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Abstract

The uncertainty principle asserts a limit to the precision with which po-
sition x and momentum p of a particle can be known simultaneously. You
may know the probability distributions of x and p individually but the joint
distribution makes no physical sense. Yet Wigner exhibited such a joint dis-
tribution f (x, p). There was, however, a little trouble with it: some of its
values were negative. Nevertheless Wigner’s discovery attracted attention
and found applications. There are other joint distribution, all with negative
values, which produce the correct marginal distributions of x and p. But
only Wigner’s distribution produces the correct marginal distributions for
all linear combinations of position and momentum. We offer a simple proof
of the uniqueness and discuss related issues.

1 Introduction
“Trying to think of negative probabilities,” wrote Richard Feynman, “gave me a
cultural shock at first” [6]. Yet quantum physicists tolerate negative probabili-
ties. Feynman himself studied, in the cited paper, a probabilistic trial with four
outcomes with probabilities 0.6, −0.1, 0.3 and 0.2.

We were puzzled. The standard interpretation of probabilities defines the prob-
ability of an event as the limit of its relative frequency in a large number of trials.
“The mathematical theory of probability gains practical value and an intuitive
meaning in connection with real or conceptual experiments” [5, §I.1]. Nega-
tive probabilities are obviously inconsistent with the frequentist interpretation.
Of course, that interpretation comes with a tacit assumption that every outcome
is observable. In quantum physics some outcomes may be unobservable. This
weakens the frequentist argument against negative probabilities but does not shed
much light on the meaning of negative probabilities.



In the discrete case, a probabilistic trial can be given just by a set of out-
comes and a probability function that assigns nonnegative reals to outcomes. One
can generalize the notion of probabilistic trial by allowing negative values of the
probabilistic function. Feynman draws an analogy between this generalization and
the generalization from positive numbers, say of apples, to integers. But a nega-
tive number of apples may be naturally interpreted as the number of apples owed
to other parties. We don’t know any remotely natural interpretation of negative
probabilities.

We attempted to have a closer look on what goes on.
Heisenberg’s uncertainty principle asserts a limit to the precision with which

position x and momentum p of a particle can be known simultaneously: σxσp ≥

~/2 where σx, σp are the standard deviations and ~ is the (reduced) Planck con-
stant. You may know the probability distributions (or the density function or the
probability function; we will use the three terms as synonyms) of x and p individ-
ually but the joint probability distribution with these marginal distributions of x
and p makes no physical sense1. Does it make mathematical sense? More exactly,
does there exist a joint distribution with the given marginal distributions of x and
p.

In 1932, Eugene Wigner exhibited such a joint distribution [20]. There was,
however, a little trouble with Wigner’s function. Some of its values were nega-
tive. The function, Wigner admits, “cannot be really interpreted as the simulta-
neous probability for coordinates and momenta.” But this, he continues, “must
not hinder the use of it in calculations as an auxiliary function which obeys many
relations we would expect from such a probability” [20]. Probabilistic functions
that can take negative values became known as quasi-probability distributions.

Richard Feynman described a specific quasi-probability distribution for dis-
crete quantities, two components of a particle’s spin [6]. The uncertainty princi-
ple implies that these two quantities can’t have definite values simultaneously. So
it seems plausible that an attempt to assign joint probabilities would again, as in
Wigner’s case, lead to something strange — like negative probabilities. “Trying
to think of negative probabilities gave me a cultural shock at first . . . It is usual
to suppose that, since the probabilities of events must be positive, a theory which
gives negative numbers for such quantities must be absurd. I should show here
how negative probabilities might be interpreted” [6]. His attitude toward nega-
tive probabilities echoes that of Wigner: a quasi-probability distribution may be
used to simplify intermediate computations. The meaning of negative probabili-
ties remains unclear. Those intermediate computations may not have any physical
sense. But if the final results make physical sense and can be tested then the use

1For general information about joint probability distributions and their marginal distributions
see [5, §IX.1]



of a quasi-probability is justified.
It bothered us that both Wigner and Feynman apparently pull their quasi-

probability distributions from thin air. In particular, Wigner writes that his func-
tion “was found by L. Szilárd and the present author some years ago for another
purpose” [20], but he doesn’t give a reference, and he doesn’t give even a hint
about what that other purpose was. He also says that there are lots of other func-
tions that would serve as well, but none without negative values. He adds that his
function “seemed the simplest.”

