
Distributed Computing
by

Panagiota Fatourou

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

and by

Stefan Schmid

Technical University of Berlin
D-10587 Berlin, Germany

and
Telekom Innovation Laboratories (T-Labs)

Ernst Reuter Platz 7, D - 10587 Berlin, Germany
schmiste@gmail.com

After serving for more than 6 years as the editor of the Distributed Computing
Column (DC) of the Bulletin of the European Association for Theoretical Com-
puter Science (BEATCS), I am glad to leave the column in the hands of Stefan
Schmid, who will be the next editor. Stefan and I will co-edit the DC column for
this and the next issue of BEATCS and he will replace me right after. I wish Stefan
that his tenure as editor will be as pleasurable as mine was. I am really grateful
to the authors that have contributed to the column during these years and I deeply
thank them for their great contributions!

Panagiota Fatourou

I am very happy to take over the responsibility for the Distributed Computing
column of the BEATCS. My goal is to continue providing an interesting column
format where researchers have the opportunity to give survey-like but technical
overviews of recent advances in distributed computing, written for a broad TCS
audience. I would like to thank Panagiota for her great work and commitment
over the last years, and I am very proud to be able to co-edit two issues together
with her. I wish Panagiota all the best for the future. I would also like to thank
Jukka Suomela for his excellent survey on recent advances in lower bounds for
distributed graph algorithms. page).

Stefan Schmid

A Closer Look at Concurrent Data
Structures and Algorithms

Gadi Taubenfeld
The Interdisciplinary Center, P.O.Box 167, Herzliya 46150 Israel

tgadi@idc.ac.il

Abstract

In this survey article, I will present three ideas, regarding the construction of
concurrent data structures and algorithms, recently published in [27, 28, 29].

The first idea is that of contention-sensitivity. A contention-sensitive
data structure is a concurrent data structure in which the overhead introduced
by locking is eliminated in common cases, when there is no contention, or
when processes with non-interfering operations access it concurrently. This
notion is formally defined, several contention-sensitive data structures are
presented, and transformations that facilitate devising such data structures
are discussed.

The second idea is the introduction of a new synchronization problem,
called fair synchronization. Solving the new problem enables to automati-
cally add strong fairness guarantees to existing implementations of concur-
rent data structures, without using locks, and to transform any solution to
the mutual exclusion problem into a fair solution.

The third idea is a generalization of the traditional notion of fault toler-
ance. Important classical problems have no asynchronous solutions which
can tolerate even a single fault. It is shown that while some of these prob-
lems have solutions which guarantee that in the presence of any number of
faults most of the correct processes will terminate, other problems do not
even have solutions which guarantee that in the presence of just one fault at
least one correct process terminates.

1 Introduction
Concurrent access to a data structure shared among several processes must be syn-
chronized in order to avoid interference between conflicting operations. Mutual
exclusion locks are the de facto mechanism for concurrency control on concurrent
data structures: a process accesses the data structure only inside a critical section

tgadi@idc.ac.il

code, within which the process is guaranteed exclusive access. Any sequential
data structure can be easily made concurrent using such a locking approach. The
popularity of this approach is largely due to the apparently simple programming
model of such locks, and the availability of lock implementations which are rea-
sonably efficient.

Using locks may, in various scenarios, degrade the performance of concurrent
applications, as it enforces processes to wait for a lock to be released. Moreover,
slow or stopped processes may prevent other processes from ever accessing the
data structure. Locks can introduce false conflicts, as different processes with
non-interfering operations contend for the same lock, only to end up accessing
disjoint data. This motivates attempts to design data structures that avoid locking.

The advantages of concurrent data structures and algorithms which completely
avoid locking are that they are not subject to priority inversion, they are resilient to
failures, and they do not suffer significant performance degradation from schedul-
ing preemption, page faults or cache misses. On the other hand, such algorithms
may impose too much overhead upon the implementation and are often complex
and memory consuming.

We consider an intermediate approach for the design of concurrent data struc-
tures. A contention-sensitive data structure is a concurrent data structure in which
the overhead introduced by locking is eliminated in common cases, when there is
no contention, or when processes with non-interfering operations access it con-
currently. When a process invokes an operation on a contention-sensitive data
structure, in the absence of contention or interference, the process must be able
to complete its operation in a small number of steps and without using locks.
Using locks is permitted only when there is interference [27]. In Section 2, the
notion of contention-sensitivity is formally defined, several contention-sensitive
data structures are presented, and transformations that facilitate devising such data
structures are discussed.

Most published concurrent data structures which completely avoid locking do
not provide any fairness guarantees. That is, they allow processes to access a data
structure and complete their operations arbitrarily many times before some other
trying process can complete a single operation. In Section 3, we show how to
automatically transfer a given concurrent data structure which avoids locking and
waiting into a similar data structure which satisfies a strong fairness requirement,
without using locks and with limited waiting. To achieve this goal, we introduce
and solve a new synchronization problem, called fair synchronization [29]. Solv-
ing the new problem enables us to add fairness to existing implementations of
concurrent data structures, and to transform any lock (i.e., a solution to the mutual
exclusion problem) into a fair lock.

In Section 4, we generalize the traditional notion of fault tolerance in a way
which enables to capture more sensitive information about the resiliency of a con-

current algorithm. Intuitively, an algorithm that, in the presence of any number
of faults, always guarantees that all the correct processes, except maybe one, suc-
cessfully terminate (their operations), is more resilient to faults than an algorithm
that in the presence of a single fault does not even guarantee that a single correct
process ever terminates. However, according to the standard notion of fault tol-
erance both algorithms are classified as algorithms that can not tolerate a single
fault. Our general definition distinguishes between these two cases.

It is well known that, in an asynchronous system where processes communi-
cate by reading and writing atomic read/write registers important classical prob-
lems such as, consensus, set-consensus, election, perfect renaming, implemen-
tations of a test-and-set bit, a shared stack, a swap object and a fetch-and-add
object, have no deterministic solutions which can tolerate even a single fault. In
Section 4, we show that while, some of these classical problems have solutions
which guarantee that in the presence of any number of faults most of the correct
processes will successfully terminate; other problems do not even have solutions
which guarantee that in the presence of just one fault at least one correct process
terminates.

Our model of computation consists of an asynchronous collection of n pro-
cesses which communicate asynchronously via shared objects. Asynchrony means
that there is no assumption on the relative speeds of the processes. Processes may
fail by crashing, which means that a failed process stops taking steps forever. In
most cases, we assume that processes communicate by reading and writing atomic
registers. By atomic registers we always mean atomic read/write registers. In few
cases, we will also consider stronger synchronization primitives. With an atomic
register, it is assumed that operations on the register occur in some definite order.
That is, reading or writing an atomic register is an indivisible action.

In a model where participation is required, every correct process must even-
tually execute its code. A more interesting and practical situation is one in which
participation is not required, as assumed when solving resource allocation prob-
lems or when designing concurrent data structures. In this paper we always as-
sume that participation is not required.

2 Contention-sensitive Data Structures

2.1 Motivation

As already mentioned in Section 1, using locks may, in various scenarios, degrade
the performance of concurrent data structures. On the other hand, concurrent data
structures which completely avoid locking may impose too much overhead upon
the implementation and are often complex and memory consuming.

We propose an intermediate approach for the design of concurrent data struc-
tures. While the approach guarantees the correctness and fairness of a concurrent
data structure under all possible scenarios, it is especially efficient in common
cases when there is no (or low) contention, or when processes with non-interfering
operations access a data structure concurrently.

2.2 Contention-sensitive data structures: The basic idea
Contention for accessing a shared object is usually rare in well designed systems.
Contention occurs when multiple processes try to acquire a lock at the same time.
Hence, a desired property in a lock implementation is that, in the absence of con-
tention, a process can acquire the lock extremely fast, without unnecessary delays.
Furthermore, such fast implementations decrease the possibility that processes
which invoke operations on the same data structure in about the same time but not
simultaneously, will interfere with each other. However, locks were introduced in
the first place to resolve conflicts when there is contention, and acquiring a lock
always introduces some overhead, even in the cases where there is no contention
or interference.

We propose an approach which, in common cases, eliminates the overhead
involved in acquiring a lock. The idea is simple: assume that, for a given data
structure, it is known that in the absence of contention or interference it takes
some fixed number of steps, say at most 10 steps, to complete an operation, not
counting the steps involved in acquiring and releasing the lock. According to
our approach, when a process invokes an operation on a given data structure, it
first tries to complete its operation, by executing a short code, called the shortcut
code, which does not involve locking. Only if it does not manage to complete the
operation fast enough, i.e., within 10 steps, it tries to access the data structure via
locking. The shortcut code is required to be wait-free. That is, its execution by a
process takes only a finite number of steps and always terminates, regardless of
the behavior of the other processes.

Using an efficient shortcut code, although eliminates the overhead introduced
by locking in common cases, introduces a major problem: we can no longer use a
sequential data structure as the basic building block, as done when using the tra-
ditional locking approach. The reason is simple, many processes may access the
same data structure simultaneously by executing the shortcut code. Furthermore,
even when a process acquires the lock, it is no longer guaranteed to have exclusive
access, as another process may access the same data structure simultaneously by
executing the shortcut code.

Thus, a central question which we are facing is: if a sequential data structure
can not be used as the basic building block for a general technique for constructing
a contention-sensitive data structure, then what is the best data structure to use?

Before we proceed to discuss formal definitions and general techniques, which
will also help us answering the above question, we demonstrate the idea of using
a shortcut code (which does not involve locking), by presenting a contention-
sensitive solution to the binary consensus problem using atomic read/write regis-
ters and a single lock.

2.3 A simple example: Contention-sensitive consensus
The consensus problem is to design an algorithm in which all correct processes
reach a common decision based on their initial opinions. A consensus algorithm
is an algorithm that produces such an agreement. While various decision rules
can be considered such as “majority consensus”, the problem is interesting even
when the decision value is constrained only when all processes are unanimous
in their opinions, in which case the decision value must be the common opinion.
A consensus algorithm is called binary consensus when the number of possible
initial opinions is two.

Processes are not required to participate in the algorithm. However, once a
process starts participating it is guaranteed that it may fail only while executing
the shortcut code. We assume that processes communicate via atomic registers.
The algorithm uses an array x[0..1] of two atomic bits, and two atomic registers y
and out. After a process executes a decide() statement, it immediately terminates.

Contention-sensitive Binary Consensus: program for process pi with input ini ∈

{0, 1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥, 0, 1}, initially both ⊥

1 x[ini] := 1 // start shortcut code
2 if y =⊥ then y := ini fi
3 if x[1 − ini] = 0 then out := ini; decide(ini) fi
4 if out ,⊥ then decide(out) fi // end shortcut code
5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking

When a process runs alone (either before or after a decision is made), it reaches a
decision after accessing the shared memory at most five times. Furthermore, when
all the concurrently participating processes have the same preference – i.e., when
there is no interference – a decision is also reached within five steps and without
locking. Two processes with conflicting preferences, which run at the same time,
will not resolve the conflict in the shortcut code if both of them find y =⊥. In
such a case, some process acquires the lock and sets the value of out to be the
final decision value. The assignment out := y requires two memory references
and hence it involves two atomic steps.

2.4 Progress conditions
Numerous implementations of locks have been proposed over the years to help
coordinating the activities of the various processes. We are not interested in im-
plementing new locks, but rather assume that we can use existing locks. We are
not at all interested whether the locks are implemented using atomic registers,
semaphores, etc. We do assume that a lock implementation guarantees that: (1)
no two processes can acquire the same lock at the same time, (2) if a process
is trying to acquire the lock, then in the absence of failures some process, not
necessarily the same one, eventually acquires that lock, and (3) the operation of
releasing a lock is wait-free.

