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The mid-1960’s to the early 1980’s marked the early epoch in the field of com-
putational complexity. Several ideas and research directions which shaped the
field at that time originated in recursive function theory. Some of these made a
lasting impact and still have interesting open questions. The notion of lowness
for complexity classes is a prominent example.

Uwe Schéning was the first to study lowness for complexity classes and
proved some striking results. The present article by Johannes Kébler and
Jacobo Toran, written on the occasion of Uwe Schdning’s soon-to-come 60"
birthday, is a nice introductory survey on this intriguing topic. It explains how
lowness gives a unifying perspective on many complexity results, especially
about problems that are of intermediate complexity. The survey also points to
the several questions that still remain open.
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Abstract

Our colleague and friend Uwe Schoning, who has helped to shape the
area of Complexity Theory in many decisive ways is turning 60 this year.
As a little birthday present we survey in this column some of the newer
results related with the concept of lowness, an idea that Uwe translated from
the area of Recursion Theory in the early eighties. Originally this concept
was applied to the complexity classes in the polynomial time hierarchy. An
overview of the many results inspired by the lowness idea was written by
the first author in [25]. We review here the lowness scene 20 years later,
focusing mainly in the classes out of PH.

1 Introduction

The concept of lowness originated in the area of Recursion Theory (see [30]).
Intuitively a language is low for a computation model (like the Turing machine) or
an operator if it is powerless when used as oracle for the model. Lowness indicates
that a set has low complexity or low information content since it behaves like the
empty set with respect to a certain operator. Uwe Schoning [37] introduced the
notion of lowness to the area of complexity where this concept really flourished
and found many new applications. Schoning also found several natural examples
of low sets, most notably the Graph Isomorphism problem, being low for different
complexity classes. Initially the notion of lowness was applied to the classes in the
polynomial hierarchy but it was soon realized that it can be very useful to consider
lowness for other complexity classes like @P or PP as well.

Let C be a complexity class. For a language L, we denote by C(L) the class
of languages computed by a computation model of the kind defining C with ad-
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ditional access to an oracle for L. We say that L is low for C if the computation
model for the class does not get any extra power when querying L. More formally:

Definition 1. Let C be a complexity class (with a reasonable relativized version).
A language L is said to be low for C (in symbols: L € Low(C)) if C(L) = C.

An easy observation is that the class of sets that are low for P is P itself. The
class of low sets for NP is exactly NP N coNP. To see this, observe that if L is low
for any complexity class C, then L as well as L belong to C. This also shows that
a lowness result is in principle stronger than a containment result. For the other
direction, a set L in NP N coNP does not provide any additional power to an NP
computation since the nondeterministic machine can simulate any query g to L by
guessing the answer to g as well as a certificate for ¢ € L or for g ¢ L.

Another complexity class whose low sets can be completely characterized is
®P (parity P), the class of languages computed by polynomial time nondetermin-
istic Turing machines that have an odd number of accepting paths if and only if
the input belongs to the language. Papadimitriou and Zachos [33]] showed that
the class of low sets for ®P coincides with @P itself. For many other complexity
classes, an exact characterization of the low sets for the class is not known. In fact,
the characterization of the low sets for XJ was already posted as an open question
in Schoning’s original paper [37]. There are however many interesting lowness
results for a large variety of complexity classes. Some of these results strengthen
existing containment results or show that certain sets cannot be complete unless
unexpected collapses happen. The most well-known among results of this kind is
the fact that the Graph Isomorphism problem is low for £ [38] implying that GI
cannot be NP-complete unless the polynomial hierarchy collapses. Some other
lowness results offer a unified explanation of complexity upper bounds. For ex-
ample, Toda’s Theorem [40] showing that PH is included in P"" follows directly
from several lowness results: First Toda extends the randomized reduction from
SAT to the set of formulas with at most one satisfying assignment from Valiant
and Vazirani [41] (which can be written as NP C BPP(®P)) to a lowness result
stating that NP is low for BPP(®P). This implies that the whole polynomial time
hierarchy is included in BPP(&P). Then Toda shows that ®P is low for P". Since
BPP is also low for PP [26] we have that in fact PH is low for PP".

The body of results inspired by the concept of lowness is quite large. We refer
the interested reader to the exhaustive overview of the state of the art regarding
lowness at the time, written by the first author in [25]. Twenty years later, we
review in this column some of the lowness results that have been published since
then. If originally the lowness result dealt mostly with the polynomial time hierar-
chy, most of the later results are related to probabilistic or to counting complexity
classes. We use this fact for the organisation of the overview in two main sec-
tions. To improve readability, we do not include full proofs and just sketch the



ideas behind the main results. We also skip the definitions of the better known
complexity classes. For this, we refer the interested reader to the books in the
area, like [7, 34, 1]. Depending on the context, a computational model C with
access to an oracle A, sometimes will be denoted by C(A) and sometimes by C*.