We investigated the matter and made some progress. We found a characteri-
zation of Wigner’s function that might be considered objective.

Proposition 1 (Wigner Uniqueness). Wigner’s function is the unique quasi-
distribution on the phase space that yields the correct marginal distributions not
only for position and momentum but for all their linear combinations.

Quisani2: Wait, I don’t understand the proposition. Wigner’s func-
tion is not a true distribution, so the notion of marginal distribution
of Wigner’s function isn’t defined. Also, what does it mean for a
marginal to be correct?
Authors3: The standard definition of marginals works also for quasi-
probability distributions. A marginal distribution is correct if it coin-
cides with the prediction of quantum mechanics. We’ll return to these
issues in §3 and §4 respectively.
Q: To form a linear combination ax+bp of position x and momentum
p you add x, which has units of length like centimeters, and p, which
has momentum units like gram centimeters per second. That makes
no sense.
A: We are adding ax and bp. Take a to be a momentum and b to be a
length; then both ax and bp have units of action (like gram centime-
ters squared per second), so they can be added. If you want to make
ax + bp a pure number, divide by ~.
Q: Finally, is it obvious that Wigner’s quasi-distribution is not deter-
mined already by the correct marginal distributions for just the posi-
tion and momentum, without taking into account other linear combi-
nations?
A: This is obvious. There are modifications of Wigner’s quasi-
distribution that still give the correct marginal distributions for po-
sition and momentum. For an easy example, choose a rectangle R

2Readers of this column may remember Quisani, an inquisitive former student of the second
author.

3speaking one at a time



centered at the origin in the (x, p) phase plane and modify Wigner’s
f (x, p) by adding a constant c (resp. subtracting c) when (x, p) ∈ R
and the signs of x and p are the same (resp. different). For a smoother
modification, you could add cxp exp(−ax2 − bp2) where a, b, c are
positive constants (of appropriate dimensions).

The idea to consider linear combinations of position and momentum came
from Wigner’s paper [20] where he mentions that projections to such linear com-
binations preserve the expectations. In fact, the projections give rise to the correct
marginals. This led us to the proposition.

In the case of Feynman’s quasi-distribution mentioned above, one can’t use
linear combinations of those two spin components to characterize the distribution.
Nor is there a characterization using the spin component in yet another direction.
Furthermore, if we only require the correct marginal distributions for the x and
z spins, then there are genuine, nonnegative joint probability distributions with
those marginals.

Our investigation was supplemented by digging into the literature and talk-
ing to our colleagues, especially Nathan Wiebe. That brought us to “Quantum
Mechanics in Phase Spaces: An Overview with Selected Papers” [22]. It turned
out that there was another, much earlier, approach to characterizing the Wigner
quasi-probability distribution. The main ingredient for that earlier approach is a
proposal by Hermann Weyl [19, §IV.14] for associating Hermitian operators on
L2 to well-behaved functions g(x, p) of position and momentum. José Enrique
Moyal used Weyl’s correspondence to characterize Wigner’s quasi-distribution in
terms of only the expectation values but for a wider class of functions rather than
the marginal distributions for just the linear functions of position and momentum
[10]. There is a trade-off here. The class of functions is wider but the feature to
match is narrower.

George Baker proved that any quasi-distribution on the position-momentum
phase-space, satisfying his “quasi-probability distributional formulation of quan-
tum mechanics,” is the Wigner function [2]. The problem of an objective char-
acterization of Wigner’s function also attracted the attention of Wigner himself
[21, 12].

The volume [22] does not contain “our” characterization of Wigner’s function
but it is known and due to Jacqueline and Pierre Bertrand [3]. They found an
astute name for the approach: tomographic. The tomographic approach gives an
additional confirmation of the fact that behavior of our quantum system is not
classical. The approach can be used to establish that the behavior of some other
quantum systems is not classical. It has indeed been used that way in quantum
optics; see [15, 13] for example.

Still, in our judgment, our proof of the uniqueness of Wigner’s function is



simpler and more direct than any other in the literature, and so we present it in §4.
In section §5 we establish Moyal’s characterization of Wigner’s function.

§6 contains a cursory discussion related to Feynman’s four-outcome quasi-
distribution. All our observations on that issue happened to be known as well,
but we have yet to research the history of the negative probabilities in the discrete
case. We intend to address the discrete case elsewhere.

Q: So what is the meaning of negative probability?

