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Abstract

Because of their succinctness and clear syntax, regular expressions are the
common choice to represent regular languages. Deterministic finite au-
tomata are an excellent representation for testing equivalence, containment
or membership, as these problems are easily solved for this model. How-
ever, minimal deterministic finite automata can be exponentially larger than
the associated regular expression, while the corresponding nondeterministic
finite automata can be linearly larger. The worst case of both the complexity
of the conversion algorithms, and of the size of the resulting automata, are
well studied. However, for practical purposes, estimates for the average case
can provide much more useful information. In this paper we review recent
results on the average size of automata resulting from several constructions
and suggest several directions of research. Most results were obtained within
the framework of analytic combinatorics.

1 Introduction
The methods to convert regular expressions (REs) into equivalent automata can
be divided in three major classes, depending on whether the resulting automaton
is deterministic (DFA), nondeterministic without ε-transitions (NFA) or nondeter-
ministic with ε-transitions (ε-NFA). Paradigmatic methods of each class are Brzo-
zowski’s [13], Glushkov’s [21] and Thompson’s [47] constructions, respectively.

∗This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by
FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER,
under the partnership agreement PT2020.

†CMUP, DCC & DM, Faculdade de Ciências da Universidade do Porto, Portugal.

sbb@dcc.fc.up.pt
ajmachia@fc.up.pt
nam@dcc.fc.up.pt
rvr@dcc.fc.up.pt


Brzozowski’s method introduces the notion of derivative of a regular expres-
sion with respect to a symbol, a syntactic equivalent of the notion of left quotient
for languages. It is well-known that regular languages have a finite number of
left-quotients. To obtain a finite number of derivatives, it is necessary to consider
regular expressions modulo some equational axioms, namely the associativity,
commutativity and idempotence of union (ACI). A nondeterministic version of
derivatives was introduced by Mirkin [35] and Antimirov [2]. Instead of a deriva-
tive being a regular expression, a set of regular expressions (partial derivatives)
is considered. This avoids the necessity of using derivatives modulo equational
axioms, but the associated construction (partial derivative automata) yields NFAs
instead of DFAs.

Glushkov construction uses the positions of the letters occurring in a regular
expression. The partial derivative automaton is a quotient of the Glushkov (or
position) automaton, and very often is its smallest quotient [15, 22, 31]. If ε-
transitions are eliminated from the Thompson automaton, the Glushkov automa-
ton is obtained. Finally, the determination of the Glushkov automaton (by subset
construction) produces the McNaughton-Yamada DFA [34].

The worst case of both the complexity of the conversion algorithms, and of
the size of the resulting automata, are well studied [12, 16, 15] (see also [25]
for a survey). However, for practical purposes, an estimate for the average case
constitute a much more useful information.

In this paper we review recent results on the average size of automata result-
ing from several constructions, and suggest several directions of research. Most
results were obtained within the framework of analytic combinatorics, a powerful
tool for asymptotic average analysis, by relating the enumeration of combinatorial
objects to the algebraic and complex analytic properties of generating functions.
An introduction to this method, and a derivation of the asymptotic average size
of several conversions between regular expressions and ε-NFAs, can be found
in Broda et al [9]. Another approach to average complexity is to consider uni-
form random generators and to perform statistically significant experiments. The
drawback of this approach is that it only gives results for a small range of object
sizes and, due to their combinatorial nature, only modest ranges can usually be
considered. However, whenever we refer to experimental results we mean results
obtained in this limited context. Both in experimental and analytic results we
consider the average with respect to the uniform distribution.

In the conversions from regular expressions to NFAs without ε-transitions,
although position based methods can provide recursive definitions that endow an-
alytic analysis, we will emphasise the role of derivatives when considering ex-
tended regular expressions, or other algebraic structures such as Kleene algebras
with tests.

We briefly review some basic definitions about regular expressions and finite



automata. For more details, we refer the reader to Kozen [27] or Sakarovitch [44].
The set R of regular expressions over a finite alphabet Σ is the smallest set con-
taining ∅ and all the expressions generated by the following grammar:

α := ε | σ1 | · · · | σk | (α + α) | (α · α) | α? (1)

where σi ∈ Σ are letters and the operator · (concatenation) is often omitted. The
language L(α) ⊆ Σ? associated to α is inductively defined as L(ε) = {ε}, L(σ) =

{σ} for σ ∈ Σ, L((α + β)) = L(α) ∪ L(β), L((α · β)) = L(α) · L(β), and L(α?) =

L(α)?. Also, L(∅) = ∅. The size |α| of α ∈ R is the number of symbols in α,
where parentheses are not counted; the alphabetic size |α|Σ is its number of letter
occurrences. We define ε(α) as ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise.
Two regular expressions α and β are equivalent if L(α) = L(β), and we write
α = β. With this interpretation, the algebraic structure (R,+, ·, ∅, ε) constitutes
an idempotent semiring, and with the unary operator ?, a Kleene algebra (KA).
Given a language L ⊆ Σ? and a word w ∈ Σ?, the left-quotient of L w.r.t. w is
the language w−1L = { x | wx ∈ L }. A nondeterministic finite automaton (NFA)
is a tuple A= (Q,Σ, δ, I, F) where Q is a finite set of states, Σ is the alphabet,
δ ⊆ Q× (Σ∪{ε})×Q is the transition relation, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. When I = {q0}, we just write q0 instead of {q0}.
The size of an NFA,A, is |A| = |Q| + |δ|, the number of states |A|Q = |Q|, and the
number of transitions |A|δ = |δ|. An NFA that has transitions labelled with ε is an
ε-NFA. An NFA is deterministic (DFA) if |I| = 1 and for each pair (q, σ) ∈ Q × Σ

there exists at most one q′ such that (q, σ, q′) ∈ δ. The language accepted by an
automaton A is L(A) = { w ∈ Σ∗ | δ(I,w) ∩ F , ∅ }. An equivalence relation E
over Q is right invariant (or a bisimulation) if E ⊆ (Q\F)2∪F2, and for any p, q ∈
Q, σ ∈ Σ if p E q, then1 δ(p, σ)/E = δ(q, σ)/E. The quotient automaton A/E =

(Q/E,Σ, δE, [q0]E, F/E), where δE = { ([p]E, σ, [q]E) | (p, σ, q) ∈ δ }, satisfies
L(A) = L(A/E). The largest bisimulation, i.e. the union of all bisimulation
relations on Q, is called bisimilarity (≡b).