Several progress conditions have been proposed for data structures which
avoid locking, and in which processes may fail by crashing. Wait-freedom guar-
antees that every active process will always be able to complete its pending oper-
ations in a finite number of steps [8]. Non-blocking (which is sometimes called
lock-freedom) guarantees that some active process will always be able to com-
plete its pending operations in a finite number of steps [13]. Obstruction-freedom
guarantees that an active process will be able to complete its pending operations
in a finite number of steps, if all the other processes “hold still” long enough [9].
Obstruction-freedom does not guarantee progress under contention.

Several progress conditions have been proposed for data structures which may
involve waiting. Livelock-freedom guarantees that processes not execute forever
without making forward progress. More formally, livelock-freedom guarantees
that, in the absence of process failures, if a process is active, then some process,
must eventually complete its operation. A stronger property is starvation-freedom
which guarantees that each process will eventually make progress. More formally,
starvation-freedom guarantees that, in the absence of process failures, every active
process must eventually complete its operation.

2.5 Defining contention-sensitive data structures
An implementation of a contention-sensitive data structure is divided into two
continuous sections of code: the shortcut code and the body code. When a pro-
cess invokes an operation it first executes the shortcut code, and if it succeeds
to complete the operation, it returns. Otherwise, the process tries to complete
its operation by executing the body code, where it usually first tries to acquire a
lock. If it succeeds to complete the operation, it releases the acquired lock(s) and
returns. The problem of implementing a contention-sensitive data structure is to
write the shortcut code and the body code in such a way that the following four
requirements are satisfied,

• Fast path: In the absence of contention or interference, each operation must

be completed while executing the shortcut code only.

• Wait-free shortcut: The shortcut code must be wait-free – its execution
should require only a finite number of steps and must always terminate.
(Completing the shortcut code does not imply completing the operation.)

• Livelock-freedom: In the absence of process failures, if a process is execut-
ing the shortcut code or the body code, then some process, not necessarily
the same one, must eventually complete its operation.

• Linearizability: Although operations of concurrent processes may overlap,
each operation should appear to take effect instantaneously. In particular,
operations that do not overlap should take effect in their “real-time” order.

In [27], several additional desirable properties are defined.

2.6 An example: Contention-sensitive election
The election problem is to design an algorithm in which all participating pro-
cesses choose one process as their leader. More formally, each process that starts
participating eventually decides on a value from the set {0, 1} and terminates. It is
required that exactly one of the participating processes decides 1. The process that
decides 1 is the elected leader. Processes are not required to participate. However,
once a process starts participating it is guaranteed that it will not fail. It is known
that in the presence of one crash failure, it is not possible to solve election using
only atomic read/write registers [18, 31].

The following algorithm solves the election problem for any number of pro-
cesses, and is related to the splitter constructs from [14, 16, 17]. A single lock is
used. It is assumed that after a process executes a decide() statement, it immedi-
ately terminates.

Contention-sensitive Election: Process i’s program

shared x, z: atomic registers, initially z = 0 and the initial value of x is immaterial
b, y, done: atomic bits, initially all 0

local leader: local register, the initial value is immaterial

1 x := i // begin shortcut
2 if y = 1 then b := 1; decide(0) fi // I am not the leader
3 y := 1
4 if x = i then z := i; if b = 0 then decide(1) fi fi // I am the leader!

// end shortcut

5 lock // locking
6 if z = i ∧ done = 0 then leader = 1 // I am the leader!
7 else await b , 0 ∨ z , 0
8 if z = 0 ∧ done = 0 then leader = 1; done := 1 // I am the leader!
9 else leader = 0 // I am not the leader
10 fi
11 fi
12 unlock ; decide(leader) // unlocking

When a process runs alone before a leader is elected, it is elected and terminates
after accessing the shared memory six times. Furthermore, all the processes that
start running after a leader is elected terminate after three steps. The algorithm
does not satisfy the disable-free shortcut property: a process that fails just before
the assignment to b in line 2 or fails just before the assignment to z in line 4, may
prevent other processes spinning in the await statement (line 7) from terminating.

2.7 Additional results

The following additional results are presented in [27].

• A contention-sensitive double-ended queue. To increase the level of con-
currency, two locks are used: one for the left-side operations and the other
for the right-side operations

• Transformations that facilitate devising contention-sensitive data structures.
The first transformation converts any contention-sensitive data structure which
satisfies livelock-freedom into a corresponding contention-sensitive data
structure which satisfies starvation-freedom. The second transformation,
converts any obstruction-free data structure into the corresponding contention-
sensitive data structure which satisfies livelock-freedom.

• Finally, the notion of a k-contention-sensitive data structure in which locks
are used only when contention goes above k is presented. This notion is
illustrated by implementing a 2-contention-sensitive consensus algorithm.
Then, for each k ≥ 1, a progress condition, called k-obstruction-freedom, is
defined and a transformation is presented that converts any k-obstruction-
free data structure into the corresponding k-contention-sensitive data struc-
ture which satisfies livelock-freedom.

3 Fair Synchronization

3.1 Motivation
As already discussed in Section 1, using locks may degrade the performance of
synchronized concurrent applications, and hence much work has been done on the
design of wait-free and non-blocking data structures. However, the wait-freedom
and non-blocking progress conditions do not provide fairness guarantees. That is,
such data structures may allow processes to complete their operations arbitrarily
many times before some other trying process can complete a single operation.
Such a behavior may be prevented when fairness is required. However, fairness
requires waiting or helping.

Using helping techniques (without waiting) may impose too much overhead
upon the implementation, and are often complex and memory consuming. Does
it mean that for enforcing fairness it is best to use locks? The answer is nega-
tive. We show how any wait-free and any non-blocking implementation can be
automatically transformed into an implementation which satisfies a very strong
fairness requirement without using locks and with limited waiting.

We require that no beginning process can complete two operations on a given
resource while some other process is kept waiting on the same resource. Our
approach, allows as many processes as possible to access a shared resource at the
same time as long as fairness is preserved. To achieve this goal, we introduce and
solve a new synchronization problem, called fair synchronization. Solving the fair
synchronization problem enables us to add fairness to existing implementations of
concurrent data structures, and to transform any solution to the mutual exclusion
problem into a fair solution.

3.2 The fair synchronization problem
The fair synchronization problem is to design an algorithm that guarantees fair
access to a shared resource among a number of participating processes. Fair ac-
cess means that no process can access a resource twice while some other trying
process cannot complete a single operation on that resource. There is no a priori
limit (smaller than the number of processes n) on the number of processes that
can access a resource simultaneously. In fact, a desired property is that as many
processes as possible will be able to access a resource at the same time as long as
fairness is preserved.

It is assumed that each process is executing a sequence of instructions in an
infinite loop. The instructions are divided into four continuous sections: the re-
mainder, entry, fair and exit. Furthermore, it is assumed that the entry section
consists of two parts. The first part, which is called the doorway, is fast wait-free:

its execution requires only a (very small) constant number of steps and hence al-
ways terminates; the second part is the waiting part which includes (at least one)
loop with one or more statements. Like in the case of the doorway, the exit sec-
tion is also required to be fast wait-free. A waiting process is a process that has
finished its doorway code and reached the waiting part of its entry section. A
beginning process is a process that is about to start executing its entry section.

A process is enabled to enter its fair section at some point in time, if suffi-
ciently many steps of that process will carry it into the fair section, independently
of the actions of the other processes. That is, an enabled process does not need
to wait for an action by any other process in order to complete its entry section
and to enter its fair section, nor can an action by any other process prevent it from
doing so.

The fair synchronization problem is to write the code for the entry and the
exit sections in such a way that the following three basic requirements are satisfied.

• Progress: In the absence of process failures and assuming that a process
always leaves its fair section, if a process is trying to enter its fair section,
then some process, not necessarily the same one, eventually enters its fair
section.

The terms deadlock-freedom and livelock-freedom are used in the literature
for the above progress condition, in the context of the mutual exclusion
problem.

• Fairness: A beginning process cannot execute its fair section twice before a
waiting process completes executing its fair and exit sections once. Further-
more, no beginning process can become enabled before an already waiting
process becomes enabled.

It is possible that a beginning process and a waiting process will become
enabled at the same time. However, no beginning process can execute its
fair section twice while some other process is kept waiting. The second part
of the fairness requirement is called first-in-first-enabled. The term first-
in-first-out (FIFO) fairness is used in the literature for a slightly stronger
condition which guarantees that: no beginning process can pass an already
waiting process. That is, no beginning process can enter its fair section
before an already waiting process does so.

• Concurrency: All the waiting processes which are not enabled become
enabled at the same time.

It follows from the progress and fairness requirements that all the wait-
ing processes which are not enabled will eventually become enabled. The
concurrency requirement guarantees that becoming enabled happens simul-
taneously, for all the waiting processes, and thus it guarantees that many
processes will be able to access their fair sections at the same time as long
as fairness is preserved. We notice that no lock implementation may satisfy
the concurrency requirement.

The processes that have already passed through their doorway can be divided into
two groups. The enabled processes and those that are not enabled. It is not possi-
ble to always have all the processes enabled due to the fairness requirement. All
the enabled processes can immediately proceed to execute their fair sections. The
waiting processes which are not enabled will eventually simultaneously become
enabled, before or once the currently enabled processes exit their fair and exit
sections. We observe that the stronger FIFO fairness requirement, the progress
requirement and concurrency requirement cannot be mutually satisfied.

3.3 The fair synchronization algorithm
We use one atomic bit, called group. The first thing that process i does in its entry
section is to read the value of the group bit, and to determine to which of the two
groups (0 or 1) it should belong. This is done by setting i’s single-writer register
statei to the value read.

Once i chooses a group, it waits until its group has priority over the other group
and then it enters its fair section. The order in which processes can enter their fair
sections is defined as follows: If two processes belong to different groups, the
process whose group, as recorded in its state register, is different from the value
of the bit group is enabled and can enter its fair section, and the other process has
to wait. If all the active processes belong to the same group then they can all enter
their fair sections.

Next, we explain when the shared group bit is updated. The first thing that
process i does when it leaves its fair section (i.e., its first step in its exit section)
is to set the group bit to a value which is different from the value of its statei

register. This way, i gives priority to waiting processes which belong to the same
group that it belongs to.

Until the value of the group bit is first changed, all the active processes belong
to the same group, say group 0. The first process to finish its fair section flips
the value of the group bit and sets it to 1. Thereafter, the value read by all the
new beginning processes is 1, until the group bit is modified again. Next, all the
processes which belong to group 0 enter and then exit their fair sections possibly
at the same time until there are no active processes which belong to group 0. Then

all the processes from group 1 become enabled and are allowed to enter their fair
sections, and when each one of them exits it sets to 0 the value of the group bit,
which gives priority to the processes in group 1, and so on.

The following registers are used: (1) a single multi-writer atomic bit named
group, (2) an array of single-writer atomic registers state[1..n] which range over
{0, 1, 2, 3}. To improve readability, we use below subscripts to index entries in
an array. At any given time, process i can be in one of four possible states, as
recorded in it single-writer register statei. When statei = 3, process i is not active,
that is, it is in its remainder section. When statei = 2, process i is active and (by
reading group) tries to decide to which of the two groups, 0 or 1, it should belong.
When statei = 1, process i is active and belongs to group 1. When statei = 0,
process i is active and belongs to group 0.