2 Probabilistic complexity classes

As already explained in the introduction, lowness properties provide a meaningful
explanation for many conditional collapse results. An important example is the
Karp-Lipton Theorem [24]] which says that NP is not contained in P/poly unless
PH collapses to its second level 4. The lowness property implying this theorem
was revealed by Balczar, Book and Schning [6] who proved that all self-reducible
sets in P/poly are low for the class 2. In [29], the lowness of self-reducible sets
in P/poly has been improved to the probabilistic class ZPP(NP) (we note that it is
not hard to show that Low(ZPP(NP)) C LOW(ZQ’ )). There are many different types
of self-reducibility. For our purpose, the following one (called also Turing-self-
reducibility) suits best. A language L is self-reducible if there is a polynomial-
time oracle machine M such that L = L(M*) and M on input x asks only queries
y whose length is smaller than that of x.

Theorem 1. [29] Every self-reducible set L € P/poly is low for ZPP(NP).

The idea behind the proof is to compute a collection of polynomially many
advice strings such that the majority of these strings correctly decides all oracle
queries to L in a given ZPPNP* computation on input x. To be more specific, let
A be a set in P such that for some polynomial p and all m there exists a string
w € {0, 1}?™ with the property that for all strings y of length at most m,

vyelL & (y,w)eA.

Since L is self-reducible, with the help of an NP oracle it is possible to check for
a given collection W = (wy, ..., wy) of advice strings whether their majority gives
the correct answer to all strings y of length up to m. Moreover, in case there exists
a counterexample y for which the majority of W gives the wrong answer, such a
string y can also be efficiently computed by asking an NP oracle. In the latter case,
the string y together with the information whether it belongs to L or not is stored
in a set § of all counterexamples encountered so far.

More precisely, the ZPpPNP* computation on a given input x is simulated as
follows by a ZPP(NP) algorithm M. Let m be large enough such that the length
of all queries to L is bounded by m. Then, starting with the empty set S = 0, M
repeatedly samples a collection W = (wy,...,wy) of advice strings, where each



w; is chosen uniformly at random from the set Correct(S) of all advice strings
w € {0, 1}7“ that for all strings y € S correctly decide their membership to L.
As long as there is a counterexample y for W, M adds it to S and repeats the
loop. Otherwise M uses the collection W sampled in the last round to simulate
the ZPPNP* computation by answering all oracle queries to L according to the
majority vote of W.

It remains to argue that M is indeed a ZPP(NP) algorithm. Call a string y
bad for S if including it into S does not reduce the size of Correct(S) by a factor
less than 3/4. The important observation is that a string y can only be bad for §
if at least 3/4 of all advice strings in Correct(S) decide y correctly. Hence, the
probability that there exists a bad string y for which the majority of wy,...,wy
takes the wrong decision, becomes exponentially small when k is chosen large
enough. Since adding a counterexample shrinks the size of Correct(S) in each
round with high probability by a factor less than 3/4, the expected number of
rounds is polynomially bounded.

The ZPP(NP) algorithm described in the preceding paragraph is very similar
to the ZPP algorithm of [10] for learning boolean circuits by using equivalence
queries and the help of an NP oracle. A subtle point in both algorithms is how the
sampling from the set Correct(S) can be implemented. At the time when Bshouty
et al. presented their learning algorithm, it was only known [22] how to achieve
almost uniform sampling from an NP witness set with the help of an NP oracle
(which suffices for this application, although the analysis is more complicated). In
the meanwhile, also uniform sampling from an NP witness set can be performed
with an NP oracle [8]. On the other hand, the proof given in [29] neither uses
uniform nor almost uniform sampling from an NP witness set.

As observed by Sengupta (see [[11]]), the proof of the Karp-Lipton Theorem
proposed by Hopcroft [21] actually shows a collapse of PH to the symmetric al-
ternation class Sg . This class was introduced in [[13] [35]] and shown to lie between
the two classes PN¥ and =2 N TIZ. Later, Cai [11] showed that S is in fact a sub-
class of ZPP(NP) and hence the collapse of PH to S, might be deeper than to
ZPP(NP). This raised the question whether all self-reducible sets in P/poly are
even low for the class s§ , which was answered affirmatively in [12]. Later, it was
proved by Chakaravarthy and Roy [[14] that self-reducible sets in P/poly are also
low for the oblivious symmetric alternation class O5 € S which led to a further
improvement of the Karp-Lipton Theorem.