2 Generating Functions and Analytic Methods
A combinatorial class C is a set of objects on which a non-negative integer func-
tion (size) | · | is defined, and such that for each n ≥ 0, the number of objects of
size n, cn, is finite. The generating function C(z) of C is the formal power series
C(z) =

∑
c∈C z|c| =

∑∞
n=0 cnzn. We let [zn]C(z) denote the coefficient of zn, cn. The

symbolic method [19] is a framework that allows to express a combinatorial class
C in terms of simpler ones, B1,. . . ,Bn, by means of specific operations, yielding

1Denoting by S/E the set { [s]E | s ∈ S }.



the generating function C(z) as a function of the generating functions Bi(z) of Bi,
for 1 ≤ i ≤ n. For example, given two disjoint combinatorial classes A and B, with
generating functions A(z) and B(z), respectively, the union A∪B is a combinatorial
class whose generating function is A(z) + B(z). Other usual admissible operations
are the cartesian product and the Kleene closure.

Multivariate generating functions are used in order to obtain estimates about
the asymptotic behaviour of parameters associated to combinatorial classes. Con-
sidering t weighting functions, pi : C → C, for 1 ≤ i ≤ t, let ck1,...,kt ,n be the number
of objects c of size n with p1(c) = k1, . . . , pt(c) = kt, one has the following multi-
variate weighting generating function

C(u1, . . . , ut, z) =
∑

n,k1,...,kt≥0

ck1,...,kt ,n uk1
1 · · · u

kt
t zn.

The functions (pi)i give the respective weights of t features under consideration.
Note that since C is a combinatorial class, the number of objects with a given size
is finite, and therefore, for a fixed n, there is only a finite number of ck1,...,kt ,n which
are different from 0. Also,

∂C(u1, ... , ut, z)
∂ui

∣∣∣∣∣
ui=1

=
∑
n,k j≥0

j,i

∑
ki≥0

kick1,...,kt ,n

 uk1
1 ···u

ki−1
i−1 uki+1

i+1 ···u
kt
t zn,

where
∑

ki≥0 kick1,...,kt ,n accounts for the cumulative presence of weight pi in the
objects of size n.

2.1 Analytic Asymptotics

Generating functions can be seen as complex analytic functions, and the study of
their behaviour around their dominant singularities gives us access to an asymp-
totic estimate for their coefficients. We refer the reader to Flajolet and Sedgewick
for an extensive study on this topic. Here we only state the results relevant
for this paper. For ρ ∈ C, R > 1 and 0 < φ < π/2, consider the domain
∆(ρ, φ,R) = { z ∈ C | |z| < R, z , ρ, and |Arg(z − ρ)| > φ }, where Arg(z)
denotes the argument of z ∈ C. A region is a ∆-domain at ρ if it is a ∆(ρ, φ,R), for
some R and φ. The generating functions we consider have always a unique domi-
nant singularity, and satisfy one of the two conditions of the following proposition,
used by Nicaud [37].

Proposition 1. Let f (z) be a function that is analytic in some ∆-domain at ρ ∈ R+.
If at the intersection of a neighborhood of ρ and its ∆-domain,



1. f (z) = a − b
√

1 − z/ρ + o
( √

1 − z/ρ
)
, with a, b ∈ R, b , 0, then

[zn] f (z) ∼
b

2
√
π
ρ−nn−3/2.

2. f (z) = a√
1−z/ρ

+ o
(

1√
1−z/ρ

)
, with a ∈ R, and a , 0, then

[zn] f (z) ∼
a
√
π
ρ−nn−1/2.

2.2 Generating Functions for Regular Expressions
For the regular expressions given in (1), an average case analysis of different
descriptional measures, including the number of letters, has been presented by
Nicaud [36, 37]. Here we introduce some of those results, deriving them in a
slight different way and using a parametrised weighted generating function based
on Broda et al. [9].

Using the recursive definition of R given by (1), the associated generating
function Rk(z) satisfies Rk(z) = (k + 1)z+zRk(z) +2zRk(z)2. Solving this equation
for Rk(z), and considering that Rk(0) = a0 = 0, one obtains Rk(z) =

1−z−
√

∆k(z)
4z ,

where ∆k(z) = 1 − 2z − (7 + 8k)z2. The zeros of ∆k(z) are ρk = 1
1+
√

8k+8
and

ρ̄k = 1
1−
√

8k+8
. The coefficients of the series of R̃k(z) = 4zRk(z) + z = 1 −

√
∆k(z),

have the same asymptotical behaviour of the ones of Rk(z). Now ∆k(z) = (7 +

8k)(z − ρk)ρk(1 − z/ρk), and since (7 + 8k)(ρk − ρk) = 4
√

2k + 2, one has

R̃k(z) = 1 −
√

∆k(z) = 1 − 2
4√
2k + 2

√
ρk

√
1 − z/ρk + o

( √
1 − z/ρk

)
.

By Proposition 1, one obtains

[zn](4zRk(z) + z) ∼
4√2k + 2

√
ρk

√
π

ρ−n
k n−3/2,

[zn]Rk(z) ∼
4√2k + 2

√
ρk

4
√
π

ρ−(n+1)
k (n + 1)−3/2, (2)

where [zn]Rk(z) is the number of regular expressions α with |α| = n.
To obtain estimates for the average value relative to some other measures on

regular expressions, one can consider parameters (cε, cσ, c+, c•, c?), where cκ is the
contribution of the operation κ expressed in the measure under consideration. This
allows to consider a parametrized weighted generating function and an asymptotic
estimation of its coefficients. For each set of parameters, one obtains estimations



for the associated measure, such as number of letters, number of operators of a
given type (concatenation, star, etc) and, as we will see in Section 3.1, the size of
some automata constructions.

