai, L. Hemachandra, J. Vyskoc. Promises and fault-tolerant database access,
In Complexity Theory, volume edited by K. Ambos-Spies, S. Homer, U. Schöning,
pages 101-146, CUP, 1993.

[11] P. Feldman. The optimal prover lives in PSPACE. manuscript, 1986.

[12] M.R. Fellows, N. Koblitz. Self-witnessing polynomial time complexity and prime
factorization. Proc. 6th Annual IEEE Structure in Complexity Conference, 107-110,
1992.

[13] M.R. Fellows, M.A. Langston. Nonconstructive tools for proving polynomial-time
decidability. Journal of the ACM, 35(3):727-739, 1988.

[14] L. Fortnow, J. Rompel, M. Sipser. On the power of multiprover interactive proto-
cols. Proc. 3rd Structure in Complexity Theory Conference, 156-161, 1988.

[15] L. Fortnow, R. Santhanam, R. Williams. Fixed-Polynomial Size Circuit Bounds.
24th Annual IEEE Conference on Computational Complexity, 19-26, 2009.

[16] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal of Computing, 18:186-208, 1989.

[17] J. Hartmanis, L. Hemachandra. Robust machines accept easy sets. Theoretical
Computer Science, 74(2):217-226, 1984.

[18] Ker-I Ko. On helping by robust oracle machines. Theoretical Computer Science,
52:15-36, 1987.

[19] L.A. Levin. Universal Enumeration problems. Problemy Peredachi Informatsii, IX,
115-116, 1972.

[20] C. Lund, L. Fortnow, H. Karloff, N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, 39(4):859-868, 1992.

[21] M. Ogihara. On helping by parity-like languages. Theoretical Computer Science,
54:41-43, 1995.

[22] N. Robertson, P. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325ÎšâĆňâĂIJ357, 2004.

[23] U. Schöning. Robust algorithms: a different approach to oracles. Theoretical Com-
puter Science, 40:57-66, 1985.

[24] U. Schöning. Robust oracle machines. Proc. 13th Mathematical Foundations of
Computer Science, LNCS, Springer, 93-106, 1988.

[25] A. Shamir. IP=PSPACE. Journal of the ACM, 39(4):869-877, 1992.

	Introduction
	A Proof System Definition

	One-sided help
	Interactive proof systems
	Interactive proof systems with provers in P/poly
	Oblivious NP

	Self-helpers
	Graph Minor Theorem
	Program Checkers