Another interesting class of problems that are low for ZPP(NP) is AMNcoAM.
The class AM consists of all languages that have a two-round interactive proof
system with public coins and has been introduced by Babai; see [4}5]. We state
the definition of the class AM with one-sided error which is known to be equivalent
to AM with two-sided error.



Definition 2. A language L is in AM if there is a set A € NP and a polynomial p
such that for every string x and a randomly chosen string y €g {0, 1}P0,

xelL = Prob[{x,y)eA]l=1,
x¢ L = Prob[{x,y)e Al <1/2.

The class AM N coAM plays an important role in the context of classifying
several group-theoretic problems. Schoning proved [36] that all sets in AMNcoAM
are low for X7. Since Graph Isomorphism also belongs to this class [20} [19] it
follows that GI cannot be NP-complete unless the polynomial hierarchy collapses
[9]. Later it was shown that AM N coAM is also low for the classes AM [28]] and
ZPP(NP) [3].

Theorem 2. [3] AM N coAM is low for ZPP(NP).

The proof of this lowness result provides a way to decide queries to an AM N
COAM oracle by using a random string in a CONP set as advice for an NP N coNP
computation. More specifically, let L € AM N coAM be the oracle in a given
ZPpPNP* computation. By applying standard probability amplification techniques
(cf. [36]) we can assume that there are NP sets A and B such that for some poly-
nomial p and all m there exists a subset S, C {0, 1}7“" of size at least 27"~! with
the property that for all strings y of length at most m,

yeL = Vw:{(y,wyeAandVweS, :{y,w)¢B,
ye¢L = VYw:{y,wyeBandVweS, : (y,w) ¢A.

Call a string w € {0, 1}7"™ bad, if it fulfills the following property:
Ty € {0, 115" : (y,w) € AN B.

Since S,, does not contain bad strings, most strings in {0, 1}?™ are good. Now,
in order to simulate the ZPPNP" computation on a given input x by a ZPP oracle
machine M with the help of an NP oracle, let m be large enough such that all
the queries to L have length at most m. To decide x, M first chooses a random
string w € {0, 1}?™ and uses its oracle to check that it is not bad. Using such
a w as advice, M can replace each query to the oracle L with an NP N coNP
computation.
As a consequence we get the following inclusions between lowness classes:

NPNcoNP = Low(NP) € AMNcoAM = Low(AM) € Low(ZPP(NP)) C Low(Z5).



3 Counting classes

Extending the definition of Valiant’s #P counting functions, Fenner et al. [17]
defined the class GapP of functions that express the difference between accepting
and rejecting computations of a nondeterministic Turing machine.

Definition 3. For a nondeterministic machine M and an input x, let accy(x)
(rejy(x)) be the number of accepting (rejecting) paths of M on input x. A function
f ¥ = Z belongs to the class GapP if there is a polynomial-time nondetermin-
istic Turing machine M such that for every input x € X,

f(x) = accy(x) — rej,,(x).

The class of GapP functions allows us to define many counting complexity
classes in a uniform way. For example, PP is the class of languages L for which
there is a GapP function f such that for every x, x € L & f(x) > 0, and L € P
if there is a function f € GapP such that for every x, x € L & f(x) is odd. Also,
most of the lowness results for counting classes use in their proofs the GapP
function machinery.

We already mentioned that ®P is low for itself. Regarding PP there are several
classes of problems, like for example, BPP or the class of sparse sets in NP, that
are known to be low for this class [26]]. Also the Graph Isomorphism problem is
low for PP [27]]. It is interesting to observe that all these examples are also low for
¥7. As we will see, there are however some other interesting classes of problems
that are low for PP and not known to be low for any class in the polynomial time
hierarchy. These results can be best explained introducing some new counting
classes.

Definition 4. [17]] A language L is in SPP if there is a GapP function f satisfying
that for every x,

xelL = f(x)=1
x¢L = f(x)=0

A language L is in LWPP if there are a GapP function f and polynomial time
computable function g such that 0 ¢ range(g) and for every x

xel = f(x)=g(1M
x¢L = f(x)=0

In other words, the languages in SPP and LWPP can be computed by nonde-
terministic polynomial time machines in which the difference between accepting



and rejecting configurations in the cases of x € L and x ¢ L are known. Clearly
SPP ¢ LWPP.