The general bivariate generating function, corresponding to those parameters,
satisfies the following equation

Ck(u, z) = (ucε + kucσ)z + (uc+ + uc•)zCk(u, z)2 + uc?zCk(u, z).

Solving this equation for Ck(u, z), and choosing the root that has positive coeffi-
cients, one sees that

Ck(u, z) =
1 − uc?z −

√
(1 − uc?z)2 − 4(kucσ + ucε)(uc+ + uc•)z2

2(uc+ + uc•)z
.

Deriving in order to u, and taking u = 1, the cumulative generating function
obtained is

Ck(z) =
ak(z)

√
∆k(z) + bk(z)

8z
√

∆k(z)
, (3)

where ∆k(z) is as above, and

ak(z) = (c+ + c• − 2c?) z − (c+ + c•)

bk(z) = (4 (2cσ − c+ − c•) k + 8cε − 3(c+ + c•) − 2c?) z2+

+ 2 (c? − c+ − c•) z + c+ + c•.

Considering Gk(z) = 8z Ck(z) − ak(z) =
bk(z)
√

∆k(z)
, proceeding in a similar way to

what was done to Rk(z), and applying Proposition 1, one obtains

[zn]Gk(z) ∼
bk(ρk)

2 4√2k + 2
√
ρk
√
π
ρ−n

k n−
1
2 . (4)

One concludes that for n ≥ 2,

[zn]Ck(z) ∼
bk(ρk)

16 4√2k + 2
√
ρk
√
π
ρ−(n+1)

k (n + 1)−
1
2 (5)

=
c?
√

2k + 2 + (c+ + 2cσ + c•)k + (c+ + 2cε + c•)

4
√
π

4√2k + 2
ρ

1
2−n
k (n + 1)−

1
2 . (6)

The following expression gives, for n ≥ 2, the parametrised asymptotic estimate
for the average size, for a given measure, for regular expressions of size n.

[zn]Ck(z)
[zn]Rk(z)

∼
bk(ρk)

4ρk
√

2k + 2
(n + 1) =

= ρk

c? + (c+ + c•)

√
k + 1

2
+ (cσk + cε)

√
2

k + 1

 (n + 1).



Thus, for the considered measure, the average of its value per character of the
original regular expression is, asymptotically,

lim
n→∞

[zn]Ck(z)
n[zn]Rk(z)

= ρk

c? + (c+ + c•)

√
k + 1

2
+ (cσk + cε)

√
2

k + 1

 . (7)

The generating function for the number of letters occurring in a regular ex-
pression, Letk(z), can be obtained from (3) by making cσ = 1 and null all the other
parameters, giving

Letk(z) =
kz
√

∆k(z)
, (8)

and (6) yields

[zn]Letk(z) ∼
k
√
ρk

2
√
π

4√2k + 2
ρ−n

k (n + 1)−
1
2 , (9)

from which it follows that

[zn]Letk(z)
n[zn]Rk(z)

∼
2kρk
√

2k + 2
−−−→
k→∞

1
2
. (10)

In the same manner one can easily obtain approximate values for the number of
concatenations, disjunctions and stars.

3 Regular Expressions to NFAs

Because of their succinctness and clear syntax, regular expressions are the com-
mon choice to represent regular languages. DFAs are an excellent representation
for testing equivalence, containment or membership, as these problems are easily
solved for this model. For instance, recognition of a word w is O(|w|) for DFAs,
while it is O(|w| · |Q|2) for NFAs. However, minimal DFAs can be exponentially
larger than the associated REs, while the corresponding NFAs can be linearly
larger. Since NFA minimisation is PSPACE-complete, the aim is to obtain di-
rectly from the REs small NFAs usable for practical purposes. In this section we
summarise the known results on the average size of different NFA constructions
from REs.

3.1 Average Size of ε-NFAs

We consider here three constructions, introduced respectively by Thompson in
1968 [47] (AT ), by Sippu and Soisalon-Soininen in 1990 [46] (AS S S ), and by
Ilie and Yu in 2003 [26] (Aε− f ol), that transform a regular expression α into an



equivalent ε-NFA. Generically, denoting the result by Nα, all three algorithms
associate with the (atomic) regular expressions ε and σ the same ε-NFAs, as given
in Figure 1.

Nε :
ε

Nσ :
σ

Figure 1: ε-NFAs for atomic expressions

Thus, for all three constructions we have

|Nε| = |Nε|Q + |Nε|δ = 2 + 1 = 3
|Nσ| = |Nσ|Q + |Nσ|δ = 2 + 1 = 3.

The ε-NFA’s for compound regular expressions are constructed inductively from
the automata corresponding to their subexpressions. In Thompson’s construction,
the automaton Nβ1+β2 (in Figure 2) is built from Nβ1 and Nβ2 introducing a new
initial state with ε-transitions to the initial states of both Nβ1 and Nβ2 , as well as
a new final state and ε-transitions from the final states of Nβ1 and Nβ2 . It follows
that this construction introduces exactly 2 new states and 4 new transitions for
each + operator. Thus, we have

|Nβ1+β2 |Q = |Nβ1 |Q + |Nβ2 |Q + 2
|Nβ1+β2 |δ = |Nβ1 |δ + |Nβ2 |δ + 4,

(11)

and consequently,
|Nβ1+β2 | = |Nβ1 | + |Nβ2 | + 6. (12)

The remaining construction cases are presented in Figure 2.
To obtain the weighted generating function for the size of the resulting au-

tomata, according to a given measure, we consider the parameters (cε, cσ, c+, c•, c?)
represented in Table 1.