The statement await condition is used as an abbreviation for while ¬condition
do skip. The break statement, like in C, breaks out of the smallest enclosing for or
while loop. Finally, whenever two atomic registers appear in the same statement,
two separate steps are required to execute this statement. The algorithm is given
below.1

A Fair Synchronization Algorithm: process i’s code (1 ≤ i ≤ n)

Shared variables:
group: atomic bit; the initial value of the group bit is immaterial.
state[1..n]: array of atomic registers, which range over {0, 1, 2, 3}
Initially ∀i : 1 ≤ i ≤ n : statei = 3 /* processes are inactive */

1 statei := 2 /* begin doorway */
2 statei := group /* choose group and end doorway */
3 for j = 1 to n do /* begin waiting */
4 if (statei , group) then break fi /* process is enabled */
5 await state j , 2
6 if state j = 1 − statei /* different groups */
7 then await (state j , 1 − statei) ∨ (statei , group) fi
8 od /* end waiting */
9 fair section
10 group := 1 − statei /* begin exit */
11 statei := 3 /* end exit */

In line 1, process i indicates that it has started executing its doorway code. Then,

1To simplify the presentation, when the code for a fair synchronization algorithm is presented,
only the entry and exit codes are described, and the remainder code and the infinite loop within
which these codes reside are omitted.

in two atomic steps, it reads the value of group and assigns the value read to statei

(line 2).
After passing its doorway, process i waits in the for loop (lines 3–8), until all

the processes in the group to which it belongs are simultaneously enabled and then
it enters its fair section. This happens when either, (statei , group), i.e. the value
the group bit points to the group which i does not belong to (line 4), or when all
the waiting processes (including i) belong to the same group (line 7). Each one of
the terms of the await statement (line 7) is evaluated separately. In case processes
i and j belong to different groups (line 6), i waits until either (1) j is not competing
any more or j has reentered its entry section, or (2) i has priority over j because
statei is different than the value of the group bit.

In the exit code, i sets the group bit to a value which is different than the group
to which it belongs (line 10), and changes its state to not active (line 11). We
notice that the algorithm is also correct when we replace the order of lines 9 and
10, allowing process i to write the group bit immediately before it enters its fair
section. The order of lines 10 and 11 is crucial for correctness.

We observe that a non beginning process, say p, may enter its fair section
ahead of another waiting process, say q, twice: the first time if p is enabled on the
other group, and the second time if p just happened to pass q which is waiting on
the same group and enters its fair section first. We point out that omitting lines 1
and 5 will result in an incorrect solution. It is possible to replace each one of the
4-valued single-writer atomic registers, by three separate atomic bits.

An adaptive algorithm is an algorithm which its time complexity is a function
of the actual number of participating processes rather than a function of the total
number of processes. An adaptive fair synchronization algorithm using atomic
register is presented in [29]. It is also shown in [29] that n − 1 read/write registers
and conditional objects are necessary for solving the fair synchronization problem
for n processes. A conditional operation is an operation that changes the value of
an object only if the object has a particular value. A conditional object is an object
that supports only conditional operations. Compare-and-swap and test-and-set are
examples of conditional objects.

3.4 Fair data structures and fair locks

In order to impose fairness on a concurrent data structure, concurrent accesses
to a data structure can be synchronized using a fair synchronization algorithm: a
process accesses the data structure only inside a fair section. Any data structure
can be easily made fair using such an approach, without using locks and with
limited waiting. The formal definition of a fair data structure can be found in [29].

We name a solution to the fair synchronization problem a (finger) ring.2 Using
a single ring to enforce fairness on a concurrent data structure, is an example of
coarse-grained fair synchronization. In contrast, fine-grained fair synchronization
enables to protect “small pieces" of a data structure, allowing several processes
with different operations to access it completely independently. For example, in
the case of adding fairness to an existing wait-free queue, it makes sense to use two
rings: one for the enqueue operations and the other for the dequeue operations.

We assume the reader is familiar with the definition of a deadlock-free mutual
exclusion algorithm (DF-ME). By composing a fair synchronization algorithm
(FS) and a DF-ME, it is possible to construct a fair mutual exclusion algorithm
(FME), i.e., a fair lock. The entry section of the composed FME algorithm consists
of the entry section of the FS algorithm followed by the entry section of the ME
algorithm. The exit section of the FME algorithm consists of the exit section of
the ME algorithm followed by the exit section of the FS algorithm. The doorway
of the FME algorithm is the doorway of the FS algorithm.

4 Fault Tolerance

4.1 Motivation
According to the standard notion of fault tolerance, an algorithm is t-resilient if
in the presence of up to t faults, all the correct processes can still complete their
operations and terminate. Thus, an algorithm is not t-resilient, if as a result of t
faults there is some correct process that can not terminate. This traditional notion
of fault tolerance is not sensitive to the number of correct processes that may or
may not complete their operations as a result of the failure of other processes.

Consider for example the renaming problem, which allows processes, with
distinct initial names from a large name space, to get distinct new names from a
small name space. A renaming algorithm that, in the presence of any number of
faults, always guarantees that most of the correct processes, but not necessarily
all, get distinct new names is clearly more resilient than a renaming algorithm that
in the presence of a single fault does not guarantee that even one correct process
ever gets a new name. However, using the standard notion of fault tolerance, it
is not possible to compare the resiliency of such algorithms – as both are simply
not even 1-resilient. This motivates us to suggest and investigate a more general
notion of fault tolerance.

We generalize the traditional notion of fault tolerance by allowing a limited
number participating correct processes not to terminate in the presence of faults.

2Many processes can simultaneously pass through the ring’s hole, but the size of the ring may
limit their number.

Every process that do terminate is required to return a correct result. Thus, our
definition guarantees safety but may sacrifice liveness (termination), for a limited
number of processes, in the presence of faults. The consequences of violating
liveness are often less severe than those of violating safety. In fact, there are
systems that can detect and abort processes that run for too long. Sacrificing
liveness of few processes allows us to increase the resiliency of the whole system.

4.2 A general definition of fault tolerance
For the rest of the section, n denotes the number of processes, t denotes the number
of faulty processes, and N = {0, 1, ..., n}.

Definition: For a given function f : N → N, an algorithm is (t, f)-
resilient if in the presence of t′ faults at most f (t′) participating correct
processes may not terminate their operations, for every 0 ≤ t′ ≤ t.

It seems that (t, f)-resiliency is interesting only when requiring that f (0) = 0.
That is, in the absence of faults all the participating processes must terminate their
operations. The standard definition of t-resiliency is equivalent to (t, f)-resiliency
where f (t′) = 0 for every 0 ≤ t′ ≤ t. Thus, the familiar notion of wait-freedom is
equivalent to (n − 1, f)-resiliency where f (t′) = 0 for every 0 ≤ t′ ≤ n − 1. The
new notion of (t, f)-resiliency is quite general, and in this section we focus mainly
on the following three levels of resiliency.

• An algorithm is almost-t-resilient if it is (t, f)-resilient, for a function f
where f (0) = 0 and f (t′) = 1, for every 1 ≤ t′ ≤ t. Thus, in the presence of
any number of up to t faults, all the correct participating processes, except
maybe one process, must terminate their operations.

• An algorithm is partially-t-resilient if it is (t, f)-resilient, for a function f
where f (0) = 0 and f (t′) = t′, for every 1 ≤ t′ ≤ t. Thus, in the presence
of any number t′ ≤ t faults, all the correct participating processes, except
maybe t′ of them must terminate their operations.

• An algorithm is weakly-t-resilient if it is (t, f)-resilient, for a function f
where f (0) = 0, and in the presence of any number of up to t ≥ 1 faults,
if there are two or more correct participating processes then one correct
participating process must terminate its operation. (Notice that for n = 2, if
one process fails the other one is not required to terminate.)

For n ≥ 3 and t < n/2, the notion of weakly-t-resiliency is strictly weaker than
the notion of partially-t-resiliency. For n ≥ 3, the notion of weakly-t-resiliency
is strictly weaker than the notion of almost-t-resiliency. For n ≥ 3 and t ≥ 2,

the notion of partially-t-resiliency is strictly weaker than the notion of almost-t-
resiliency. For all n, partially-1-resiliency and almost-1-resiliency are equivalent.
For n = 2, these three notions are equivalent. We say that an algorithm is almost-
wait-free if it is almost-(n − 1)-resilient, i.e., in the presence of any number of
faults, all the participating correct processes, except maybe one process, must
terminate. We say that an algorithm is partially-wait-free if it is partially-(n − 1)-
resilient, i.e., in the presence of any number of t ≤ n − 1 faults, all the correct
participating processes, except maybe t of them must terminate.

4.3 Example: An almost-wait-free symmetric test-and-set bit
A test-and-set bit supports two atomic operations, called test-and-set and reset. A
test-and-set operation takes as argument a shared bit b, assigns the value 1 to b,
and returns the previous value of b (which can be either 0 or 1). A reset operation
takes as argument a shared bit b and writes the value 0 into b.

The sequential specification of an object specifies how the object behaves in
sequential runs, that is, in runs when its operations are applied sequentially. The
sequential specification of a test-and-set bit is quite simple. In sequential runs, the
first test-and-set operation returns 0, a test-and-set operation that happens imme-
diately after a reset operation also returns 0, and all other test-and-set operations
return 1. The consistency requirement is linearizability.

The algorithm below is for n processes each with a unique identifier taken from
some (possibly infinite) set which does not include 0. It makes use of exactly n
registers which are long enough to store a process identifier and one atomic bit.
The algorithm is based on the symmetric mutual exclusion algorithm from [24].3

The algorithm uses a register, called turn, to indicate who has priority to return
1, n − 1 lock registers to ensure that at most one process will return 1 between
resets, and a bit, called winner, to indicate whether some process already returned
1. Initially the values of all these shared registers are 0. In addition, each process
has a private boolean variable called locked. We denote by b.turn, b.winner and
b.lock[*] the shared registers for the implementation of a specific test-and-set bit,
named b.

3A symmetric algorithm is an algorithm in which the only way for distinguishing processes
is by comparing identifiers, which are unique. Identifiers can be written, read and compared, but
there is no way of looking inside any identifier. Thus, identifiers cannot be used to index shared
registers.

An Almost-wait-free Symmetric Test-and-set Bit: process p’s program.

function test-and-set (b:bit) return:value in {0, 1}; /* access bit b */

1 if b.turn , 0 then return(0) fi; /* lost */

2 b.turn := p;
3 repeat
4 for j := 1 to n − 1 do /* get locks */

5 if b.lock[j] = 0 then b.lock[j] := p fi od
6 locked := 1;
7 for j := 1 to n − 1 do /* have all locks? */

8 if b.lock[j] , p then locked := 0 fi od;
9 until b.turn , p or locked = 1 or b.winner = 1;
10 if b.turn , p or b.winner = 1 then
11 for j := 1 to n − 1 do /* lost, release locks */

12 if b.lock[j] = p then b.lock[j] := 0 fi od
13 return(0) fi;
14 b.winner := 1; return(1). /* wins */

end_function

function reset (b:bit); /* access bit b */

1 b.winner := 0; b.turn := 0; /* release locks */

2 for j := 1 to n − 1 do
3 if b.lock[j] = p then b.lock[j] := 0 fi od.
end_function

In the test-and-set operation, a process, say p, initially checks whether b.turn , 0,
and if so returns 0. Otherwise, p takes priority by setting b.turn to p, and attempts
to obtain all the n−1 locks by setting them to p. This prevents other processes that
also saw b.turn = 0 and set b.turn to their ids from entering. That is, if p obtains
all the locks before the other processes set b.turn, they will not be able to get any
of the locks since the values of the locks are not 0. Otherwise, if p sees b.turn , p
or b.winner = 1, it will release the locks it holds, allowing some other process to
proceed, and will return 0. In the reset operation, p sets b.turn to 0, so the other
processes can proceed, and releases all the locks it currently holds. In [28], it is
shown that even in the absence of faults, any implementation of a test-and-set bit
for n processes from atomic read/write registers must use at least n such registers.

4.4 Additional results

The following additional results are presented in [28].

Election. It is known that there is no 1-resilient election algorithm using atomic
registers [18, 31]. It is shown that:

There is an almost-wait-free symmetric election algorithm using dlog ne+
2 atomic registers.

