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Computational Aspects of Packing Problems

Helmut Alt ∗

Abstract

Packing problems have been investigated in mathematics since centuries.
For polygons, circles, or other objects bounded by algebraic curves or surfaces
it can be argued that packing problems are computable. However, even some
of the simplest versions in the plane turn out to be NP-hard unless the
number of objects to be packed is bounded. This article is a survey on results
achieved about computability and complexity of packing problems, about
approximation algorithms, and about very natural packing problems whose
computational complexity is unknown.

Packing objects is a quite natural problem and has been investigated in mathe-
matics and operations research for a long time. Applications concern the physical
nonoverlapping packing of concrete objects during storage or transportation but
also in two dimensions how to efficiently cut prescribed pieces from cloth or sheet
metal while minimizing waste. Even more abstract problems like, e.g., efficient
scheduling with respect to time and space can be modelled as packing rectangles
into a strip.

1 Variants of the problem
Formally, packing means that a set of mathematically modelled geometric objects
is moved nonoverlapping into a mathematically modelled container. Numerous
variants are possible depending on the following issues:

- Objects to be packed, e.g., rectangles, disks, convex polygons, nonconvex
polygons, cuboids, polyhedra, spheres.

- motions allowed to be applied to the objects: translations or rigid motions
(translation and rotation).
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- Packing into a given container C, i.e., the decision problem whether all given
objects can be packed into C.

- There is an allowable set of containers, e.g., all rectangles or all convex sets.
Find a container of minimum size (e.g., area, volume, perimeter) into which
all objects can be packed.

- Strip packing: In two dimensions an infinite strip of a fixed width is given,
pack the objects so that a minimum length of the strip is used. In three
dimensions a strip is given by a rectangular cross section.

- Bin packing (an important application is the cutting stock problem): all
containers have the same shape and size. Minimize the number of containers
to pack all objects.

- Online- or Offline-packing: In offline-packing all objects to be packed are
known in advance, in online-packing they arrive one-by-one and have to be
packed upon arrival.

In this survey, we will concentrate on issues of offline-packing and not go into
the details of the vast research that has been done on bin packing but rather discuss
computability, computational complexity, describe some strip packing algorithms,
and concentrate on approximation algorithms for finding minimum size containers
for a set of given objects.

2 Classical Packing Problems
Packing is a vast field in mathematics, in particular in discrete geometry. For a
survey on finite packings see, e.g., [6] or [14].

Probably, the most prominent packing problem in mathematics which was
open for four centuries used to be known as Kepler’s conjecture. The astronomer
Johannes Kepler conjectured in 1611 that the most efficient way to pack infinitely
many spheres in three dimensions is the way fruit sellers do it with oranges at the
market: arrange the spheres in layers where within each layer the spheres form
a hexagonal grid, see Figure 1. This way a density of π/

√
18 ≈ .74 is obtained.

Gauss showed in 1831 that this arrangement is optimal among regular lattices.
László Fejes Tóth showed in 1953 that the general proof could be reduced to a
finite yet lengthy calculation. Finally, in an effort starting in the early 1990s and
lasting for about 20 years a group of researchers around Thomas Hales managed to
simplify the calculation and implement and run a computer program which was
supposed to finalize the proof. After the proof has been completely formalized and



Figure 1: Packing spheres

verified by proof checking systems [15] most mathematicians agree that Kepler’s
conjecture has been proven.

For the corresponding problem in two dimensions, namely how to pack disks
of equal radius so that the density is maximized it seems quite intuitive to pack
them as a hexagonal grid. This fact is called Thue’s Theorem but had been shown
for lattices already by Lagrange in 1773 and a complete proof is due to Fejes Tóth.

Finding a minimum area container for packing finitely many unit disks is a
variant of the problem that has gained considerable attention. Each number of disks
to be placed into a minimum area circle, square, etc. constitutes a mathematical
problem on its own. Webpages “Erich’s packing center” by Erich Friedman
http://www2.stetson.edu/~efriedma/packing.html and “Packomania” http://www.
packomania.com/ show the best known solutions for various shapes of objects
and containers, e.g., minimum area circular containers for k unit disks for k =

1, ..., 2600. Unfortunately, already k = 12 is the smallest number for which the best
known solution has not yet been proven optimal, see Figure 2.

For unit spheres in three and higher dimensions, interesting properties and open
problems about the so-called sausage packing have been found. Sausage packing
means to place the spheres contiguously so that their centers lie on a straight line
(“sausage”). The question is whether the sausage packing is the most efficient way
of packing finitely many unit spheres, i.e., yields a minimum volume convex hull.
Whereas in two dimensions this statement is obviously false for 3 or more disks, in
three dimensions it can only shown to be true for at most four and false for 56 or
more spheres.