ε-NFAs States Transitions Combined Size
AT (2, 2, 2, 0, 2) (1, 1, 4, 1, 4) (3, 3, 6, 1, 6)
AS S S (2, 2, 0,−1, 2) (1, 1, 2, 0, 3) (3, 3, 2,−1, 5)
Aε− f ol (2, 2,−2,−1, 1) (1, 1, 0, 0, 2) (3, 3,−2,−1, 3)

Table 1: Parameters for the 3 constructions

Now, note that for all the constructions here considered, the worst-case com-
plexity is reached for expressions with only one letter and n − 1 stars. For such
an expression (which has size n), the size of the corresponding AT , AS S S and
Aε− f ol automaton is, respectively, 6n − 3, 5n − 2 and 3n. In Table 2, we illustrate



Nβ1+β2 : Nβ1β2 : Nβ∗ :
AT

ε

ε ε

ε
Nβ1

Nβ2

εNβ∞ Nβ∈

ε

ε

ε

ε

Nβ

AS S S

ε ε

Nβ1

Nβ2

Nβ1 Nβ2

ε

ε

ε

Nβ

Aε− f ol

Nβ1

Nβ2

Nβ1 Nβ2

ε ε

Nβ

Figure 2: AT ,AS S S andAε− f ol constructions

the discrepancy between the average and the worst case, for the combined size, by
presenting the values of the expression in Equation (7) for different values of k, the
limit as k goes to infinity, and the size of the worst case, which does not depend
on k. As the alphabet grows, the size of the obtained ε-NFA’s is much smaller,
asymptotically and on average, than in the worst case. For instance, in the case of
the Aε− f ol, the ratio between these values is 0.25. This construction also exhibits
the best behaviour of the three.

k 2 10 50 100 ∞ worst-case
AT 3.72 3.51 3.38 3.34 3.25 6
AS S S 2.30 2.06 1.90 1.86 1.75 5
Aε− f ol 1.13 0.97 0.86 0.83 0.75 3

Table 2: Average vs. worst-case combined size

3.2 Average Size of the Glushkov Automata
Let Pos(α) = {1, 2, . . . , |α|Σ} be the set of positions for α ∈ R, and let Pos0(α) =

Pos(α)∪{0}. We consider the expression α obtained by marking each letter with its



position in α, i.e. L(α) ∈ Σ
?
, where Σ = { σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ }. For α ∈ R and

i ∈ Pos(α), let the sets first, last and follow be ft(α) = { i | ∃w ∈ Σ
?
, σiw ∈ L(α) },

lt(α) = { i | ∃w ∈ Σ
?
,wσi ∈ L(α) } and fw(α, i) = { j | ∃u, v ∈ Σ

?
, uσiσ jv ∈

L(α) }, respectively. These sets can be inductively defined as follows:

ft(∅) = ft(ε) = ∅

ft(σi) = {i}
ft(α?) = ft(α)

ft(α + β) = ft(α) ∪ ft(β)

ft(αβ) =

ft(α) ∪ ft(β) if ε(α) = ε

ft(α) otherwise,
(13)

fw(∅) = fw(ε) = fw(σi) = ∅

fw(αβ) = fw(α) ∪ fw(β)
fw(αβ) = fw(α) ∪ fw(β) ∪ lt(α) × ft(β)
fw(α?) = fw?(α)
fw?(∅) = fw?(ε) = ∅

fw?(σi) = {(i, i)}
fw?(α + β) = fw?(α) ∪ fw?(β) ∪ cs(α, β)

fw?(αβ) =


fw?(α) ∪ fw?(β) ∪ cs(α, β) if ε(α) = ε(β) = ε

fw?(α) ∪ fw(β) ∪ cs(α, β) if ε(β) = ε

fw(α) ∪ fw?(β) ∪ cs(α, β) if ε(α) = ε

fw(α) ∪ fw(β) ∪ cs(α, β) otherwise

fw?(α?) = fw?(α),

(14)

with cs(α, β) = lt(α) × ft(β) ∪ lt(β) × ft(α). The Glushkov automaton for α is
Apos(α) = (Pos0(α),Σ, δpos, 0, F), with δpos = { (0, σ j, j) | j ∈ ft(α) } ∪ { (i, σ j, j) |
j ∈ fw(α, i) } and F = lt(α) ∪ {0} if ε(α) = ε, and F = lt(α), otherwise.

The definition of lt is almost identical, differing only in the case of concate-
nation, where the branches are swapped. The definition of the fw function here
presented deviates from the usual one in the case of the ? operator. This version
ensures that the unions are all disjoint. The same result can be obtained if the
regular expression is first transformed into star normal form, i.e. such that for all
subexpressions β∗ one has ε < L(β) [12].

The number of states of Apos(α) is exactly n + 1 where n = |α|Σ. Thus, the
average number of its states coincides with the average number of letters deter-
mined in Equation (10), i.e. asymptotically and on average the number of states
of Apos(α) is half the size of α. On the other hand, the number of transitions in
Apos(α) is, in the worst case, n2 + n. Nicaud’s main result in [37] is that, on aver-
age, the number of transitions is O(|α|). However, his computation of the number
of transitions was not exact because the definition used for the fw function did not



take into account the possible non-disjoint unions of its results. The version of the
fw function presented above allows for an exact counting.

The generating function for the number of transitions is Tk(z) = Fk(z) + Ek(z),
where Fk(z) and Ek(z) are the generating functions associated with ft and fw, re-
spectively. By symmetry, the generating function Lk(z) for lt is the same as Fk(z),
which was computed by Nicaud: Lk(z) = Fk(z) = kz

1−z−3zRk(z)−zRk,ε(z) , where Rk,ε(z)
denotes the generating function for regular expressions whose languages contain
ε and is given by Rk,ε(z) =

z+zRk(z)
1−2zRk(z) . An estimate for the number of transitions of

Apos was given in [7] as

[zn]Tk(z) ∼
(1 + ρk)(2 + 16ρk + 10ρ2

k − 12ρ3
k)

8ρk
√
π(1 − 5ρ2

k)
√

2 − 2ρk

ρ−n
k n−

1
2 . (15)

Hence, an estimate for the average number of transitions per state is

[zn]Tk(z)
[zn]Letk(z)

∼
(1 + ρk)(2 + 16ρk + 10ρ2

k − 12ρ3
k)

(1 − 2ρk − 7ρ2
k)(1 − 5ρ2

k)
. (16)

An estimate for the average number of transitions per regular expression is:

[zn]Tk(z)
[zn]Rk(z)

∼
(1 + ρk)(1 + 8ρk + 5ρ2

k − 6ρ3
k)

(1 − ρk)(1 − 5ρ2
k)

n. (17)

Since ρk tends to 0 as k goes to∞, it follows that for large values of k, the average
number of transitions per state is approximately 2, while the average number of
transitions per automaton is approximately the size of the original regular expres-
sion.