The known space lower bound for election in the absence of faults is dlog ne + 1
atomic registers [24].

Perfect Renaming. A perfect renaming algorithm allows n processes with ini-
tially distinct names from a large name space to acquire distinct new names from
the set {1, ...n}. A one-shot renaming algorithm allows each process to acquire a
distinct new name just once. A long-lived renaming algorithm allows processes
to repeatedly acquire distinct names and release them. It is shown that:

(1) There is a partially-wait-free symmetric one-shot perfect renam-
ing algorithm using (a) n− 1 almost-wait-free election objects, or (b)
O(n log n) registers. (2) There is a partially-wait-free symmetric long-
lived perfect renaming algorithm using either n − 1 almost-wait-free
test-and-set bits.

It is known that in asynchronous systems where processes communicate by atomic
registers there is no 1-resilient perfect renaming algorithm [18, 31].

Fetch-and-add, swap, stack. A fetch-and-add object supports an operation which
takes as arguments a shared register r, and a value val. The value of r is incre-
mented by val, and the old value of r is returned. A swap object supports an opera-
tion which takes as arguments a shared registers and a local register and atomically
exchange their values. A shared stack is a linearizable object that supports push
and pop operations, by several processes, with the usual stack semantics. It is
shown that:

There are partially-wait-free implementations of a fetch-and-add ob-
ject, a swap object, and a stack object using atomic registers.

The result complements the results that in asynchronous systems where processes
communicate using registers there are no 2-resilient implementations of fetch-
and-add, swap, and stack objects [8].

Consensus and Set-consensus. The k-set consensus problem is to find a solu-
tion for n processes, where each process starts with an input value from some
domain, and must choose some participating process’ input as its output. All n
processes together may choose no more than k distinct output values. The 1-set
consensus problem, is the familiar consensus problem. It is shown that:

(1) For n ≥ 3 and 1 ≤ k ≤ n − 2, there is no weakly-k-resilient k-
set-consensus algorithm using either atomic registers or sending and
receiving messages. In particular, for n ≥ 3, there is no weakly-
1-resilient consensus algorithm using either atomic registers or mes-
sages. (2) For n ≥ 3 and 1 ≤ k ≤ n−2, there is no weakly-k-resilient k-
set-consensus algorithm using almost-wait-free test-and-set bits and
atomic registers.

These results strengthen the know results that, in asynchronous systems where
processes communicate either by atomic registers or by sending and receiving
messages, there is no 1-resilient consensus algorithm [7, 15], and there is no k-
resilient k-set-consensus algorithm [3, 11, 22].

5 Related Work
All the ideas and results presented in this survey are from [27, 28, 29]. Mutual
exclusion locks were first introduced by Edsger W. Dijkstra in [5]. Since than,
numerous implementations of locks have been proposed [20, 25]. The fair syn-
chronization algorithm, presented in Section 3.3, uses some ideas from the mutual
exclusion algorithm presented in [26].

Algorithms for several concurrent data structures based on locking have been
proposed since at least the 1970’s [2]. Speculative lock elision [21], is a hard-
ware technique which allows multiple processes to concurrently execute critical
sections protected by the same lock; when misspeculation, due to data conflicts,
is detected rollback is used for recovery, and the execution fall back to acquiring
the lock and executing non-speculatively.

The benefits of avoiding locking has already been considered in [6]. There
are many implementations of data structures which avoid locking [12, 19, 25].
Several progress conditions have been proposed for data structures which avoid
locking. The most extensively studied conditions, in order of decreasing strength,
are wait-freedom [8], non-blocking [13], and obstruction-freedom [9]. Progress
conditions, called k-waiting, for k ≥ 0, which capture the “amount of waiting” of
processes in asynchronous concurrent algorithm, are introduced in [30].

Extensions of the notion of fault tolerance, which are different from those
considered in Section 4, were proposed in[4], where a precise way is presented
to characterize adversaries by introducing the notion of disagreement power: the
biggest integer k for which the adversary can prevent processes from agreeing on
k values when using registers only; and it is shown how to compute the disagree-
ment power of an adversary.

Linearizability is defined in [13]. A tutorial on memory consistency models
can be found in [1]. Transactional memory is a methodology which has gained

momentum in recent years as a simple way for writing concurrent programs [10,
12, 23]. It has implementations that use locks and others that avoid locking, but
in both cases the complexity is hidden from the programmer.

6 Discussion
None of the known synchronization techniques is optimal in all cases. Despite the
known weaknesses of locking and the many attempts to replace it, locking still
predominates. There might still be hope for a “silver bullet", but until then, it
would be constructive to also consider integration of different techniques in order
to gain the benefit of their combined strengths. Such integration may involve using
a mixture of objects which avoid locking together with lock-based objects; and,
as suggested in Section 2, fusing lockless objects and locks together in order to
create new interesting types of shared objects.

In Section 3, we have proposed to enforce fairness as a wrapper around a
concurrent data structure, and studied the consequences. We have formalized the
fair synchronization problem, presented a solution, and then showed that existing
concurrent data structures and mutual exclusion algorithms can be encapsulated
into a fair synchronization construct to yield algorithms that are inherently fair.
Since many processes may enter their fair sections simultaneously, it is expected
that using fair synchronization algorithms will not degrade the performance of
concurrent applications as much as locks. However, as in the case of using locks,
slow or stopped processes may prevent other processes from ever accessing their
fair sections.

Finally, in Section 4, we have refined the traditional notion of t-resiliency by
defining the finer grained notion of (t, f)-resiliency. Rather surprisingly, while
some problems, that have no solutions which can tolerate even a single fault, do
have solutions which satisfy almost-wait-freedom, other problems do not even
have weakly-1-resilient solutions.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.

IEEE Computer, 29(12):66–76, 1996.

[2] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informat-
ica, 9:1–21, 1977.

[3] E. Borowsky and E. Gafni. Generalizecl FLP impossibility result for t-resilient
asynchronous computations. In Proc. 25th ACM Symp. on Theory of Computing,
pages 91–100, 1993.

[4] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmanns. The disagree-
ment power of an adversary. In Proc. 28th ACM Symp. on Principles of Distributed
Computing, pages 288–289, 2009.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commu-
nications of the ACM, 8(9):569, 1965.

[6] W. B. Easton. Process synchronization without long-term interlock. In Proc. of the
3rd ACM symp. on Operating systems principles, pages 95–100, 1971.

[7] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[8] M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages
and Systems, 13(1):124–149, January 1991.

[9] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proc. of the 23rd International Conference
on Distributed Computing Systems, page 522, 2003.

[10] M. P. Herlihy and J.E.B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proc. of the 20th annual international symposium on
Computer architecture, pages 289–300, 1993.

[11] M. P. Herlihy and N. Shavit. The topological structure of asynchronous computabil-
ity. Journal of the ACM, 46(6):858–923, July 1999.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers, 2008. 508 pages.

[13] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. toplas, 12(3):463–492, 1990.

[14] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Systems,
5(1):1–11, 1987.

[15] M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreli-
able asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

[16] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming.
Science of Computer Programming, 25(1):1–39, October 1995.

[17] M. Merritt and G. Taubenfeld. Computing with infinitely many processes. Infor-
mation and Computation 233 (2013) 12–31. (Also in: LNCS 1914 Springer Verlag
2000, 164–178, DISC 2000.)

[18] S. Moran and Y. Wolfstahl. Extended impossibility results for asynchronous com-
plete networks. Information Processing Letters, 26(3):145–151, 1987.

[19] M. Raynal. Concurrent Programming: Algorithms, Principles, and Foundations.
Springer. ISBN 978-3-642-32027-9, 515 pages, 2013.

[20] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986. Translation of:
Algorithmique du parallélisme, 1984.

[21] R. Rajwar and J. R. Goodman, Speculative Lock Elision: Enabling Highly Concur-
rent Multithreaded Execution. In Proc. 34th Inter. Symp. on Microarchitecture, pp.
294–305, 2001.

[22] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM Journal on Computing, 29, 2000.

[23] N. Shavit and D. Touitou. Software transactional memory. In Proc. 14th ACM Symp.
on Principles of Distributed Computing, pages 204–213, 1995.

[24] E. Styer and G. L. Peterson. Tight bounds for shared memory symmetric mutual ex-
clusion problems. In Proc. 8th ACM Symp. on Principles of Distributed Computing,
pages 177–191, August 1989.

[25] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson
/ Prentice-Hall. ISBN 0-131-97259-6, 423 pages, 2006.

[26] G. Taubenfeld. The black-white bakery algorithm. In 18th international symposium
on distributed computing, October 2004. LNCS 3274 Springer Verlag 2004, 56–70.

[27] G. Taubenfeld. Contention-sensitive data structures and algorithms. In 23rd interna-
tional symposium on distributed computing, September 2009. LNCS 5805 Springer
Verlag 2009, 157–171.

[28] G. Taubenfeld. A closer look at fault tolerance. In Proc. 31st ACM Symp. on Prin-
ciples of Distributed Computing, pages 261–270, 2012.

[29] G. Taubenfeld. Fair synchronization. In 27th international symposium on distributed
computing, October 2013. LNCS 8205 Springer Verlag 2013, 179–193.

[30] G. Taubenfeld. Waiting without locking. Unpublished manuscript, 2014.

[31] G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared mem-
ory environment. Acta Informatica, 33(1):1–20, 1996.

Local Coordination
and Symmetry Breaking

Jukka Suomela
Helsinki Institute for Information Technology HIIT,
Department of Information and Computer Science,
Aalto University, Finland · jukka.suomela@aalto.fi

Abstract

This article gives a short survey of recent lower bounds for distributed
graph algorithms. There are many classical graph problems (e.g., maxi-
mal matching) that can be solved in O(∆ + log∗ n) or O(∆) communication
rounds, where n is the number of nodes and ∆ is the maximum degree of the
graph. In these algorithms, the key bottleneck seems to be a form of local
coordination, which gives rise to the linear-in-∆ term in the running time.
Previously it has not been known if this linear dependence is necessary, but
now we can prove that there are graph problems that can be solved in time
O(∆) independently of n, and cannot be solved in time o(∆) independently
of n. We will give an informal overview of the techniques that can be used
to prove such lower bounds, and we will also propose a roadmap for future
research, with the aim of resolving some of the major open questions of the
field.

1 Introduction

The research area of distributed computing studies computation in large computer
networks. The fundamental research question is what can be computed efficiently
in a distributed system. In distributed systems, communication is several orders
of magnitude slower than computation: while a modern computer can perform
arithmetic operations in a matter of nanoseconds, it can easily take dozens of mil-
liseconds to exchange messages between two computers over the public Internet.
To understand which computational tasks can be solved efficiently in a computer
network, it is necessary to understand what can be solved with very few commu-
nication steps.

1.1 Model of Computing

Perhaps the most successful theoretical model for studying such questions is the
LOCAL model [25,32]: We have an unknown graph G that represents a computer
network. Every node of G is a computer and every edge of G is a communica-
tion link. Initially, each computer is only aware of its immediate surroundings.
Computation proceeds in synchronous rounds; in each round, all nodes exchange
messages with their neighbours. Eventually, all nodes have to stop and announce
their local outputs—that is, their own part of the solution. For example, if we are
studying graph colouring, each node has to output its own colour.

The distributed time complexity of a graph problem is the smallest t such that
the problem can be solved with a distributed algorithm in t communication rounds.
In the LOCAL model, parameter t plays a dual role—it represents both time and
distance: in t rounds, all nodes can learn everything about graph G in their radius-
t neighbourhood, and nothing else. In essence, a distributed algorithm with a
running time of t is a mapping from radius-t neighbourhoods to local outputs—
see Figure 1 for an illustration.