A: We don’t know.

Q: The use of negative probabilities to validate the quantum char-
acter of a quantum system reminds me proofs by contradiction. As-
sume that the behavior is classical, produce a unique joint distribution,
prove the existence of negative values and establish a contradiction.
If this is the only use of negative probabilities then there is no need to
interpret them semantically.

A: There are some attempts to use negative probabilities as a measure
of “quantumness” [17, 18]. We think that the jury is still out.

Q: I have yet another question. Recently, in this very column, Samson
Abramsky wrote about contextuality which is another manifestation
of non-classical behavior of quantum systems [1]. I wonder what is
the relation, if any, between negative probabilities and contextuality.

A: The discussion of that relation is beyond the scope of this paper.
But please have a look at Robert Spekkens’s article [16] with a rather
telling title “Negativity and contextuality are equivalent notions of
nonclassicality.”

Acknowledgment
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2 Preliminaries

We tried to make the paper as accessible as possible; hence this section. We still
assume some familiarity with mathematical analysis. By default in this paper
integrals are from −∞ to +∞. The baby quantum theory that we use is covered in
§3 of book [8] titled “A first approach to quantum mechanics,”.



2.1 Fourier transform
The forward Fourier transform sends a function f (x) to

f̂ (ξ) =
1
√

2π

∫
f (x) e−iξx dx.

and the inverse Fourier transform sends a function g(ξ) to

ǧ(x) =
1
√

2π

∫
g(ξ)eiξx dξ,

Mathematically x and ξ are real variables. In applications, the dimension of ξ is
the inverse of that of x so that ξx is a pure number.

The forward and inverse Fourier transforms are defined also for functions of
several variables. In particular,

f̂ (ξ, η) =
1

2π

"
f (x, y) e−i(ξx+ηy) dx dy,

ǧ(x, y) =
1

2π

"
g(ξ, η)ei(ξx+ηy) dξ dη.

Q: What about the convergence of the integrals? Are you going to
ignore such details?
A: Yes, we are going to ignore such details. But Fourier transforms
are used, with full mathematical rigor, even in some situations where
the integrals don’t converge.
Q: I do not understand this.
A: The idea is to first define the Fourier transform as an opera-
tor on nice functions in L2(R), for which the integrals clearly con-
verge. Informally a function f (x) is nice if it and its derivatives
f ′(x), f ′′(x), f ′′′(x), . . . approach zero very rapidly as x → ∞. The
Fourier transform is an isometry on these nice functions, and the nice
functions are dense in L2(R), so the isometry extends to all of L2.
Details can be found in books on real analysis, like [9] and [14]; al-
ternatively, see [8, Appendix A.3.2].

2.2 Dirac’s delta function
Dirac’s δ-function is a generalized function such that for any nice function f ,∫

f (x)δ(x)dx = f (0).



It follows that ∫
f (x)δ(x − a)dx =

∫
f (x + a)δ(x)dx = f (a).

Some divergent integrals, e.g.
∫

eitxdt, can be seen as generalized functions in
that sense. In fact, as generalized functions,∫

eitxdt = 2πδ(x).

Indeed, ∫
dx f (x)

∫
eitxdt =

√
2π

∫
dt

1
√

2π

∫
f (x)eitxdx

=
√

2π
∫

f̌ (t) dt

= 2π ·
1
√

2π

∫
f̌ (t)e−it0dt = 2π f (0).

Q: Are these nice functions the same as the nice functions mentioned
earlier.
A: Yes, they are.

2.3 Exponential operators
The exponential eO of an operator O over a topological vector space is the operator

eO =

∞∑
k=0

Ok

k!
= I + O +

1
2

O2 +
1
6

O3 + . . .

If (Xψ)(x) = x · ψ(x) then (eXψ(x)) = exψ, because

(eXψ)(x) =

∞∑
k=0

1
k!

(Xkψ)(x) = ψ ·

∞∑
k=0

1
k!

xk = ψ · ex.

If D is the derivative operator d
dx , then

eaDψ(x) = ψ(x + a). Indeed,

eaDψ(x) =

∞∑
k=0

(aD)kψ(x)
k!

=

∞∑
k=0

Dk f (x)
k!

ak

= ψ(x) +
ψ′(x)

1!
a +

ψ′′(x)
2!

a2 +
ψ′′′(x)

3!
a3 + . . .

which is the Taylor series of ψ(x + a) around point x. (Think of a as ∆x.)