For dimension five or higher, there is the sausage conjecture due to Fejes Tóth
[11] that for any number of spheres the sausage packing is optimal. For dimensions
greater than or equal 42 the sausage conjecture has been solved by Betke et al.

http://www2.stetson.edu/~efriedma/packing.html
http://www.packomania.com/
http://www.packomania.com/


Figure 2: Packing 12 circles into a (possibly) minimum size circle

(1994) [5] and Betke and Henk [4].
In the case of packing k unit squares into minimum area disks for some values

of k it is not optimal that all squares have the same orientation, i.e., packing under
rigid motions (translations and rotations) gives a smaller solution than packing by
translations only.

3 Computability

All packing problems under rigid motions or translations involving a container
and a finite number of objects which can be described by algebraic equations or
inequalties are decidable, or, in case of optimization problems, computable. This
includes nearly all problems mentioned in the previous sections. The problems
in connection with the sausage packings are an exception, however, since the
containers are convex hulls of spheres and cannot easily be described.

In fact, in case of the decision problem assume that we have a set of objects
and a container that are described by algebraic formulas. The question is whether
the objects can be fit into the container by certain motions (translations or rigid
motions). Let F(x) be the formula describing the container in the sense that a point
with coordinate vector x is in the container exactly if F(x) is true. In the same
way, let Fi(ti, x) describe the i-th object, i = 1, ..., n, where ti is some vector of
parameters that describes the motion (translation or rigid motion) applied to object
i. Then, the fact that all objects are packed inside the container is described by the



formula

∀x
n∧

i=1

(Fi(ti, x)⇒ F(x)) (1)

and the fact that the objects are placed nonoverlapping by

∀x
∧
i, j

(Fi(ti, x)⇒ ¬F j(t j, x)) (2)

.
The conjunction of both formulas gives a formula φ with free variables from

t1, ..., tn. Then ∃t1...∃tnφ is a Tarski formula of polynomial size. The truth of such a
formula can be decided in exponential time by the algorithms of Renegar [26–28]
or Canny [7].

For simple kinds of objects and containers, e.g., circles, spheres, convex poly-
hedra in constant dimension, formulas (1) and (2) can be replaced by formulas
without an all-quantifier. So, altogether we obtain a formula within the existential
first order theory of the reals. By Canny’s algorithm [7] the truth value of such
formulas can be decided within PSPACE.

For the optimization problem, we have a usually infinite set of possible con-
tainers. We assume that elements of this set are specified by some vector r of
parameters, so that the corresponding container F(r, x) is described by some alge-
braic expression in r and x. E.g., For a circle, r will just be its radius, for a triangle,
r may consist of the three side lengths. Furthermore, we assume that the size s(r)
(e.g. area, volume, perimeter) of the container F(r), which is the objective function
to be minimized, is given by some algebraic function of r.

Let φ(r) be the formula indicating that all objects can be packed into the con-
tainer specified by F(r, x), i.e., the conjunction of formulas (1) and (2) where F(x)
is replaced by F(r, x) and r is a set of free variables. Then adding by conjunction

φ(r) ∧ (∀r′(s(r′) < s(r))⇒ ¬φ(r′)) (3)

is a Tarski formula which is true for any r specifying a minimum size container.
The decision algorithms for Tarski formulas also determine the assignment of
algebraic numbers to r which makes formula (3) true, i.e. they give us the desired
solution.

Observe that formula (3) contains an all-quantifier, i.e. is not a formula in the
existential first order theory of the reals. It is not clear how that quantifier can be
avoided. Therefore, for optimization problems of the kind described we can only
say that they are in EXPTIME, it is not clear that they are in PSPACE.

So, in theory, all packing problems of the kind described, can be solved by
running an algorithm, i.e., a computer program, given sufficient time.
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Figure 3: NP-completeness of packing axis-parallel rectangles into an axis-parallel
rectangle: perfect packing is only possible, if the set of numbers a1, ..., an can be
partitioned into two subsets of equal sums.

Let us consider, for example, the open problem, whether the container in Figure
2 has minimum radius. We can assume that the container is a disk centered at the
origin, which leaves 25 variables for the coordinates of the centers of the twelve
circles to be packed and the radius of the container. The constraints in formulas
(1) and (2) can, in the case of circles, be formulated as quadratic constraints in
the variables. It appears, however, that (nonconvex) quadratic programming is
computationally a very difficult problem so that even the most efficient computer
algebra systems nowadays cannot solve it in general for 25 variables in a reason-
able amount of time. Notice that we already observed this discrepancy between
computability in theory and really obtaining the correct result in the problem of
proving of Kepler’s conjecture.