Therefore the defining property of fast distributed algorithms is locality: in a
fast distributed algorithm each node only needs information from its local neigh-
bourhood. In many cases, if we are given a graph problem, it is fairly easy to
qualitatively classify it as a “local” or “global” problem; the key challenge is to
understand precisely how local a given problem is.

v

G

Figure 1: If we have a distributed algorithm with a running time of t = 2 rounds,
then whatever node v outputs is a function of the information available in its
radius-t neighbourhood (highlighted).

1.2 Symmetry Breaking vs. Local Coordination

Distributed time complexity and locality are commonly studied as a function of
two parameters:

• n, the number of nodes in the network,

• ∆, the maximum degree of a node (the maximum number of neighbours).

As we will see, these parameters are often related to two different challenges in
the area of distributed algorithms:

1. complexity as a function of n is related to symmetry breaking,

2. complexity as a function of ∆ is related to local coordination.

The first aspect has been relatively well understood since Linial’s seminal work
in the 1990s [25]. However, our understanding of the second aspect has been
poor—until very recently.

In this article, we will study the challenge of local coordination in more depth.
We will survey recent work that has enabled us to better understand the distributed
time complexity of certain graph problems not only as a function of n, but also as
a function of ∆. Hopefully these preliminary results will provide a starting point
for a research program that aims at resolving the long-standing open questions
related to the distributed time complexity of classical graph problems such as
maximal matchings, maximal independent sets, and graph colouring.

2 The LOCAL Model of Distributed Computing
To get started, let us first define the LOCAL model of distributed computing a
bit more carefully. A reader familiar with the model can safely skip this section;
further information can be found in many textbooks [27, 32, 34].

We will study distributed algorithms in the context of graph problems. We are
given an unknown graph G, and the algorithm has to produce a feasible solution
of the graph problem. Each node of graph G is a computational entity, and all
nodes run the same distributed algorithm A. Eventually, each node v has to stop
and produce its own part of the solution—the local output A(G, v).

For example, if our goal is to find a proper vertex colouring of G, then the
local output A(G, v) will be the colour of node v in the solution. If our goal is to
find a maximal matching, then the local output A(G, v) will indicate whether v is
matched and with which neighbour.

2.1 Synchronous Message Passing
In the LOCAL model, each node has a unique identifier, and initially each node
knows only its own unique identifier and its degree in graph G. Computation
proceeds in synchronous communication rounds. In every round, each node v that
is still running performs the following steps, synchronously with all other nodes:

1. v sends a message to each of its neighbours,
2. v receives a message from each of its neighbours,
3. v updates its local state, and
4. possibly v stops and announces its local output A(G, v).

The outgoing messages are a function of the old local state, and the new local state
is a function of the old state and the messages that the node received.

The running time of an algorithm is defined to be the number of communica-
tion rounds until all nodes have stopped and announced their local outputs. This is
the key difference between centralised and distributed computing: in the context
of centralised algorithms we are interested in the number of elementary computa-
tional steps, while in the context of distributed algorithms the key resource is the
number of communication steps. For our purposes, the cost of local computation
is negligible.

2.2 Time and Distances Are Equivalent
In the LOCAL model, information can propagate at a maximum speed of 1 edge
per round. If a node v stops after t rounds, then whatever v outputs can only
depend on the information that was available within distance t from v in the input
graph. In essence, a time-t algorithm in the LOCAL model is just a mapping from
radius-t neighbourhoods to local outputs; recall Figure 1.

A bit more formally, let us write xt(v) for the local state of a node v after
round t. Initially, x0(v) consists of just the unique identifier of node v and its
degree. The key observation is that xt+1(v) is a function of xt(v) and the messages
that v received from its neighbours during round t + 1. For each neighbour u of v,
the message sent by u to v during round t + 1 is a function of xt(u). Hence the new
state xt+1(v) is simply a function of the old states xt(v) and xt(u), where u ranges
over the neighbours of v.

In essence, in each communication round, each node just updates its local state
based on the local states in its radius-1 neighbourhood. By a simple induction, the
local state xt(v) is a function of the initial states x0(u), where u ranges over all
nodes that are within distance t from v. Hence we can see that if a node stops after
round t, its local output can only depend on the information that was available
within distance t from v.

Conversely, it is easy to design an algorithm in which all nodes can gather
their radius-t neighbourhoods in t communication rounds. As a corollary, if graph
G is connected and has a diameter of D, then in time t = D + O(1) all nodes
can learn everything about the structure of the input graph G. Therefore in time
t = D + O(1) we can also solve any computable graph problem: each node can
simply gather full information on the input, and then locally solve the problem and
output the relevant part of the solution. The diameter is at most O(n), and therefore
linear-time algorithms are entirely trivial in the LOCAL model; the research on
the LOCAL model focuses on algorithms that run in sublinear time.

3 Example: Maximal Matchings
As a concrete example, let us consider the problem of finding a maximal matching
with a distributed algorithm in the LOCAL model. Recall that a matching of a
simple undirected graph G = (V, E) is a subset of edges M ⊆ E such that each
node is incident to at most one edge of M, and a matching is maximal if it is not a
proper subset of another matching.

3.1 Simple Distributed Algorithms
It is easy to come up with a distributed algorithm that finds a maximal matching.
Here is a simple example:

• Initialise M ← ∅.

• Use the unique node identifiers to assign a unique label for each edge.

• Repeat until G is empty:

– Find the set X ⊆ E that consists of the edges that are local minima
with respect to the edge labels, i.e., their labels are smaller than the
labels of any of their neighbours.

– Add X to M, and remove all edges adjacent to X from G.

Unfortunately, the running time of such an algorithm can be linear in n, which
makes it uninteresting from the perspective of the LOCAL model.

In the above algorithm, a key drawback is that set X can be very small in
the worst case. We can do better with a simple randomised distributed algorithm
[1, 20, 26]. Instead of picking local minima, we can pick a random matching X.
More precisely, each edge e attempts to join X with a certain (carefully chosen)
probability, and if none of its neighbours attempts to join simultaneously, we will

have e ∈ X. The basic idea is that we can eliminate a constant fraction of the edges
in each step, and it can be shown that the running time will be O(log n) with high
probability.

3.2 State of the Art

The fastest distributed algorithms can find maximal matchings much faster than
in logarithmic time—at least in sparse graphs. To better characterise the running
time, we will use two parameters: n, the number of nodes, and ∆, the maximum
degree of the graph. As a function of n and ∆, currently the fastest algorithms are
these:

• Barenboim et al. [7]: a randomised algorithm, time O(log ∆ + log4 log n).
• Hańćkowiak et al. [18]: a deterministic algorithm, time O(log4 n).
• Panconesi and Rizzi [31]: a deterministic algorithm, time O(∆ + log∗ n).

Here log∗ n is the iterated logarithm of n, a very slowly growing function.

3.3 Focus on Low-Degree Graphs

In general, charting the landscape of distributed time complexity throughout the
(n,∆)-plane is an arduous task. In this article, we will zoom into one corner of the
plane: we will focus on the case of n � ∆.

In this region, the Panconesi–Rizzi algorithm, which runs in time O(∆+log∗ n),
is the fastest known algorithm for finding maximal matchings. While the expres-
sion of the running time may not look particularly natural, it turns out there are
many other problems for which the fastest algorithms in sparse graphs have a run-
ning time of precisely O(∆ + log∗ n)—the key examples are maximal independent
sets, vertex colouring, and edge colouring [5, 6, 21, 31].

While many different algorithms with precisely the same running time exist,
we do not know if any of these are optimal. In particular, it is not known if any of
these problems could be solved in time o(∆) + O(log∗ n).

In what follows, we will dissect the running time of the Panconesi–Rizzi al-
gorithm in two terms, O(log∗ n) and O(∆), and give an intuitive explanation for
each of them. To do this, we will consider two corner cases: one in which we
can find maximal matchings in time O(log∗ n), and one in which the problem can
be solved in time O(∆). As we will see, there is a very good justification for the
term O(log∗ n), but there is no lower bound that would justify the existence of the
term O(∆).

3.4 Maximal Matchings as a Symmetry-Breaking Problem

First, let us have a look at the term O(log∗ n). Maximal matchings are fundamen-
tally a symmetry-breaking problem. To see this more clearly, we will define a
restricted version in which we are left with a pure symmetry-breaking problem;
in essence, we will eliminate the term ∆ from the running time.

This turns out to be easy: we can simply focus on cycle graphs, in which case
we have a constant maximum degree of ∆ = 2. We are now left with the seemingly
trivial problem of finding a maximal matching in a cycle.

This special case highlights the need for symmetry breaking. While the topol-
ogy of the input graph is symmetric, the output cannot be symmetric: any maximal
matching has to contain some of the edges, but not all of them. We will have to
resort to some means of symmetry breaking.

Problems of this type can be solved efficiently with the help of the Cole–
Vishkin algorithm [8]. This is a deterministic distributed algorithm that can be
used to e.g. colour a cycle with O(1) colours in time O(log∗ n). The algorithm
relies heavily on the existence of unique node identifiers; it extracts symmetry-
breaking information from the unique identifiers.

In essence, the Cole–Vishkin algorithm is a colour reduction algorithm. The
unique identifiers provide a colouring with a large number of colours. Typically
it is assumed that the range of unique identifiers is polynomial in n, and hence
our starting point is a poly(n)-colouring of the cycle. The Cole–Vishkin algorithm
then reduces the number of colours from any number ` to O(log `) in one step;
it compares the binary representations of the old colours of adjacent nodes, and
uses the index of the bit that differs, together with its value, to construct a new
colour. Overall, we need only O(log∗ n) iterations to reduce the number of colours
to O(1).

Once we have a colouring of the vertices with O(1) colours, it is easy to find
a maximal matching. For example, we can use the vertex colouring to derive
an edge colouring. Then each colour class is a matching, and we can construct
a maximal matching by considering the colour classes one by one. Hence the
pure symmetry-breaking version of maximal matchings can be solved in time
O(log∗ n).

Remarkably, this is also known to be optimal. Linial’s seminal lower bound
[25] shows that symmetry breaking in a cycle requires Ω(log∗ n) rounds with de-
terministic algorithms, and Naor [28] shows that this holds even if we consider
randomised algorithms.

In summary, pure symmetry breaking problems are very well understood. As
a simple corollary, it is not possible to find a maximal matching in time O(∆) +

o(log∗ n), or in time f (∆) + o(log∗ n) for any function f .

3.5 Maximal Matchings as a Coordination Problem
Let us now turn our attention to the term O(∆). We will argue that maximal
matchings are also a coordination problem. To see this more clearly, we will
again define a restricted version in which we are left with a pure coordination
problem, which can be solved in time O(∆) independently of n.

Of course we cannot simply set n = O(1) to get rid of the term O(log∗ n). How-
ever, we can consider a situation in which we have already solved the symmetry-
breaking problem. We will assume that we are given a bipartite graph, in which
one part is coloured black, another part is white. Our goal is to find a maximal
matching in such a graph.

In essence, each black node should try to pick one of its white neighbours as
its partner, and conversely each white node should try to pick one of its black
neighbours as its partner. Here we have the coordination challenge: without any
coordination, several black nodes may try to pick the same white node simultane-
ously.

In bipartite graphs, this coordination problem can be solved in time O(∆) with
a simple proposal algorithm [17]. The algorithm repeatedly performs the follow-
ing steps:

1. Black nodes send “proposals” to their white neighbours, one by one (e.g. in
the order of their unique identifiers).

2. White nodes “accept” the first proposal that they get (breaking ties with e.g.
the unique identifiers of the senders), and “reject” all other proposals.

Each proposal–acceptance pair forms an edge in the matching. A black node will
stop as soon as it becomes matched, or it runs out of white neighbours to whom
to send proposals (in which case all of the neighbours are already matched). A
white node will stop as soon as it becomes matched, or all of its black neighbours
have stopped (in which case all of the neighbours are already matched). Clearly
the output is a maximal matching.