Q: What functions f are you talking about? The Taylor series expan-
sion of f suggests that f is analytic, that is real-analytic.
A: Our intention is that f ranges over L2. By the proof above, eaD is
a shift f (x) 7→ f (x + a) on analytic functions. In particular, eaD is a
shift on Gaussian functions

exp
(
−

(x − b)2

2c2

)
.

But Gaussian functions span a dense subspace of L2(R), and there is
a unique continuous extension of eaD to L2, namely the shift f (x) 7→
f (x + a).
Q: The exponential eO has got to be a partial operator in general.
A: Yes, eO(x) is defined whenever the oprators Ok are defined at x,
and the series

∑∞
k=0

Ok(x)
k! converges.

3 Joint-to-Marginal Lemma
Let f (x, p) be an ordinary probability distribution or a quasi-distribution on R2.
For any z = ax + bp where a, b are not both zero, the marginal distribution g(z) of
z can be defined thus:

g(z) =


1
b

∫
f (x,

1
b

(z − ax)) dx if b , 0

1
a

∫
f (

1
a

(z − by), p) dp otherwise

Here’s a justification in the case b , 0. We have

p =
1
b

(z − ax),

dp =
1
b

(dz − a dx),

f (x, p) dx dp = f
(
x,

1
b

(z − ax)
)1
b

dx dz.

We are relying here on the formalism of differential 2-forms [7] for area elements,
so that dx dz really means dx ∧ dz and we have used that dx ∧ dx = 0. The use of
differential forms makes computations like this easier, and it fits well with physics,
e.g., with Maxwell’s equations and with general relativity. One could, however,
avoid differential forms here and get the same result by considering the Jacobian
determinant of the change of variables.



For any real u ≤ v, the probability that u ≤ z ≤ v should be∫ v

u
g(z)dz =

"
u≤ax+bp≤v

f (x, p) dx dp

=

"
u≤ax+bp≤v

1
b

f
(
x,

1
b

(z − ax)
)

dx dz

=

∫ v

u
dz

∫ ∞

−∞

1
b

f
(
x,

1
b

(z − ax)
)

dx.

Since the first and last expressions coincide for all u ≤ v, we have

g(z) =
1
b

∫
f
(
x,

1
b

(z − ax)
)

dx.

Lemma 2 (J2M). For any a, b not both zero, the following statements are equiva-
lent.

1. g(z) is the marginal distribution of z = ax + bp.

2. ĝ(ζ) =
√

2π · f̂ (aζ, bζ).

Proof. To prove (1)→(2), suppose (1) and compare the forward Fourier trans-
forms of g and f :

ĝ(ζ) =
1
√

2π

∫
g(z)e−iζz dz

=
1
√

2π

"
f
(
x,

1
b

(z − ax)
)
e−iζz 1

b
dx dz

=
1
√

2π

"
f (x, p)e−iζ(ax+bp) dx dp.

f̂ (ξ, η) =
1

2π

"
f (x, p)e−i(ξx+ηp) dx dp.

We have ĝ(ζ) =
√

2π f̂ (aζ, bζ).
To prove (2)→(1), suppose (2) and use the implication (1)→(2). If h is the

marginal distribution of z = ax + by then

ĥ(ζ) =
√

2π · f̂ (aζ, bζ) = ĝ(ζ),

and therefore g = h. �

Corollary 3. For any real α, β not both zero, f̂ (α, β) = 1
√

2π
ĝ(ζ) where g(z) is the

marginal distribution for the linear combination z = ax + bp such that α = aζ,
β = bζ for some ζ.



4 Wigner uniqueness
The purpose of this section is to prove the Wigner Uniqueness proposition. For
simplicity we work with one particle moving in one dimension, but everything we
do in this section generalizes in a routine way to more particles in more dimen-
sions.

In classical mechanics, the position x and momentum p of the particle deter-
mine its current state. The set of all possible states is the phase space of the parti-
cle. By Corollary 3, an ordinary distribution f (x, p) on the phase space is uniquely
determined by its marginal distributions for all linear combinations ax + bp where
a, b are not both zero.

In the quantum case, a state of the particle is given by a normalized (to norm 1)
vector |ψ〉 in L2(R). The position and momentum are given by Hermitian operators
X and P where

(Xψ)(x) = x · ψ(x) and (Pψ)(x) = −i~
dψ
dx

(x).