Fenner et al. [[17] proved that SPP is low for PP and that in fact SPP is low
for itself, SPP(SPP) = SPP. They also show (citing a private communication
from Toda) that LWPP is low for PP. A method to prove that a problem is low for
PP, based in these results, is to show that it is included in LWPP. This is exactly
what was done in [27] with Graph Isomorphism and some other related group
problems. Carefully computing a generator set for the automorphism group of a
graph by making controlled queries to GI, the authors proved that GI is contained
in LWPP, while the seemingly easier problem to decide whether a graph has some
non-trivial automorphism, Graph Automorphism, is contained in SPP. Arvind
and Kurur [2]] improved the result for GI proving that the problem belongs to the
tighter class SPP.

Theorem 3. [2] GI belongs to SPP.

A consequence of this is that GI is also low for ®P. They extended the result
to the Hidden Subgroup problem (HSP) which plays an important role in quantum
computation.

Definition 5. HSP: On input a permutation group G (given by a generator set),
and a function f : G — F for some finite set F, (f given in the form of a “black
box”) with the property that there exists a subgroup H < G such that f is constant
in the right cosets defined by H and different in the distinct right cosets of H, find
a generator set for the hidden subgroup H.

It is not hard to see that the problem of finding a generator set for the auto-
morphism group of a given graph (a problem that is hard for Graph Isomorphism)
is a particular case of HSP. For a graph X with n vertices, the group G is in this
case the set S, of permutations acting on {1,...,n}. F is the set of graphs with
n vertices and the function f : §, — F is defined as f(r) = n(X). If H is the
automorphism group of X, then clearly f is constant and distinct on the different
cosets defined by H.

Observe that HSP is a functional problem and therefore it cannot be included
in a class of decisional problems like SPP. Arvind and Kurur show that HSP can
be computed in polynomial time by an algorithm making queries to SPP.

HSP has received much attention because of its relation to quantum compu-
tation. BQP is the class of problems that can be solved in polynomial time with
a quantum computer model with bounded error probability. Several problems
proven to be in BQP but not known to be in P, are concrete instances of HSP. In
fact it is known that the version of HSP with the additional condition that the given
group G is commutative, can be solved in BQP [23]. Unfortunately, for the case



of GI, G is the group of all permutations, which is not commutative. Nevertheless
the fact that GI is an instance of HSP gives some hope to find an efficient quantum
algorithm for the graph isomorphism problem.

HSP being low for PP is not the only connection between lowness and quan-
tum computation. Fortnow and Rogers [18] proved that the whole class BQP is
low for PP. This is done by proving that BQP is included in yet another counting
class, AWPP, introduced in [39]. AWPP is low for PP as was shown in [31]].
AWPRP is the best upper bound known for BQP so far. We give here a definition
of this class, more elegant than the original, due to Fenner [[16]:

Definition 6. A language L is in ANPP if there is a GapP function f and a
polynomial p satisfying that for every x,

2 fx)
fx) 1
x¢L = O—2p<|x|>s§

It follows directly from the definition that AWPP generalizes both SPP and
BPP.

Theorem 4. [18] BQP is low for PP.

This result is proven by showing that the probability of acceptance of a poly-
nomial time quantum machine M on an input x can be exactly computed using
GapP functions. For this the quantum machine is normalized so that it has a
unique accepting computation and uses only unitary transformations from a finite
basis set. As a consequence, the amplitudes of the quantum states during the com-
putation range only over a finite set of values. The graph of all possible reachable
configurations of M(x) can be exponentially large, but the probability of reaching
a particular configuration can be computed from the set of computation paths that
can reach this configuration and the probability of the machine taking one of this
paths. This can all be computed with GapP functions.

A different lowness result for the class PP comes from the area of games with
unique winning strategies. Generalizing the class UP of NP problems with at most
one accepting path, Niedermeier and Rossmanith [32]] introduced an unambiguous
version of an alternating Turing machine and defined the class UAP.

Definition 7. An alternating Turing machine is unambiguous if every accepting
existential configuration has exactly one move to an accepting configuration, and
every rejecting universal configuration has exactly one move to a rejecting con-
figuration. The class UAP consists of all languages accepted by polynomial-time
unambiguous alternating machines.
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Figure 1: Inclusion structure of classes known to be low for PP.

In [32] it is shown that UAP is contained in SPP and therefore low for PP.
Later it was proved [15] that UAP is low for itself, UAP(UAP) = UAP, and also
that Graph Isomorphism is contained in UAP. This improves the SPP upper
bound for GI proven in [2].

The inclusion relations among the low for PP complexity classes discussed
here can be seen in the diagram of Figure ]

We have cited several results proving that some complexity class or problem
is low for PP. Is there an exact characterization of the class of sets that are low for
PP? Does this class coincide with AWPP? SPP and UAP contain GI and are both
low for themselves, an interesting question is whether these two classes coincide.
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