4 NP-hardness
Figure 3 shows a reduction from the NP-complete problem PARTITION to various
packing problems. a and b are constants with a ∈ (0, 1/2) and b >

∑n
i=1 ai. Even

one of the most basic packing problems, namely the decision problem whether a
set of axis-parallel rectangles can be packed by translations into a given container
which is also an axis-parallel rectangle is, thus, NP-complete (see also [12]).

Observe, that he reduction also works if rotations of the rectangles are allowed.
Furthermore, this reduction shows that many decision problems of the form "Can
a given set of objects be packed into a given container?" are NP-hard. In fact,
the objects and the container may be axis-parallel rectangles, arbitrary rectangles,
convex polygons, or arbitrary simple polygons. For all possible combinations and
both, translations and rigid motions, the problem is NP-hard.

Likewise, the optimization problem of finding a minimum area container is NP-
hard for all combinations of types of objects, containers, and motions mentioned,



with the exception of simple polygons as containers.

It does not follow that the decision problem whether a given set of axis-parallel
squares can be packed into a given square is NP-hard. That fact, however, was
shown by Leung et al. [21] where by a reduction from 3-PARTITION [13] even
strong NP-hardness is shown.

One of the few circle packing problems for which an NP-hardness result is
known is presented by Demaine et al. [9]. By a sophisticated reduction from
3-PARTITION they show that the problem whether a given set of circles can be
packed into a given triangle, a given rectangle, or a given square is NP-hard.

The decision problem whether packing given circles into a given circle is
possible (see also Section 2) is, to our knowledge, not known to be NP-hard.

Naturally, the question arises which of these problems are NP-complete, i.e.,
are in NP. In the previous section we argued that the decision versions of all
the problems of this section are in PSPACE and the optimization versions are in
EXPTIME. Surprisingly, only in one case we can reduce their complexity to NP.

In fact, the decision problem whether a set of axis-parallel rectangles can be
packed by translations into a given axis-parallel rectangular container is in NP.
Assume without loss of generality that the lower left cormer of the container is
the origin. We can assume that, if a packing exists, then there is one where no
“gaps” along a complete side of a rectangle in x- or y-direction occur. Otherwise
the rectangles could be shifted to close the gaps. Consequently, there is always a
packing, if any, where the x-coordinates of the lower left vertices of the rectangles
are sums of some widths of the given rectangles. Likewise, the y-coordinates of
these vertices are sums of some of the heights. Guessing these sums and verifying
whether that placement is a packing gives a polynomial-time nondeterministic
algorithm for the problem.

For the other variants of the packing problems in this section membership in
NP seems to be open.

Even for the simply stated problem of Pallet Loading neither NP-hardness nor
membership in NP is known. The input of that problem consists of five positive
integers a, b, A, B, n and the question is whether n rectangles of sidelengths a and
b can be packed in either axis-parallel orientation into a rectangle of sidelengths A
and B (see e.g. http://www.cs.smith.edu/~orourke/TOPP/P55.html#Problem.55 ).
The reason for the unknown status of the problem is that its description is quite
compact if the numbers are given in binary and it cannot be excluded that packing
patterns are quite complex. Observe, that the considerations of the previous section
cannot be applied to this problem, either.

 http://www.cs.smith.edu/~orourke/TOPP/P55.html#Problem.55 


5 Constantly many objects: exact solution
Because of the NP-hardness results we can only hope for finding the optimal
solution in polynomial time for a constant number of objects. This problem has
been investigated for polygons.

Finding the minimum area convex container for two convex polygons under
translation can be done in linear time [20]. Considerably more difficult is finding
the optimal container of two convex polygons P and Q under rigid motions. For
rectangular containers this was shown by F. Hurtado and the author [2]. For
arbitrary convex containers, Tang et al. [31] give an algorithm of runtime O((n +

m)nm) where n and m are the numbers of vertices of P and Q, respectively. The
algorithm is very elaborate by checking all possible contact configurations of the
two polygons.

Park et al. consider the optimal packing of three convex polygons under
translations [25]. They show how to construct the minimum area convex container
in O(n2) time by characterizing and investigating all combinatorially equivalent
positions three polygons can assume. For each of these, the formula for the area
of the convex hull can efficiently be determined from the previous one and the
minimum found is returned.