For any a, b not both zero, the linear combination z = ax + by is given by the Her-
mitian operator Z = aX + bP. In a state |ψ〉, there is a probability distribution g(z)
(for the measurement) of the values of z. For a function h(z) of z, the expectation
of h(z) is 〈ψ|h(Z)|ψ〉.

The following technical lemma plays a key role in our proof of the uniqueness
of Wigner’s quasi-distribution.

Lemma 4.

〈ψ|e−i(αX+βP)|ψ〉 = eiαβ~/2
∫

ψ∗(y)e−iαyψ(y − β~) dy.

Proof. We want to split the exponential into a factor with X times a factor with P.
This is not as easy as it might seem, because X and P don’t commute. We have,
however, two pieces of good luck. First, there is Zassenhaus’s formula, which
expresses the exponential of a sum of non-commuting quantities as a product of
(infinitely) many exponentials, beginning with the two that one would expect from
the commutative case, and continuing with exponentials of nested commutators:

eA+B = eAeBe−
1
2 [A,B] · · · ,

where the “· · · ” refers to factors involving double and higher commutators.

Q: You gave no reference to Zassenhaus’s paper.
A: Apparently, Zassenhaus never published this result, but there’s a
paper [4] that shows how to compute the next terms. It also has a
pointer to early uses of the formula.



The second piece of good luck is that [X, P] = i~I, where I is the identity
operator. (In the future, we’ll usually omit writing I explicitly, so we’ll regard this
commutator as the scalar i~.) Since that commutes with everything, all the higher
commutators in Zassenhaus’s formula vanish, so we can omit the “· · · ” from the
formula. We have

〈ψ|e−iαX−iβP|ψ〉 = 〈ψ|e−iαXe−iβPeαβ[X,P]/2|ψ〉.

The last of the three exponential factors here arose from Zassenhaus’s formula as

−
1
2

[−iαX,−iβP] =
1
2
αβ[X, P] = iαβ~/2.

That factor, being a scalar, can be pulled out of the bra-ket. Taking into account
§2.3,

〈ψ|e−i(αX+βP)|ψ〉 = eiαβ~/2
∫

ψ∗(y)e−iαyψ(y − β~) dy.

�

Now we are ready to prove the Wigner Uniqueness proposition. Suppose that
a quasi-distribution f (x, p) yields correct marginal distributions for all linear com-
binations of position and momentum. For any real α, β not both zero, let a, b, g, ζ
be as in Corollary 3. Then

f̂ (α, β) =
1
√

2π
ĝ(ζ) =

1
2π

∫
g(z)e−iζz dz

=
1

2π
〈e−iζZ〉 =

1
2π
〈ψ|e−iζZ |ψ〉

=
1

2π
〈ψ|e−iζ(aX+bP)|ψ〉.

(1)

By Lemma 4,

f̂ (α, β) =
eiαβ~/2

2π

∫
ψ∗(y)e−iαyψ(y − β~) dy. (2)

To get f (x, p), apply the (two-dimensional) inverse Fourier transform.

f (x, p) =
1

(2π)2

$
ψ∗(y)e−iαyeiαβ~/2ψ(y − β~)eiαxeiβp dy dα dβ.

Collecting the three exponentials that have α in the exponent, and noting that α
appears nowhere else in the integrand, perform the integration over α and (recall
§2.2) get a Dirac delta function:∫

e−iα(y− β~2 −x) dα = 2πδ(y − x −
β~

2
).



That makes the integration over y trivial, and what remains is

f (x, p) =
1

2π

∫
ψ∗(x +

β~

2
)ψ(x −

β~

2
)eiβp dβ, (3)

which is Wigner’s quasi-distribution.
To check that Wigner’s quasi-distribution yields correct marginal distribution

note that the derivation of (3) from (1) is reversible. This completes the proof of
the Wigner Uniqueness proposition.

5 Weyl’s correspondence
There is another approach to characterizing the Wigner quasi-probability distri-
bution, using the expectation values for a wide class of functions rather than the
marginal distributions for just the linear functions of position and momentum. The
main ingredient for this approach is a proposal by Hermann Weyl [19, §IV.14] for
associating a Hermitian operator on L2(R) to any (well-behaved) function g(x, p)
of position and momentum. Weyl’s proposal is to first form the Fourier transform
ĝ(α, β) of g(x, p), and then apply the inverse Fourier transform with the Hermi-
tian operators X and P in place of the classical variables x and p. Thus, the Weyl
correspondence associates to g(x, p) the operator

g(X, P) =
1

2π

"
ĝ(α, β)ei(αX+βP) dα dβ.