While the simple proposal algorithm runs in time O(∆) independently of n, it
is not known if it is optimal. More specifically, it is not known if we can find a
maximal matching in bipartite 2-coloured graphs in time o(∆) independently of n.
However, this is the best algorithm that we currently have for this problem; we
have not been able to break the linear-in-∆ boundary (without introducing some
dependence on n in the running time). Many other distributed algorithms have a
similar issue at their core: in one way or another, there is a need for local coor-
dination, and this is resolved in a fairly naive manner by considering neighbours
one by one.

While symmetry breaking is well understood, local coordination is poorly un-
derstood. There are hardly any lower bounds. For bipartite maximal matchings

we can apply the lower bound by Kuhn et al. [22–24], which shows that bipartite
maximal matching requires Ω(log ∆) rounds in the worst case. However, this still
leaves an exponential gap between the upper bound and the lower bound.

A particularly intriguing special case is that of regular graphs, i.e., the case
that all nodes have the same degree of ∆. In this case, the simple proposal algo-
rithm is still the fastest algorithm that we have, and hence the best known upper
bound is still O(∆). Somewhat surprisingly, there are no lower bounds at all for
this case; the above-mentioned lower bound by Kuhn et al. cannot be applied here
any more. Hence we have very simple coordination problems whose distributed
time complexity is not understood at all.

4 Towards Coordination Lower Bounds
We have seen that in low-degree graphs, the fastest algorithm for maximal match-
ings has a running time of O(∆ + log∗ n). Here the term O(log∗ n) is related to the
well-known challenge of symmetry breaking, while the term O(∆) appears to be
related to a poorly-understood challenge of local coordination. The problem can-
not be solved in time O(∆) + o(log∗ n), but it is a major open question if it can be
solved in time o(∆) + O(log∗ n). Let us now have a look at possible ways towards
answering this question.

4.1 Completable but Tight Problems

As we have discussed, maximal matchings are not an isolated example. There are
numerous other graph problems for which the time complexity as a function of n
is well-understood (at least for a small ∆), but the time complexity as a function
of ∆ is not really understood at all.

Perhaps the most prominent example is proper vertex colouring with ∆ + 1
colours [5, 6, 21]. This is yet another problem that can be solved in O(∆ + log∗ n)
time, and it is known to require Ω(log∗ n) time, but it is not known if the problem
can be solved in o(∆) + O(log∗ n) time.

Other examples of such problems include edge colouring with 2∆− 1 colours,
and the problem of finding a maximal independent set. Incidentally, all of these
problems can be characterised informally as follows:

1. Any partial solution can be completed. In particular, a greedy algorithm that
considers nodes or edges in an arbitrary order can solve these problems.

2. However, there are situations in which a partial solution is tight in the sense
that there is only one way to complete it. For example, if we have already

coloured all ∆ neighbours of a node, and we have a colour palette of size
∆ + 1, we may have only 1 possible colour left.

While some counterexamples exist, it seems that many problems of this form have
distributed algorithms with a running time of, e.g., O(∆ + log∗ n) or simply O(∆),
and we do not know if these algorithms are optimal. However, as soon as we step
outside the realm of “completable but tight” problems, we see plenty of examples
of running times that are either sublinear or superlinear in ∆:

1. If we drop the first restriction, running times typically increase to super-
linear in ∆. Examples of such problems include matchings without short
augmenting paths [2], which can be solved in time ∆O(1), and locally opti-
mal semi-matchings [9], which can be solved in time O(∆5).

2. If we drop the second restriction, there are many problems that can be solved
in time sublinear in ∆. A good example is vertex colouring with O(∆2)
colours. With such a large colour palette, local coordination becomes much
easier: Linial’s algorithm [25] solves this problem in time O(log∗ n), inde-
pendently of ∆.

Hence to resolve the long-standing open questions related to the distributed time
complexity, it seems that we need to better understand the issue of local coordina-
tion in the context of “completable but tight” problems.

4.2 Major Hurdles and Recent Advances
Looking back at the previous attempts to prove e.g. tight lower bounds for the
distributed time complexity of maximal matchings, it now seems that one of the
major hurdles can be summarised as follows:

1. We do not understand the issue of local coordination even in isolation.

2. To prove tight lower bounds, we would need to understand not just local
coordination in isolation, but also the complicated interplay of local coordi-
nation and symmetry breaking.

While the second issue seems to be still far beyond the reach of current research,
we are now finally making progress with the first issue. The key idea is to identify
pure coordination problems. These are “completable but tight” problems that can
be solved in time O(∆) independently of n, but cannot be solved in time o(∆)
independently of n. Such problems do not need any symmetry breaking, and
hence we can focus solely on local coordination.

Now we finally have the first natural example of a pure coordination problem
for which we can prove tight lower bounds: maximal fractional matching. This

0.2

0.3

0.5

0.5

0.0

(a)

0

0

1

0

0

(b)

Figure 2: (a) A maximal matching. (b) A maximal fractional matching. The
saturated nodes are highlighted.

was known to be solvable in time O(∆) independently of n [3], and there is now
a lower bound that shows that the problem cannot be solved in time o(∆) inde-
pendently of n [14]. In the next section, we will discuss this problem in more
depth.

5 Recent Progress: Maximal Fractional Matchings
A fractional matching is a linear programming relaxation of a matching. While
maximal matchings are a symmetry-breaking problem, it turns out that the prob-
lem of finding a maximal fractional matching is a pure coordination problem—it
does not require any symmetry breaking.

5.1 Problem Formulation
If a matching can be interpreted as an integer-valued function y : E → {0, 1} that
indicates which edges are in the matching, a fractional matching is a real-valued
function y : E → [0, 1].

Formally, let G = (V, E) be a simple undirected graph and let y : E → [0, 1]
associate weights to the edges of G. Define for each v ∈ V the sum of incident
edges

y[v] :=
∑

e∈E:v∈e

y(e).

The function y is called a fractional matching if y[v] ≤ 1 for each node v. A node
v is saturated if y[v] = 1. A fractional matching is maximal if each edge has at
least one saturated endpoint.

Informally, in a maximal fractional matching we cannot increase the weight
of any edge without violating a constraint. See Figure 2 for examples.

In combinatorial optimisation, maximal fractional matchings and maximal
matchings have similar applications. It is well known that we can use a maxi-
mal matching to construct a 2-approximation of a minimum vertex cover. It turns
out that we can use maximal fractional matchings equally well: in any maximal
fractional matching, the set of saturated nodes forms a 2-approximation of a min-
imum vertex cover [4].

5.2 No Need for Symmetry Breaking
From the perspective of centralised algorithms, the distinction between maximal
matchings and maximal fractional matchings is not particularly interesting; either
of the problems can be solved easily in linear time. However, the two problems are
very different from the perspective of efficient distributed or parallel algorithms.

While the problem of finding a maximal matching requires symmetry breaking
(recall Section 3.4), this is not the case with maximal fractional matchings. Con-
sider, for example, a k-regular graph. In any such graph, there is a trivial maximal
fractional matching that sets y(e) = 1/k for all e ∈ E. In essence, highly symmet-
ric graphs are trivial from the perspective of maximal fractional matchings; only
non-symmetric inputs require some effort.

The general case is not that easy to solve efficiently, but it turns out that there
is an algorithm [3] that finds a maximal fractional matching in O(∆) time in the
LOCAL model. The running time does not have any dependence on n, but it is
still linear in ∆, as the algorithm resorts to a fairly naive one-by-one approach to
overcome challenges related to local coordination.

In summary, we can characterise the state-of-the-art algorithms for these two
problems as follows:

1. Maximal matchings:

• symmetry breaking necessary
• algorithms resort to local coordination
• time O(∆ + log∗ n).

2. Maximal fractional matchings:

• symmetry breaking not needed
• algorithms resort to local coordination
• time O(∆).

5.3 A New Lower Bound
Maximal fractional matchings are a genuine example of a pure coordination prob-
lem. They are a “completable but tight” problem, in the sense discussed in Sec-
tion 4.1. They do not need any symmetry breaking. Most importantly, now we
can show that the O(∆)-time algorithm is optimal (at least for sparse graphs): the
problem cannot be solved in time o(∆), independently of n, with any distributed
algorithm (deterministic or randomised).

Before we continue, it is important to emphasise that the result does not yet
tell anything more than what is stated above. In particular, it has not yet been

ruled out that there could exist a sublinear-in-∆ algorithm whose running time
depends moderately on n. For example, algorithms of a running time o(∆) +

O(log∗ n) cannot be yet excluded. This is also the reason why this result does
not tell anything interesting about maximal matchings: a simple corollary would
be that maximal matchings cannot be found in time o(∆) independently of n, but
this we already know, as any algorithm for maximal matchings has a running
time Ω(log∗ n) that certainly depends on n. Nevertheless, this result demonstrates
that there are techniques with which we can prove tight lower bounds for pure
coordination problems, and this hopefully paves the road for future research in
which we can tackle also algorithms with running times that have a moderate
dependence on n.

A key insight in the proof is that we will not try to prove the result directly
for the LOCAL model, but we will first consider weaker models of distributed
computing (Sections 5.4 and 5.7). In weaker models, lower bounds are of course
easier to prove but less interesting. Only then we will amplify the result so that
we have similar lower bounds also for the LOCAL model.

On a high level, the proof builds on the following techniques:

1. The unfold-and-mix technique for proving lower bounds in very weak mod-
els of distributed computing (Section 5.6).

2. A general technique for amplifying lower bounds from weak models to the
usual LOCAL model (Section 5.8). The main ingredient here is the con-
struction of so-called homogeneous graphs (Section 5.9).

Both of these techniques were originally presented in PODC 2012 [13, 19], but it
was not until PODC 2014 [14] that we managed to put these techniques together
in order to prove lower bounds for the maximal fractional matching problem in
the usual LOCAL model.

5.4 Port-Numbering Model and Edge Colouring Model
We start by introducing two models of distributed computing: the port-numbering
model, in short PN, and the edge-colouring model, in short EC. While at least
the PN model is also interesting in its own right, for our purposes these models
serve as a stepping stone towards more interesting results—lower bounds in the
LOCAL model.

In many ways, the PN and EC models are similar to the usual LOCAL model:
Each node is an autonomous entity that maintains its own local state. Computation
proceeds in synchronous rounds. In each round, all nodes in parallel (1) send mes-
sages to their neighbours, (2) receive messages from their neighbours, (3) update
their local state, and (4) possibly announce their local output and stop.

3

5

2 8

LOCAL OI PO

b

c

a d

a < b < c < d 1
2

2
1

2

1 13

PN

1
2

2
1

2

1 13

EC

2
4

1
3

Figure 3: Models LOCAL, OI, PO, PN, and EC.

The key difference is related to the initial information that is available in the
network. In PN and EC, the nodes are anonymous—they do not have any unique
identifiers. However, each node can still distinguish between their neighbours; see
Figure 3:

• In the PN model, the endpoints of the edges (“ports”) are numbered so that
a node of degree d is incident to endpoints with numbers 1, 2, . . . , d. In
essence, a node can refer to its neighbours by numbers 1, 2, . . . , d.

• In the EC model, the edges are properly coloured with O(∆) colours. Each
node knows the colours of the incident edges, and it can use the colours to
refer to its neighbours.

Note that EC is strictly stronger than PN. Given an edge colouring, it is easy to
derive a port numbering. The converse is not true: for example, in the EC model it
is trivial to find an edge colouring, but in the PN model it is not possible in general
with any deterministic algorithm. To see this, consider a cycle with a symmetric
port numbering; no PN-algorithm can break the symmetry here:

2
1

2
1

2

1

However, note that EC is also a fairly weak model. For example, no deterministic
algorithm can break the symmetry in a graph with just two nodes:

1

In particular, it is not possible to find a proper vertex colouring with either PN or
EC algorithms here. While everything was solvable in linear time in the LOCAL
model, there are numerous seemingly trivial problems that cannot be solved at all
in PN or EC.