3.3 Average Size of the Partial Derivative Automata
The partial derivative automaton of a regular expression was introduced, indepen-
dently and through two distinct approaches, by Mirkin [35] and Antimirov [2].
Champarnaud and Ziadi [18] proved that the two formulations are equivalent. For
a RE α and a symbol σ ∈ Σ, the set of partial derivatives of α w.r.t. σ is defined
inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{ε}, if σ′ = σ

∅, otherwise

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)
∂σ(α?) = ∂σ(α)α?,

(18)

where, for any S ⊆ R, β ∈ R, S ∅ = ∅S = ∅, S ε = εS = S , and S β = { αβ | α ∈ S }
if β , ∅, and β , ε. The definition of partial derivative can be naturally extended



to sets of regular expressions, words, and languages. One has
⋃

τ∈∂w(α)L(τ) =

w−1L(α), and the set of all partial derivatives of α w.r.t. words is denoted by
PD(α) =

⋃
w∈Σ? ∂w(α). Note that the set PD(α) is always finite [2], as opposed to

the set of Brzozowski’s derivatives, which is only finite modulo ACI.
The partial derivative automaton is defined by Apd(α) = (PD(α),Σ, δpd, α,

Fpd), where δpd = { (τ, σ, τ′) | τ ∈ PD(α) ∧ τ′ ∈ ∂σ(τ) }, and Fpd = { τ ∈
PD(α) | ε(τ) = ε }. Mirkin’s construction of the Apd(α) is based on solving
a system of equations of the form αi = σ1αi1 + . . . + σkαik if ε(αi) = ∅, and
αi = σ1αi1 + . . . + σkαik + ε otherwise, with α0 ≡ α and αi j, 1 ≤ j ≤ k, linear
combinations the αi, 0 ≤ i ≤ n, n ≥ 0. A solution (called the support of α)
π(α) = {α1, . . . , αn} can be obtained recursively on the structure of α as follows:

π(∅) = ∅

π(ε) = ∅

π(σ) = {ε}

π(α ∪ β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α?) = π(α)α?.

(19)

Champarnaud and Ziadi [18] proved that PD(α) = π(α) ∪ {α} and that the two
constructions lead to the same automaton. As noted by Broda et al. [7], Mirkin’s
algorithm to compute π(α) also provides an recursive definition of the set of tran-
sitions of Apd(α). Let ϕ(α) = { (σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ } and λ(α) = { α′ | α′ ∈
π(α), ε(α′) = ε }, where both sets can be recursively defined using (18) and (19).
We have, δpd = {α} × ϕ(α) ∪ F(α) where the result of the × operation is seen as a
set of triples and the set F is defined inductively by:

F(∅) = F(ε) = F(σ) = ∅, σ ∈ Σ

F(α + β) = F(α) ∪ F(β)
F(αβ) = F(α)β ∪ F(β) ∪ λ(α)β × ϕ(β)
F(α?) = F(α)α? ∪ (λ(α) × ϕ(α))α?.

(20)

For all α ∈ R,Apd(α) = (π(α) ∪ {α},Σ, {α} × ϕ(α) ∪ F(α), α, λ(α) ∪ ε(α){α}).
In his original paper, Mirkin showed that |π(α)| ≤ |α|Σ. Since Apd(α) is a

quotient of the Glushkov automaton [17], we know that it has at most |α|Σ+1 states.
But this upper bound is reached if and only if, at every step during the computation
of π(α), all unions are disjoint. There are however two cases in which this clearly
does not happen. Whenever ε ∈ π(β) ∩ π(γ), |π(β + γ)| = |π(β) ∪ π(γ)| ≤ |π(β)| +
|π(γ)|−1 and also |π(βγ?)| = |π(β)γ?∪π(γ?)| = |π(β)γ?∪π(γ)γ?| ≤ |π(β)|+|π(γ)|−1.
These observations lead to the computation of a lower bound of the number of
state mergings [6]. The respective generating function is Ik(z) =

(z+z2)Rπ,k(z)2
√

∆k(z)
, where

Rπ,k(z) is the generating function of α ∈ RE such that ε ∈ π(α). The asymptotic
estimate of the (cumulative) number of mergings is

[zn]Ik(z) ∼
1 + ρk

64

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)
√
π
√

2 − 2ρk

ρ−(n+1)
k n−1/2, (21)



where now ak(z) = 16z4 − 24z3 + (64k + 1)z2 + 6z + 1 and b(z) = −4z2 + 3z + 1.
From (2) and (21) one easily gets the following asymptotic estimate for the

average number of mergings

[zn]Ik(z)
[zn]Rk(z)

∼ λk n, (22)

where λk =
(1+ρk)

16(1−ρk)

(
ak(ρk) + b(ρk)2 − 2b(ρk)

√
ak(ρk)

)
. Using again the fact that

lim
k→∞

ρk = 0, and that lim
k→∞

ak(ρk) = 9, while lim
k→∞

b(ρk) = 1, one gets that limk→∞ λk =

1
4 . This means that, for a RE of size n, the average number of state mergings is,
asymptotically, about n

4 .
In order to obtain a lower bound for the reduction in the number of states of

the Apd automaton, as compared to the ones of the Apos automaton, it is enough
to compare the number of mergings for an expression α with the number of letters
in α. From (9) and (22) one gets

[zn]Ik(z)
[zn]Lk(z)

∼
1 − ρk

4kρ2
k

λk. (23)

It is easy to see that limk→∞
1−ρk

4kρ2
k
λk = 1

2 . In other words, asymptotically, the average
number of states of theApd automaton is about one half of the number of states of
theApos automaton, and about one quarter of the size of the corresponding RE.