If one grants that this is a reasonable way of converting phase-space functions
g(x, p) to operators g(X, P), then a desirable property of a phase-space quasi-
probability distribution f (x, p) would be that the expectation of g(X, P) in a quan-
tum state |ψ〉 is the same as the expectation of g(x, p) under f (x, p). We shall show
that the Wigner distribution is uniquely characterized by enjoying this desirable
property for all well-behaved g.

Indeed, the expectation of g(X, P) in state |ψ〉 is

〈ψ|g(X, P)|ψ〉 =
1

2π

"
ĝ(α, β)〈ψ|ei(αX+βP)|ψ〉 dα dβ,

and the expectation of g(x, p) under the distribution f (x, p) is"
g(x, p) f (x, p) dx dp =

"
ĝ(α, β) f̂ (α, β) dα dβ.

This last equation is a consequence of the fact, mentioned in §2.1, that the Fourier
transform is a unitary operator and therefore preserves the inner product structure
of L2(R). Since these two expectations agree for all (well-behaved) g,

f̂ (α, β) =
1

2π
〈ψ|ei(αX+βP)|ψ〉.



But this is the part of equation(1) that was used to derive Wigner’s formula (3).

Q: I wonder how Weyl arrived at his proposal.
A: Weyl presents his proposal in [19] without any motivation, so we
don’t know how he came up with it, but we can speculate. The title
of [19] indicates that Weyl was working in a group-theoretic context.
As a result, the Fourier transform, expressing functions on R as com-
binations of the characters eiαx of the group (R,+) would be in the
forefront of his considerations. Now consider his goal — to some-
how convert a classical function g(x, p) into an operator. Roughly
speaking, he would want to substitute the operators X and P for the
classical variables x and p. An obvious difficulty is that the same
functions g(x, p) might have two different expressions, for example
xp = px, which are no longer equivalent when operators are substi-
tuted, XP , PX. So it is reasonable to try to choose, from the many
expressions for a function g(x, p), one particular, reasonably canon-
ical expression, into which one can substitute X and P. The Fourier
expansion,

∫
ĝ(α, β) exp(i(αx +βp)) dx dp has those properties. It de-

pends only on the function g, not on how one chooses to express it,
and there is no problem substituting X and P for x and p.

6 Feynman and spins
Richard Feynman studied “an analogue of the Wigner function for a spin 1

2 system
or other two state system” [6]. He chose the z and x components of the spin to
serve as the analogs of the position and momentum in Wigner’s formula.
Q: His case should be much simpler than Wigner’s case.
A: Not necessarily. While the commutator [X, P] is a scalar, the commutator of
the z and x components of a spin is the y-component times i~. This is but one of
several complications.
Q: Is Feynman’s quasi-distribution determined by the correct marginals for all
linear combinations of the x and z spins?
A: That question sounds reasonable until you look at it a little more closely. To
fix notation, let’s describe spin by means of the standard Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The usual matrix representation of the spins for a spin 1
2 particle is given by these

matrices divided by 2, but it’s convenient to skip those extra factors 1
2 ; if you like,

imagine that we are measuring angular momentum in units of ~/2 instead of ~.



So each of our matrices has eigenvalues ±1, with +1 meaning spin along the
corresponding positive axis and −1 along the corresponding negative axis. For
example, the two basis states of spin up and spin down along the z axis are the
eigenvectors for eigenvalues 1 and −1 of Z; equivalently, they correspond to eigen-
values 1 and 0 for (I + Z)/2, where I is the identity operator. This point of view
is useful because it implies that, in any state |ψ〉, (1 + 〈Z〉)/2 is the probability
that the z spin is up. Here, as before, angle brackets denote expectations. Simi-
larly, (1 − 〈Z〉)/2 is the probability that the z spin is down. Of course, analogous
formulas apply to the x and y components of the spin.

Feynman, in analogy to Wigner, introduces a quasi-probability distribution f
for the pair of non-commuting observables Z and X. So f has four components,
f++, f+−, f−+, and f−−, as the quasi-probability of Z and X having the values ±1
given by the subscripts of f .