5.5 Maximal Matching in the EC Model
Maximal matching cannot be solved with deterministic algorithms in the PN model.
However, in the EC model, there is a very simple greedy algorithm for finding a
maximal matching M in time O(∆). We consider each colour class 1, 2, . . . ,O(∆)
one by one. In step i, we find all edges of colour i that are not yet adjacent to any
edge of M, and add them to M. Clearly, the end result is a maximal matching.

A key observation at this point is that maximal matchings in the EC model do
not need any symmetry breaking. Symmetry between adjacent edges is already
broken by the edge colouring. We only need to deal with local coordination, in
order to avoid adding two adjacent edges simultaneously to M.

The greedy algorithm solves the local coordination challenge by a very naive
technique: it considers colour classes one by one, which results in a linear-in-
∆ running time. The key question is now if this algorithm is optimal in the EC
model. Perhaps e.g. a clever divide-and-conquer approach could solve the prob-
lem in only O(log ∆) time?

It turns out the greedy algorithm is indeed optimal. We can show that there is
no algorithm that finds a maximal matching in o(∆) time in the EC model [19].
This was the first linear-in-∆ lower bound for a natural coordination problem.

5.6 Unfold and Mix
We will now give an overview of the techniques that can be used to prove lower
bounds for the maximal matching problem in the EC model. Assume that we
have a deterministic distributed algorithm A that finds a maximal matching in any
given graph, for any given edge colouring. With this knowledge, we can construct
“fragile” instances in which algorithm A is forced to produce perfect matchings.
Informally, perfect matchings are more tightly constrained than maximal match-
ings; minor changes in the input may cause major changes in the output.

To force algorithm A to produce a perfect matching, we will to study graphs
with self-loops. For our purposes, a graph G with self-loops is just a compact
representation of a large (possibly infinite) graph G′ that does not have any loops.
To construct G′, we just “unfold” all loops of G; see Figure 4.

Each self-loop represents symmetry. If e is a self-loop in graph G, and we
unfold e to construct graph G′, then G′ will be symmetric with respect to e. More
precisely, in the EC model deterministic algorithms cannot distinguish between

G:

G’:

= = = …
e

e e e

e e e e

Figure 4: Graph G with self-loops is a compact representation of graph G′.

the two endpoints of e. If one of the endpoints produces the local output indicating
that it is unmatched, the other endpoint will produce the same output—but this is a
contradiction, as in a maximal matching we cannot have a pair of adjacent nodes
such that both of them are unmatched. Therefore all nodes that have self-loops
must be always matched. As long as we have at least one self-loop attached to
each node, the output will be a perfect matching.

To prove the lower bound of Ω(∆), we will study critical pairs. We say that G
and H form an r-critical pair of graphs if:

• G has a self-loop e and H has a self-loop f ,
• loops e and f have the same colour,
• the radius-r neighbourhoods of e and f are isomorphic,
• algorithm A makes a different decision for e and f .

By a different decision we mean that in graph G algorithm A outputs a matching
A(G) with e ∈ A(G), and in graph H algorithm A outputs a matching A(H) with
f < A(H). Naturally, if such a pair exists, then the running time of A has to be at
least r; otherwise A would not be able to distinguish between e and f .

For any algorithm A, it is fairly straightforward to find a 0-critical pair that
consists of just a pair of nodes so that both of them have Θ(∆) self-loops. Once we
have a 0-critical pair, we will apply a technique called unfold-and-mix repeatedly.
In each iteration we will lose some self-loops but gain criticality. We can repeat
the process for Θ(∆) times until we run out of self-loops. The end result will be a
Θ(∆)-critical pair of graphs of maximum degree ∆. The existence of such a pair
is enough to demonstrate that the running time of algorithm A is Ω(∆).

The unfold-and-mix technique is illustrated in Figure 5. In each inductive step,
our starting point is a k-critical pair of graphs, G and H, with the special loops e
and f . Then we

1. “unfold” the loops e and f to obtain graphs GG and HH,

2. “mix” the graphs GG and HH together to obtain another graph GH that
combines elements from G and H.

G: H:

GG: HH:GH:

e f

e f

Figure 5: The unfold-and-mix technique.

Intuitively, the output of A in GG and the output of A in HH are not compatible
with each other—by assumption, the outputs of e and f are different. Hence the
algorithm is now in trouble:

• It has to do something different in GH in comparison with what it did in
either GG or HH.

• It cannot sweep the problem under the rug easily, as the instances are “frag-
ile”: graph GH still has self-loops, and therefore the algorithm has to output
a perfect matching.

With some effort, we can now show that among the three graphs that we have
constructed (GG, GH, and HH), we can always find at least two that satisfy the
conditions of a (k + 1)-critical pair.

In essence, each unfold-and-mix step makes the problem instance more diffi-
cult from the perspective of the algorithm that we study: the algorithm has to look
further (i.e., spend more time) in order to distinguish the two graphs that form
a critical pair. This way we can show that algorithm A cannot find a maximal
matching in time o(∆). Similar ideas can be used to prove an analogous lower
bound also for maximal fractional matchings.

5.7 More Models

So far we have seen how to prove tight lower bounds for coordination problems
in the EC model. However, we are interested in the usual LOCAL model, and the
EC model and the LOCAL model are very different from each other.

We will introduce two new models that serve as intermediate steps that bridge
the gap between the EC model and the LOCAL model; see Figure 3:

• Port numbering and orientation (PO): The model is a stronger version of
the PN model. In addition to the port numbering, we are also given an ori-
entation, i.e., for each edge one of the endpoints is labelled as the head. The
orientation does not restrict how we can send information in the network;
it is just additional symmetry-breaking information that the algorithm can
use.

• Order-invariant algorithms (OI): This model is a weaker version of the LO-
CAL model. The nodes have unique identifiers, but algorithms can only use
the relative order of the nodes and not the numerical values of the identi-
fiers. Put otherwise, if we relabel the nodes but preserve their relative order,
the output of the algorithm must not change.

For randomised algorithms these models are not that interesting, as a randomised
algorithm can use random bits to e.g. generate labels that are unique with high
probability (at least if we have some estimate of the size of the network). However,
for deterministic algorithms the differences between the models PN, PO, OI, and
LOCAL become interesting.

First, we can see that the PO model is strictly stronger than the PN model. For
example, in a graph with just one edge, a PO algorithm can use the orientation to
break the symmetry between the endpoints, while in PN this is not possible:

11

We can also see that OI is strictly stronger than PO. The OI model is clearly at least
as strong as the PO model: the ordering of the nodes can be used to derive both
a port numbering and an orientation. Moreover, in the OI model we can always
break symmetry e.g. in a cycle (there is always a unique node that is smaller than
any other node), while this is not necessarily the case in the PO model:

2
1

2
1

2

1

Finally, there are many problems that can be solved faster in the LOCAL model
than in the OI model. Maximal matchings in a cycle are a good example: it takes
Θ(n) time to find a maximal matching in a cycle in the OI model in the worst case,
but as we have discussed in Section 3.4, this is possible in Θ(log∗ n) time in the
LOCAL model. In summary, for deterministic algorithms the relative strengths of
the models are PN (PO (OI (LOCAL and PN (EC.

5.8 Amplifying Lower Bounds

We have seen above that in general, the PO model can be much weaker than the
LOCAL model. Indeed, there are many algorithms that exploit the properties of
the LOCAL model in order to solve graph problems efficiently. For example,
numerous algorithms that solve symmetry breaking in time O(log∗ n) specifically
rely on the unique identifiers and cannot be used in the PO model.

However, if we have a look at problems that can be solved in time f (∆) in-
dependently of n—for example, pure coordination problems—the situation looks
very different. As we can see from the survey [33], for numerous classical graph
problems, the best f (∆)-time deterministic approximation algorithms in the LO-
CAL model do not make any use of unique identifiers. We could easily run the
same algorithms in the PO model as well (and sometimes also in the PN model).

It turns out that this is not just a coincidence. We can now prove that the PO,
OI, and LOCAL models are equally strong, at least in the following case [13]:

1. We use distributed algorithms with a running time of f (∆) for some f , in-
dependently of n.

2. We are interested in so-called simple PO-checkable graph optimisation prob-
lems. This includes many classical packing and covering problems such as
vertex covers, edge covers, matchings, independent sets, dominating sets,
and edge dominating sets.

To prove that PO and LOCAL are equally strong for this family of problems, we
proceed in two steps, using the OI model as an intermediate step:

• PO ≈ OI: We introduce so-called homogeneous graphs, in which nodes are
ordered so that the ordering provides as little additional information as pos-
sible. There is only a small fraction of nodes for which OI algorithms may
have an advantage over PO algorithms. See Section 5.9 for more details.

• OI ≈ LOCAL: We apply Ramsey’s theorem [16] to assign unique identifiers
in an unhelpful manner, so that algorithms in the LOCAL model do not have
any advantage over OI algorithms.

The use of Ramsey’s theorem in such a context is nowadays a standard tech-
nique [10, 29]. The key novelty is the introduction of homogeneous graphs, and
in particular, a proof that shows that finite high-girth high-degree homogeneous
graphs indeed exist.

5.9 Key Ingredient: Homogeneous Graphs
We introduce the following technical definition that is helpful in the context of
the OI model. We say that graph G is (1 − ε, r)-homogeneous if the nodes can be
ordered so that a fraction 1−ε of all radius-r neighbourhoods are isomorphic, with
respect to both topology and ordering. If we have such an ordering of the nodes,
then any OI-algorithm with a running time at most r will be in trouble: almost all
neighbourhoods look identical.

To show that models PO and OI are equally strong for any f (∆)-time algo-
rithm, for a broad range of graph problems, it is desirable to have graphs with the
following properties, for any g, r, k, and ε > 0:

(1) the graph is (1 − ε, r)-homogeneous,
(2) the graph is 2k-regular,
(3) the graph has girth at least g, and
(4) the graph is finite.

It turns out that satisfying any three out of the four properties is easy—see
Figure 6 for examples:

(a) Regular high-girth graphs satisfy all properties except (1).
(b) Cycles satisfy all properties except (2).
(c) Regular grids satisfy all properties except (3).
(d) Infinite trees satisfy all properties except (4).

However, satisfying all four properties simultaneously is more challenging. The
construction that we use in our recent work [15] is based on the Cayley graphs
of certain groups (variants of so-called iterated wreath products) that have several
desirable properties: moderate growth, relatively large girth [12], and a convenient
geometric embedding.

5.10 Putting Everything Together
With the help of homogeneous graphs we have been able to show that the models
PO, OI, and LOCAL are equally strong from the perspective of f (∆)-time algo-
rithms. We also know that maximal matchings take Ω(∆) time in the EC model.
Ideally, we would now like to put the two results together and show that maximal
matchings cannot be solved in o(∆) + O(log∗ n) time in the LOCAL model, either.

Unfortunately, we do not know how to do this yet. Even if we put aside the
issue of somehow bridging the gap between the EC model and the PO model,
we have a much bigger obstacle in front of us: the term O(log∗ n) in the running
time is enough to separate the models PO and LOCAL, and kill the argument of
Section 5.8. In essence, we still cannot deal with symmetry-breaking problems.

8

7 1812

6

5

24

11

20

33

322619
4

3 1610

2

1

23

9

15

41

4029

17

14

13

39

25

31

53

5245

38

51

504437

22

21 3428

30

49

4843

36

47

46423527

61 6663 6562 64

51 5653 5552 54

41 4643 4542 44

31 3633 3532 34

21 2623 2522 24

11 1613 1512 14

11

10

1

9
8

7

3

6

12

2

4

5

(b)

(c) (d)

(a)

Figure 6: Examples of graphs that satisfy some of the desirable properties from
Section 5.9.