The general case of packing k polygons under translations as well as rigid
motions into a given container has been dealt with in a series of articles by Daniels
and Milenkovic[8, 22–24]. Using an especially designed technique, linear pro-
gramming based restriction, they show that all these problems can be solved in
time (nm)O(k) where n is the number of edges of the container and m is the number
of edges of each polygon. Remarkably, also problems of implementation and
applications to real world problems, mostly from apparel industry, are dealt with in
this series of papers.

6 Heuristics and Approximate Strip Packing
Because of its significance in practical applications, many heuristic algorithms
for packing have been developed and implemented, in particular in the operations
research community. The monograph of G. Scheithauer [30] (in German) is a good
survey on the techniques used, which include linear programming, backtracking,
branch and bound, metaheuristics like simulated annealing or genetic algorithms,
and others designed particularly for the problem at hand.

For some cases, those algorithms even have a guaranteed performance concern-
ing the approximation ratio with the optimal solution. More precisely, let A(I) be
the value of the objective function for the output that algorithm A produces for
problem instance I and OPT (I) the optimal value. We say that A has an absolute
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Figure 4: Rectangles packed by FFDH.

performance ratio α iff A(I) ≤ αOPT (I). The performance ratio is called asymp-
totic, iff limsupOPT (I)→∞A(I)/OPT (I) = α. So, in the asymptotic case A(I) may
have some additive terms whose ratio to OPT (I) tends to 0 for large enough (and
suitably chosen) instances.

For strip packing of rectangles in two dimensions a simple greedy algorithm
[19], namely first-fit-decreasing height (FFDH), gives an asymptotic performance
bound of 1.7OPT + 1. Rectangles are sorted by decreasing height, R1,R2, ..., and
packed on “layers” of the strip where each rectangle Ri is packed on the lowest
possible layer. If Ri does not fit into any of the existing layers any more, a new
layer with the height of Ri is started, see Figure 4.

The best known absolute performance factor for this problem is meanwhile
5/3 + ε for any constant ε > 0 by Harren et al. [16].

Concerning asymptotic approximations, the best result has been found by
Jansen and Solis-Oba [18]. In fact, they obtain a so-called APTAS, i.e., for any
ε > 0 an asymptotic approximation with multiplicative factor 1 + ε.

7 Approximating the Minimum Volume of a Con-
tainer

7.1 Two-dimensional packing
An algorithm Am for approximating a minimum area axis-parallel rectangle as
container for a set of n axis-parallel rectangles under translations can be derived
from an algorithm Asp for approximating optimal strip-packing as follows (see
also [29]).



The width wopt of the optimal container is at least wmax, the maximum width
of any object and at most n · wmax. We applyAsp to strips of width wmax,wmax(1 +

ε), ...,wmax(1 + ε)k where k is the smallest number with wmax(1 + ε)k ≥ n · wmax.
The minimum area rectangle ( = strip segment) found this way is returned as an
approximation for the minimum area container.

In fact, suppose thatAsp has an approximation factor of α. Let hopt be the height
of the minimum area container with width wopt. ThenAsp has been applied to a strip
of width at most wopt(1 + ε) and has returned a height of at most αhopt. Therefore,
the area of the corresponding rectangle is at most αhoptwopt(1 + ε) = α(1 + ε)Aopt,
where Aopt is the minimum area for an axis-parallel rectangular container. Since
k = dlog n/ log(1 + ε)e the runtime ofAm is O(T (n) log n · 1/ε) where T (n) is the
runtime ofAsp.

In short, from an efficient approximation algorithm for strip packing we can
obtain an efficient approximation algorithm for the smallest axis-parallel rectangu-
lar container which has nearly the same approximation factor. By the strip-packing
algorithm of Harren et al. [16], we obtain a (5/3 + ε)-approximation for finding a
minimum area axis-parallel rectangle for packing a set of axis-parallel rectangles
under translation.

Approximating an optimal axis-parallel rectangular container for “irregular”
convex objects, i.e., convex polygons under rigid motions can be reduced to the
problem of packing axis parallel rectangles under translations, see [32]. In fact, for
each polygon we can determine in linear time the enclosing rectangle of largest
width. It can be shown that its area is at most twice as large as the one of the
polygon. Then, we rotate the enclosing rectangles (including the polygons) so
that their widths become horizontal and apply the translational packing algorithm
to that set of axis-parallel rectangles. It can be shown that, if that algorithm is
chosen suitably, the resulting algorithm for packing polygons gives a factor-5-
approximation for the smallest enclosing rectangle.

For arbitrary rectangles under rigid motions this factor can be reduced to 3, see
[32].