In [7] the same technique was used for the estimation of the number of tran-
sitions of Apd. Observing the equations (20), in this case one first estimates the
number of mergings that occur in λ(α) and then the corresponding number of
transition mergings. Letting Itz being the generating function for the number of
transitions mergings, one has

[zn]Itk(z) ∼
(1 + ρk)

(
a(ρk)

√
b(ρk) + c(ρk)

)
16
√
π ρk

√
2 − 2ρk (1 − 5ρ2

k)d(ρk)
ρ−n

k n−
1
2 (24)

where a(z), b(z), c(z), and d(z) are some fixed polynomials. Therefore, a lower
bound for the average number of mergings per transition of the Glushkov automa-
ton is given by

[zn]
Itk(z)
Tk(z)

∼
a(ρk)

√
b(ρk) + c(ρk)

4(1 + 8ρk + 5ρ2
k − 6ρ3

k)d(ρk)
. (25)

Because limk→∞[zn] Itk(z)
Tk(z) = 1

2 , asymptotically with respect to k, the number of
transitions inApd is at most half the number of transitions inApos.



3.4 Other NFAs and Open Problems

Another well-known quotient of the Glushkov automaton is the follow automa-
ton, A f , which can also be obtained by eliminating the ε-transitions from the
Aε− f ol [26]. It is known that if the regular expression is in star normal form, the
Apd is always smaller than or equal toA f . The conversion to star normal form is
linear and experimental results suggest that, on average, regular expressions are
in that form [22]. Although it is an open problem to theoretically show that this is
the case, we believe that on average theA f is not smaller thanApd. Experimental
results also suggest that on average theApd almost coincides with the bisimilarity
of Apos, Apos�≡b. Maia et al. [31] characterised, for finite languages, the graph
properties ofApd, and determined under which conditionsApd '

Apos�≡b. It is an
open problem to obtain an asymptotic average behaviour of these two construc-
tions.

There are some related constructions of automata from regular expressions.
Instead of left quotients one can consider right quotients. Given a language L,
the right-quotient of L w.r.t. a word w is the language Lw−1 = { x | xw ∈ L }.
It is not difficult to verify that Lw−1 = (wR)−1LR, where ( )R represents the rever-
sal operation. Then sets of right-partial derivatives and the right-partial derivative
automaton (

←−
Apd) can be naturally defined. However, as (Apd(αR))R '

←−
Apd, we can

conclude that the number of states of
←−
Apd are, asymptoticaly and on average, half

of the number of states of Apos. Yamamoto [48] introduced the prefix automaton
of a RE, Apre, as a quotient of the Thompson automaton that corresponds also to
the quotient of the Glushkov automaton by a right-invariant relation that identifies
states ofApos with the same left language. Maia et al. [32] characterised theApre

automaton as a solution of a system of equations, and presented a recursive defi-
nition ofApre akin to the one given forApd in equations (19) and (20). Using the
framework of analytic combinatorics and techniques similar to the ones described
in Section 3.3, it was shown that, as the size of alphabet grows, the average num-
ber of states of the Apre automaton approaches the number of states of the Apos

automaton.

Finally, given the set of positions of a RE α, Pos(α), instead of considering the
fw function as in theApos automaton, one can consider the pr function, that gives
the set of positions that can precede a given position i.e. pr(α, j) = { i | uaia jv ∈
L(α) }, for j ∈ Pos(α). The previous automaton Apre is defined akin to Apos, but
considering a unique distinct final state. It follows that Aprev(α) ' (Apos(αR))R.
Thus, the number of states coincides with the number of states of Apos. The
interest in this construction relies in its connection to the recent au point DFA
construction [4, 39] that we will mention in Section 5.



4 Extended Regular Expressions to NFAs

Although regular languages are trivially closed for boolean operations, the ma-
nipulation of intersection and complementation with regular expressions or non-
deterministic finite automata is non-trivial and leads to an exponential blow up.
However, there are several applications where extended regular expressions are
used to represent information and it is important to study their conversion to au-
tomata. Caron et al. [14] extended the notion of partial derivatives and partial
derivative automaton to regular expressions with intersection and complementa-
tion.

Broda et al. [11] extended the same notions to regular expressions with shuffle
and studied the average number of states of the corresponding partial derivative
automaton. The complexity of the shuffle (or interleaving) operation is well stud-
ied in the worst case. Mayer and Stockmeyer [33] showed that for REs with
shuffle, of size n, an equivalent NFA needs at most 2n states, and presented a fam-
ily of REs with shuffle, of size O(n), for which the corresponding NFAs have at
least 2n states. Gelade [20], and Gruber and Holzer [24] showed that there exists a
double exponential trade-off in the translation from REs with shuffle to standard
REs. Gelade also gave a tight double exponential upper bound for the translation
of REs with shuffle to DFAs.

Broda et al. showed that the number of states of the partial derivative automata
is in the worst case at most 2m, where m is the number of letters in the expression,
while asymptotically and on average it is no more than ( 4

3 )m. Considering the
grammar for regular expressions (1) with one more rule for shuffle α� α, we can
extend the definition of the support π in (19) by:

π(α� β) = π(α)� π(β) ∪ π(α)� {β} ∪ {α}� π(β), (26)

where for S ,T ⊆ R, S �T = { α�β | α ∈ S , β ∈ T }, and {ε}� S = S � {ε} = S .
With this expression it is easy to see that now |π(α)| ≤ 2|αΣ | and this bound is
reachable for the family of regular expressions αn = a1 � · · ·� an, where n ≥ 1,
ai , a j for 1 ≤ i , j ≤ n. Let Pk(z) be the generating function for an upper bound
for the number of elements in π. For expressions of size n, one has,

[zn]Pk(z) ∼
−(3 + 3k)

1
4ρ
−n− 1

2
k + (3 + 4k)

1
4 (ρ′k)

−n− 1
2

2
√
π

(n + 1)−
3
2 ,

where now ρk = −1+2
√

3+3k
11+12k and ρ′k = −1+2

√
3+4k

11+16k .
For a regular expression α of size n, let avP and avL be the average size of π

and the average alphabetic size, respectively. Taking into account the worst case
upper bound, we have compared the values of log2 avP and avL, obtaining

lim
n,k→∞

log2 avP
avL

= log2
4
3
∼ 0.415.