Now let’s look at a linear combination of Z and X, for example the simplest
nontrivial one, Z + X. From the point of view of quasi-probabilities,

• with probability f++, Z has value 1 and X has value 1, so Z + X has value 2,

• with probability f+−, Z has value 1 and X has value −1, so Z + X has value
0,

• with probability f−+, Z has value −1 and X has value 1, so Z + X has value
0, and

• with probability f−−, Z has value −1 and X has value −1, so Z + X has value
−2.

Altogether, the possible values of Z + X are 2, 0, and −2, with quasi-probabilities
f++, f+− + f−+, and f−−, respectively.

So your proposed analog of the result for Wigner’s distribution would assume
that f is chosen so that these probabilities agree, in a given state, with the prob-
abilities computed by quantum mechanics. But such agreement is impossible,
because, according to quantum mechanics, the possible values of Z + X are the
eigenvalues of this operator, namely ±

√
2, which are completely different from

the 2, 0,−2 arising from the quasi-probabilities. It is easy to check that the possi-
ble values of any nontrivial linear combination of Z and X are completely different
from the values arising from the quasi-probabilities.
Q: OK, let’s require the minimum that Feynman obviously intended, namely that
f should produce the correct marginal distributions of Z and X. Does this deter-
mine f uniquely?
A: At first sight, this looks promising. Requiring the correct marginals for the two
variables, each having two possible values, gives us four equations for the four



unknown components f±± of f :

f++ + f+− =
1
2

(1 + 〈Z〉)

f−+ + f−− =
1
2

(1 − 〈Z〉)

f++ + f−+ =
1
2

(1 + 〈X〉)

f+− + f−− =
1
2

(1 − 〈X〉).

But there’s redundancy in the equations; only three of them are independent, so
there’s one free parameter in the general solution. In fact, it’s easy to write down
the general solution:

f++ =
1
4

(1 + 〈Z〉 + 〈X〉 + t)

f+− =
1
4

(1 + 〈Z〉 − 〈X〉 − t)

f−+ =
1
4

(1 − 〈Z〉 + 〈X〉 − t)

f−− =
1
4

(1 − 〈Z〉 − 〈X〉 + t),

where t is arbitrary. Feynman’s formulas correspond to t = 〈Y〉 but we see no
reason to prefer 〈Y〉 over, for example, −〈Y〉.
Q: Put the freedom in choosing t to some use. How about minimizing the negativ-
ity in f ? In other words, adjust t to bring f as close as possible to being a genuine
probability distribution.
A: That idea works better than we originally expected. One can get rid of the
negativity altogether. For each state |ψ〉, there is a choice of t that makes all four
components of f nonnegative.

Indeed, write down the four inequalities f±± ≥ 0 using the formulas above for
these f±±’s. Solve each one for t. You find two lower bounds on t, namely

−1 − 〈Z〉 − 〈X〉 (from f++ ≥ 0)
−1 + 〈Z〉 + 〈X〉 (from f−− ≥ 0),

and two upper bounds, namely

1 + 〈Z〉 − 〈X〉 (from f+− ≥ 0)
1 − 〈Z〉 + 〈X〉 (from f−+ ≥ 0).



An appropriate t exists if and only if both of the lower bounds are less than or
equal to both of the upper bounds. That gives four inequalities, which simplify
to −1 ≤ 〈Z〉 ≤ 1 and −1 ≤ 〈X〉 ≤ 1. But these are always satisfied, because the
eigenvalues of Z and X are ±1.
Q: I am confused. The uncertainty principle asserts that you cannot measure Z and
X at once. Accordingly one would expect that the joint probability distribution f±±
should not exist or, as in Wigner’s case, should have at least one negative value.
A: The relevant difference between Wigner’s and Feynman’s cases seems to be
this. In Wigner’s case, there is naturally a rich set of marginals that the joint prob-
ability distribution is supposed to produce, namely the probability distributions
of all linear combinations of the position x and the momentum p of the particle.
In Feynman’s case, the natural set of marginals is too poor, just the probability
distributions of Z and X.
Q: Did Feynman find a good use for quasi-probabilities?
A: He introduced negative probabilities in connection to a problem of infinities in
quantum field theory. “Unfortunately I never did find out how to use the freedom
of allowing probabilities to be negative to solve the original problem of infinities
in quantum field theory!” [6].
Q: Still, the idea to use quasi-probability distributions to simplify intermediate
computations looks attractive to me.
A: You are in good company.
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