However, what we can do is to put these ingredients together to prove a
lower bound for maximal fractional matchings. We can show that maximal frac-
tional matchings cannot be solved in time o(∆) independently of n in the LOCAL
model—recall that there is a matching upper bound of O(∆). There are many
technical details to be taken care of, but the key steps are as follows [14]:

• Prove a lower bound for the EC model, with the help of the unfold-and-mix
technique (Section 5.6).

• EC ≈ PO: Use the properties of maximal fractional matchings to show that
a lower bound for EC implies a lower bound for PO.

• PO ≈ OI: Use homogeneous graphs (Section 5.9) to show that a lower
bound for PO implies a lower bound for OI.

• OI ≈ LOCAL: Use Ramsey’s theorem to show that a lower bound for OI
implies a lower bound for LOCAL.

Finally, we can prove that in the LOCAL model, randomised f (∆)-time algo-
rithms cannot do any better than deterministic algorithms with this kind of graph
problems, and we have the theorem that we have been looking for: even if we use
randomised algorithms, and even if we can exploit the full power of the LOCAL
model, there is no distributed algorithm that finds a maximal fractional matching
in time o(∆) independently of n.

6 Conclusions
So far we have identified the first pure coordination problem—maximal fractional
matchings—with the following properties: the problem can be solved in time
O(∆) independently of n, and there is a matching lower bound showing that it
cannot be solved in time o(∆) independently of n.

Intuitively, the unfold-and-mix technique shows that there is need for local
coordination with nodes that are at distance up to Θ(∆). All other parts of the
proof—e.g. homogeneous graphs and Ramsey’s theorem—are just technicalities
that are needed to show that algorithms cannot “cheat” somehow by exploiting
unique node identifiers and randomness.

6.1 Current Obstacles
Our hope is that we could prove that many other problems—for example, max-
imal matchings—also have a similar source of hardness that is related to local
coordination with nodes at distance up to Θ(∆). We conjecture that, for example,

maximal matching cannot be solved in time o(∆) + O(log∗ n) with any algorithm.
In essence, we believe that the Panconesi–Rizzi algorithm [31] with a running
time of O(∆ + log∗ n) is optimal for n � ∆.

Currently, there seem to be two obstacles that prevent us from proving such a
theorem, both of which are related to the term Θ(log∗ n) in the lower bound that
we are looking for.

1. The final step OI ≈ LOCAL (Section 5.8): The Ramsey-based argument
that we use to show that OI and LOCAL are equally strong fails for Θ(log∗ n)-
time algorithms.

2. The starting point in the EC model (Section 5.6): In time Θ(log∗ n) an algo-
rithm can find a vertex colouring that breaks the symmetry between adjacent
nodes. Therefore it is no longer possible to use self-loops to construct in-
stances that are “fragile”.

However, once again we can try to deal with these two obstacles one by one.
It turns out that there is a natural graph problem that would let us focus on the
second obstacle first—the problem is bipartite maximal matching that we already
discussed in Section 3.5.

6.2 Roadmap for the Future

Recall that maximal matching in bipartite 2-coloured graphs can be solved in time
O(∆) independently of n. We conjecture that bipartite maximal matchings are
a pure coordination problem that cannot be solved in time o(∆) independently
of n. The current techniques are not yet sufficient to prove it, but it seems that
we are now facing just one obstacle—how to use the unfold-and-mix technique to
construct “fragile” instances even in the presence of an edge colouring that breaks
symmetry.

This suggests the following roadmap for future research:

1. Extend the unfold-and-mix technique so that we can prove a linear-in-∆
bound for bipartite maximal matchings.

2. Then extend the Ramsey-based argument so that we can prove a similar
bound for maximal matchings in general.

3. Then extend the techniques so that we can prove similar bounds for other
coordination problems, for example, independent sets, vertex colourings,
and edge colourings.

This seems to be a long road ahead, but it could lead to a resolution of major
open questions related to distributed time complexity. Such results could find
applications also in other areas of theoretical computer science. In prior work,
tight lower bounds for distributed symmetry breaking have implied tight lower
bounds for e.g. decision tree complexity and models of parallel computing [11,
30], and perhaps tight lower bounds for local coordination would find similar
applications.

Acknowledgements
This article is based on the material that I presented in the ADGA 2014 workshop,
http://adga2014.hiit.fi/. Many thanks to Christoph Lenzen for inviting
me to give the talk, to the workshop participants for discussions, to Stefan Schmid
for asking me to write this article and for his feedback on it, to Przemysław Uz-
nański and Tuomo Lempiäinen for their helpful comments, and to my coauthors
Mika Göös and Juho Hirvonen without whom the results described in this article
would not even exist.

References
[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel al-

gorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–
583, 1986. doi:10.1016/0196-6774(86)90019-2.

[2] Matti Åstrand, Valentin Polishchuk, Joel Rybicki, Jukka Suomela, and Jara Uitto.
Local algorithms in (weakly) coloured graphs, 2010. arXiv:1002.0125.

[3] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for
vertex cover and set cover in anonymous networks. In Proc. 22nd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pages
294–302. ACM Press, 2010. doi:10.1145/1810479.1810533.

[4] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for
the weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.
doi:10.1016/0196-6774(81)90020-1.

[5] Leonid Barenboim and Michael Elkin. Distributed (∆ + 1)-coloring in linear (in ∆)
time. In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC 2009),
pages 111–120. ACM Press, 2009. doi:10.1145/1536414.1536432.

[6] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Funda-
mentals and Recent Developments. Morgan & Claypool, 2013. doi:10.2200/
S00520ED1V01Y201307DCT011.

http://adga2014.hiit.fi/
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://arxiv.org/abs/1002.0125
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/10.1145/1536414.1536432
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011

[7] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The local-
ity of distributed symmetry breaking. In Proc. 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2012), pages 321–330. IEEE Computer
Society Press, 2012. doi:10.1109/FOCS.2012.60.

[8] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70(1):32–53, 1986. doi:
10.1016/S0019-9958(86)80023-7.

[9] Andrzej Czygrinow, Michał Hańćkowiak, Edyta Szymańska, and Wojciech
Wawrzyniak. Distributed 2-approximation algorithm for the semi-matching prob-
lem. In Proc. 26th International Symposium on Distributed Computing (DISC 2012),
volume 7611 of Lecture Notes in Computer Science, pages 210–222. Springer, 2012.
doi:10.1007/978-3-642-33651-5_15.

[10] Andrzej Czygrinow, Michał Hańćkowiak, and Wojciech Wawrzyniak. Fast dis-
tributed approximations in planar graphs. In Proc. 22nd International Symposium
on Distributed Computing (DISC 2008), volume 5218 of Lecture Notes in Computer
Science, pages 78–92. Springer, 2008. doi:10.1007/978-3-540-87779-0_6.

[11] Faith E. Fich and Vijaya Ramachandran. Lower bounds for parallel computation
on linked structures. In Proc. 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA 1990), pages 109–116. ACM Press, 1990. doi:10.1145/
97444.97676.

[12] Alex Gamburd, Shlomo Hoory, Mehrdad Shahshahani, Aner Shalev, and Balint
Virág. On the girth of random Cayley graphs. Random Structures & Algorithms,
35(1):100–117, 2009. doi:10.1002/rsa.20266.

[13] Mika Göös, Juho Hirvonen, and Jukka Suomela. Lower bounds for local approx-
imation. Journal of the ACM, 60(5):39:1–23, 2013. doi:10.1145/2528405.
arXiv:1201.6675.

[14] Mika Göös, Juho Hirvonen, and Jukka Suomela. Linear-in-∆ lower bounds in the
LOCAL model. In Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC 2014), pages 86–95. ACM Press, 2014. doi:
10.1145/2611462.2611467. arXiv:1304.1007.

[15] Mika Göös and Jukka Suomela. No sublogarithmic-time approximation scheme
for bipartite vertex cover. Distributed Computing, 27(6):435–443, 2014. doi:10.
1007/s00446-013-0194-z. arXiv:1205.4605.

[16] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory. John
Wiley & Sons, New York, 1980.

[17] Michał Hańćkowiak, Michał Karoński, and Alessandro Panconesi. On the dis-
tributed complexity of computing maximal matchings. In Proc. 9th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 1998), pages 219–225. Society for
Industrial and Applied Mathematics, 1998.

http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1007/978-3-642-33651-5_15
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1145/97444.97676
http://dx.doi.org/10.1145/97444.97676
http://dx.doi.org/10.1002/rsa.20266
http://dx.doi.org/10.1145/2528405
http://arxiv.org/abs/1201.6675
http://dx.doi.org/10.1145/2611462.2611467
http://dx.doi.org/10.1145/2611462.2611467
http://arxiv.org/abs/1304.1007
http://dx.doi.org/10.1007/s00446-013-0194-z
http://dx.doi.org/10.1007/s00446-013-0194-z
http://arxiv.org/abs/1205.4605

[18] Michał Hańćkowiak, Michał Karoński, and Alessandro Panconesi. On the dis-
tributed complexity of computing maximal matchings. SIAM Journal on Discrete
Mathematics, 15(1):41–57, 2001. doi:10.1137/S0895480100373121.

[19] Juho Hirvonen and Jukka Suomela. Distributed maximal matching: greedy is opti-
mal. In Proc. 31st Annual ACM Symposium on Principles of Distributed Comput-
ing (PODC 2012), pages 165–174. ACM Press, 2012. doi:10.1145/2332432.
2332464. arXiv:1110.0367.

[20] Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for
maximal matching. Information Processing Letters, 22(2):77–80, 1986. doi:10.
1016/0020-0190(86)90144-4.

[21] Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In
Proc. 21st Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA 2009), pages 138–144. ACM Press, 2009. doi:10.1145/1583991.
1584032.

[22] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be com-
puted locally! In Proc. 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC 2004), pages 300–309. ACM Press, 2004. doi:10.1145/
1011767.1011811.

[23] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2006), pages 980–989. ACM Press, 2006. doi:10.1145/1109557.
1109666.

[24] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation:
lower and upper bounds, 2010. arXiv:1011.5470.

[25] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Comput-
ing, 21(1):193–201, 1992. doi:10.1137/0221015.

[26] Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/
0215074.

[27] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Fran-
cisco, 1996.

[28] Moni Naor. A lower bound on probabilistic algorithms for distributive ring color-
ing. SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/
0404036.

[29] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal
on Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

[30] Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,
20(6):999–1007, 1991. doi:10.1137/0220062.

http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1145/2332432.2332464
http://dx.doi.org/10.1145/2332432.2332464
http://arxiv.org/abs/1110.0367
http://dx.doi.org/10.1016/0020-0190(86)90144-4
http://dx.doi.org/10.1016/0020-0190(86)90144-4
http://dx.doi.org/10.1145/1583991.1584032
http://dx.doi.org/10.1145/1583991.1584032
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://arxiv.org/abs/1011.5470
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/0220062

[31] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for
sparse networks. Distributed Computing, 14(2):97–100, 2001. doi:10.1007/
PL00008932.

[32] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, Philadelphia, 2000.

[33] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys, 45(2):24:1–
40, 2013. doi:10.1145/2431211.2431223. http://www.cs.helsinki.fi/
local-survey/.

[34] Jukka Suomela. Distributed Algorithms. 2014. Online textbook. http://users.
ics.aalto.fi/suomela/da/.

http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1145/2431211.2431223
http://www.cs.helsinki.fi/local-survey/
http://www.cs.helsinki.fi/local-survey/
http://users.ics.aalto.fi/suomela/da/
http://users.ics.aalto.fi/suomela/da/

	1o