Therefore, one has the following significant improvement, when compared with
the worst case, for the average-case upper bound: for large values of k and n an
upper bound for the average number of states ofApd is (4

3 + o (1))|α|Σ .
Regular expressions with intersection have a worst-case behaviour similar to

shuffle [20, 24]. The definition of the support π in this case is just π(α ∩ β) =

π(α)∩π(β) (with the ∩ for sets of REs defined as above for�, only interchanging
the operators). However, the analytic analysis of the correspondent generating
function is much harder and an estimation of an upper bound of the average size
is an on-going work by the authors of this paper. Despite that, experimental results
suggest that the average number of states in Apd automata is much smaller than
2|α|Σ .

We note that for both intersection and complementation is not clear how to
extend the position based constructions.

5 Regular Expressions to DFAs

A word derivative w.r.t. a RE α, w−1α is such thatL(w−1α) = w−1L(α). The set of
word derivatives D(α) is finite modulo the ACI axioms. The Brzozowski deriva-
tive automaton can be defined by: AB(α) = (D(α),Σ, δ, [α], F), where F = { [d] ∈
D(α) | ε(d) = ε }, and δ([q], σ) = [σ−1q], for all [q] ∈ D(α), σ ∈ Σ. McNaughton
and Yamada [34] presented a DFA construction from an RE that coincides with
the determinization of the Apos automaton. Recently, Asperti [4] introduced a
DFA construction from an RE that uses pointed REs α′ where some letters are
annotated with a point and L(α′) is the set words that start at some pointed letter.
All these constructions lead to DFAs that have a size that is, in the worst case, ex-
ponential in the size of the initial RE. For all these constructions, no average-case
complexity results are known, as far as the authors are aware of. Some experimen-
tal results suggest that au point is on average smaller then the other constructions.
To understand why this happens and to find estimates of the average size of each
construction is thus an open problem.

6 KATs to NTAs

Kleene algebra with tests (KAT) [28] is a decidable equational system combining
Kleene and Boolean algebras, and is specially suited to capture and verify prop-
erties of simple imperative programs. The equational theory of KAT is PSPACE-
complete. The decidability, conciseness and expressiveness of KAT motivated its
recent automatisation within several theorem provers [40, 41, 3] and functional
languages [1, 42]. Most of those implementations use (variants of) the coalge-



braic automaton on guarded strings developed by Kozen [30]. In that approach,
derivatives are considered over symbols of the from vp, where p is an alpha-
betic program symbol and v a valuation of boolean variables (the guard, normally
called atom). This induces an exponential blow-up on the number of states or tran-
sitions of the automata. This exponential growth was avoided in Silva [45], and in
Broda et al. [8, 10], by using for KAT standard finite automata, where transitions
are labeled both with program symbols and boolean tests (instead of atoms).

The abstract syntax of KAT expressions, over an alphabet P = {p1, . . . , pk} of
program symbols and T = {t0, . . . , tl−1} of boolean variables (tests), can be given by
the following unambiguous grammar, suitable for applying the symbolic method.

BExp : b → 0 | 1 | t | ¬b | (b + b) | (b · b) (27)
AExp : a → p | (a + a) | (a + b) | (b + a) | (a · a) | (a · b) | (b · a) | a? (28)

Exp : e → b | a. (29)

Here BExp, AExp, and Exp represent sets of boolean expressions, KAT expres-
sions with at least one program symbol p ∈ P, and KAT expressions, respec-
tively. For simplicity, the grammar excludes subexpressions of the form b?, as
their semantics correspond to the set of all boolean assignments and thus are
equivalent to 1. For the negation of test symbols we use t instead of ¬t. The
set At, of atoms over T, is the set of all boolean assignments to all elements of T,
At = { x0 · · · xl−1 | xi ∈ {ti, ti}, ti ∈ T }. Elements of At are denoted by v, and we
write v ≤ b, if v→ b is a boolean tautology.

The set of guarded strings over P and T is GS = (At · P)? · At. Regular sets
of guarded strings form the standard language-theoretic model for KAT [29]. A
(nondeterministic) automaton with tests (NTA) over the alphabets P and T is a
tuple A = 〈Q, q0, o, δ〉, where Q is a finite set of states, q0 ∈ Q is the initial
state, o : Q → BExp is the output function, and δ ⊆ Q × (BExp × P) × Q is the
transition relation. A guarded string v0σ1 . . . σnvn, with n ≥ 0, is accepted by
the automaton A if and only if there is a sequence of states q0, q1, . . . , qn ∈ Q,
where q0 is the initial state, and, for i = 0, . . . , n − 1, one has vi ≤ bi for some
(qi, (bi, σi+1), qi+1) ∈ δ, and vn ≤ o(qn).

Silva [45] presented the Glushkov construction for KAT, and Broda et al. [8,
10] defined the partial derivative automaton for KAT. The asymptotic average size
of both constructions were studied in [8]. It was shown that, contrary to other
automata constructions for KAT expressions, they enjoy the same descriptional
complexity behaviour as their counterparts for regular expressions.