The problem of approximating a minimum area axis-parallel rectangular con-
tainer for convex polygons under translations appears to be more difficult. De
Berg, Knauer, and the author [1] give an algorithm which works as follows:

Let the height of a polygon be the vertical distance from its lowest to its highest
point, its spine the line segment between two such points, and hmax and wmax the
maximum height and width of the polygons, respectively.

First the set of polygons is partitioned into height classes, determined by heights
in the intervals (αi+1hmax, α

ihmax], i = 0, 1, ..., where hmax is the maximum height of
the polygons and α ∈ (0, 1) some suitable constant.

Within height class i the polygons are packed consecutively into a strip of
height αihmax ordered by the slopes of their spines, see Figure 5. Each strip is
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Figure 5: Packing polygons under translations. a) after partitioning by height and
sorting by spine slope. b) Resulting axis-parallel container.

partitioned into segments of width cwmax where c ≥ 1 is a suitable constant. Each
segment contains the polygons whose leftmost point is within the segment and
is extended by a piece of length wmax in order to be able to contain the complete
polygons. All these segments having equal width (c + 1)wmax are stacked to form
an axis-parallel rectangle which is returned as the solution.

Optimizing parameters α and c yields an approximation factor of 17.449... In
practice, this constant is exceedingly high, but in most cases the output can be
improved by simple heuristics. Furthermore, the major insight from this algorithm
is that problem is constant factor approximable at all, i.e., it lies in complexity
class APX.

The algorithm described can also be modified to find a 27-approximation to the
smallest area convex container.

7.2 Three-dimensional packing

The analogues of rectangles and convex polygons in three dimensions are (rectan-
gular) cuboids (shortly called “boxes”) and convex polyhedra, repectively.

There is some research on strip packing of axis-parallel boxes. As was men-
tioned before, in three dimensional strip packing some rectangular cross section
in the x-y-plane of a strip is fixed and the objective is to pack the given set of



objects (axis-parallel boxes) by translations into a container with this cross ection
and minimum height. The best approximation algorithm with respect to asymp-
totic approximations was found recently by Jansen and Prädel [17] which has an
approximation factor of 3/2 + ε. The best abslute approximation is due to Diedrich
et al. [10] with an approximation factor of 29/4.

In her master’s thesis [29], see also [3], Scharf investigated three-dimensional
packing where the minimum volume container is wanted and found approxima-
tion algorithms for several variants.

In fact, it turns out that packing axis parallel boxes by translation into an
approximately minimum volume axis-parallel box can be reduced to strip packing.

In fact, a technique analogous to the one for two dimensions described in
Section 7.1 can be used. More precisely, letwmax and dmax be the maximum width
(x-direction, say) and depth (y-direction) of the boxes to e packed. Then, for
all strips of widths wmax(1 + ε)i and depths dmax(1 + ε) j that lie in the intervals
[wmax, nwmax] and [dmax, ndmax], respectively, approximately optimal strip heights
are found by the strip packing algorithm. The one with the minimum volume is
returned.

Thus, if the strip packing algorithm has an absolute approximation factor of
α then a minimum volume finding algorithm with approximation factor (1 + ε)α
can be found for any arbitrary ε > 0. Applying this technique to the strip packing
algorithm by Diedrich et al. gives a minimum volume approximation algorithm
with factor 29/4 + ε.

In [3, 29], it is also shown that a similar idea as in the two-dimensional case can
be used to find an approximation algorithm for the packing of a set of arbitrary
convex polyhedra by rigid motions into a minimum volume axis-parallel box.
First, to each polyhedron P an enclosing box B is found by choosing two sides of
B perpendicular to the diameter of P. Then the projection onto one of these sides is
some convex polygon P′ and again two further sides of B are chosen perpendicular
to the diameter of P′. The remaining sides of B are chosen perpendicular to the first
two pairs of sides so that they touch P. Then, it can be shown that the volume of B
is at most six times the one of P. If some suitable approximate packing algorithm
is chosen to pack all enclosing boxes into an axis-parallel box C, then the volume
of C is at most 277.59 times larger than the one of the optimal solution. Again, this
is quite a large constant, but at least it shows that the problem is approximable, i.e.,
in class APX.

If we allow the container to be an arbitrary convex polyhedron the ideas above
can be applied to find a 29.135-approximation for cuboids under rigid motion and
a 511.37-approximation for convex polyhedra.

It still is an open problem whether finding a minimum volume container (cuboid
or convex) for a set of convex polyhedra is in APX, i.e., can be approximated in
polynomial time.
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