Consider the generating function

Rm(z) =
1 − z −

√
∆m(z)

4z
, where ∆m(z) = 1 − 2z − (15 + 8m)z2, (30)



for the number of regular expressions generated by the grammar in (1), including
∅, which is almost identical to the one in Subsection 2.2. It is easy to see that
Bl(z) = Rl(z) and Ek,l(z) = Rk+l(z), where l and k are respectively the sizes of P
and T, and Bl(z) and Ek,l(z) respectively the generating functions for BExp and
Exp. Using the technique presented in Section 2 applied to (30), the asymptotic
estimates for the number of regular expressions of size m is

[zn]Rm(z) ∼
√
ρm

4√2m + 4

4
√
π

ρ−(m+1)
m (m + 1)−

3
2 , (31)

where ρm = −1+2
√

2m+4
15+8m is the radius of convergence of Rm(z). Let Pk,l(z) denote the

generating function for the number of program symbols in KAT expressions. Then,
we have Pk,l = k

k+l Letk+l(z), with Letm(z) as in (8). Therefore, the probability, for
a uniform distribution, that a symbol in a KAT expression of size n is a program
symbol is

[zn]Pk,l(z)
n [zn]Ek,l(z)

∼

(
4(k + l) + 8 −

√
2(k + l) + 4

)
k

(15 + 8 (k + l)) (k + l + 2)

(
1 +

1
n

)3/2

= ηk,l,n. (32)

The average number of program symbols, as k + l increases, tends to 1
2(c+1) , where

c = l
k . For instance, if l = k, l = 2k, and l = 1

2k, this limit is, respectively, 1
4 , 1

6 ,
and 1

3 . Furthermore, for any ratio c, the asymptotic average number of states in
Glushkov automata is less than half the size of the corresponding expressions.

Since for KAT the recursive definition of the support π just differs by adding
π(b) = ∅, which does not affect the computations, one can apply the method used
in Subsection 3.3 in order to get an upper bound for the state complexity of the
partial derivative automaton. One obtains,

[zn]Ik,l(z)
[zn]Ek,l(z)

∼ λk,l n, (33)

where λk,l =
1+ρk+l

16(1−ρk+l)

(
ak(ρk+l) + b(ρk+l)2 − 2b(ρk+l)

√
ak(ρk+l)

)
, with ak(z) = 16z4 −

24z3 + (64k + 1)z2 + 6z + 1, and b(z) = −4z2 + 3z + 1. Therefore

[zn]Ik,l(z)
[zn]Pk,l(z)

∼
λk,l

ηk,l,n
. (34)

One can see that, for a fixed value of l this ratio approaches 1
2 , as k grows. This

means that the number of states in the equation automaton is asymptotically, and
on average, half the number of states in the Glushkov automaton.

It is more difficult to obtain a sufficiently accurate upper bound for the average
number of transitions in the Glushkov NTAs. In particular, several grammars for



expressions with different properties, such as for KAT expressions that have no
atom v ∈ At in their associated language, have to be considered. In this case the
computations no longer mirror the ones for regular expressions, but nevertheless
the same result is reached: asymptotically, and on average, the number of transi-
tions of the Glushkov automaton is linear in the size of the KAT expression. To
estimate the average number of transitions in the Apd for KAT expressions is an
open problem.

6.1 SKA and SKAT

Synchronous Kleene algebra (SKA), introduced by Prisacariu [43], combines KA
with a synchrony model of concurrency. Synchronous here means that two con-
current processes execute a single action simultaneously at each time instant of a
unique global clock.

A SKA over a finite set AB is given by a structure (A,+, ·,×, ∗, 0, 1,AB), where
AB ⊆ A, (A,+, ·, ∗, 0, 1) is a Kleene algebra, and × is a binary operator that is as-
sociative, commutative, distributive over +, with absorvent element 0 and identity
1. Furthermore, it satisfies a × a = a, ∀a ∈ AB, as well as the following equation
for synchrony: (α× · α) × (β× · β) = (α× × β×) · (α × β), where α× and β× are of the
form a1 × · · · × an, for ai ∈ AB.

Broda et al. [5] defined the partial derivative automaton Apd for SKA. It was
shown that the worst-case upper bound for the number of states of this automaton
coincides with the one for the Apd for regular expressions with shuffle. This
implies the same upper bound for the average number of states of the Apd for
SKA. Prisacariu also generalised Kleene algebra with tests to the synchronous
setting (SKAT). Broda et al. extended NTA’s for SKAT, as well as the derivative
based methods already developed for SKA. Also in this case, experimental results
suggest that on average the size ofApd for both SKA and SKAT are much smaller
than the worst-case upper bound. Thus, a more fine-grained study of the average-
case complexity of these automata in the analytic combinatorics framework is
worthwhile.

7 Conclusions

We presented recent results on the average size of automata obtained from regular
expressions and some extended expressions. The framework of analytic combi-
natorics was the main tool for estimating the asymptotic number of states and
of transitions for automata, as a function of the expressions’ size. In general it
is necessary to obtain generating functions associated with the measures under



consideration and then to be able to estimate the asymptotic behaviour of their
coefficients.

Both tasks may turn out to be very hard, and small differences on recursive
definitions can lead to functions with completely different analytic behaviours.

We finish by pointing out some future directions of work. Concerning ε-NFAs,
there are other conversions from REs to automata with better worst-case complex-
ity. In particular, Gruber and Gulan’s construction is optimal w.r.t. the alphabetic
size of regular expressions [23, 25]. This construction corresponds to applying
the ε-follow construction to the star normal form of the initial expression. Thus, if
one is able to estimate the asymptotic number of expressions in star normal form
of a given size, one can proceed as in Section 3.1 and obtain the average size of
this construction.

Concerning DFAs, the main ingredient is to tackle the subset construction, i.e.
determinization, within the analytic framework. Any progress in this direction
will allow to obtain estimates for the average-case complexity of the RE to DFA
conversions.

Nicaud et al. [38] studied the average number of transitions of Glushkov au-
tomata under the non-uniform distribution, inspired by random binary search
trees (BST-like). With this distribution, the average number of transitions of the
Glushkov automaton is quadratic with respect to the size of the regular expres-
sion. We believe that the same result is valid for the partial derivative automaton.
However, we think that one needs a better understanding of the relevance of the
different distributions for REs before this approach is applied to all the previous
described constructions.
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