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Abstract

Catalytic computation was defined by Buhrman et al. (STOC, 2014). It
addresses the question whether memory, that already stores some unknown
data that should be preserved for later use, can be meaningfully used for
computation. Buhrman et al. provide an intriguing answer to this question
by giving examples where the occupied memory can be used to perform
computation. In this expository article we survey what is known about this
problem and how it relates to other problems.

1 Introduction
In various sciences it is customary to study complex systems in isolation to make
the study tractable. This also happens in theoretical computer science where we
often look at a single Turing machine solving a certain problem while ignoring
the rest of the universe. For example, theorems like the Space Hierarchy Theorem
describe computation that happens in isolation from the rest of the world. How-
ever, in typical real world scenario computation happens in the context of some
outside environment. For example, when focusing on space (memory) used by the
computation we can come across the following typical situations:

1. A process (program) runs on a computer that is equipped with a hard disk
containing data unrelated to the computation.

2. A process runs on a computer and simultaneously there are other running
processes on the same computer occupying parts of the main memory.
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3. A process invokes some internal procedure (function), the internal state of
the process is stored on the stack before the invocation and upon finishing
the procedure the state is restored from the stack. During the computation
the procedure is using some working memory while not touching the content
of the stack.

In all these scenarios the process or procedure that is running has some available
working memory that it can use as it wishes but in addition to that there is a
huge amount of memory that is accessible in principle but currently it stores data
that must be retained during the computation of the process or procedure. A
natural question that comes up is whether the process or procedure can make some
meaningful use of the extra memory under the condition that upon finishing it will
be restored to its initial content. To rephrase the question:

Can we compute more or more efficiently if we allow access to the
extra memory?

Naturally, granting access to the extra memory would bring in a host of issues
regarding privacy, security and reliability. Some of these can be easily dealt with
using encryption. However, these issues are not the issues we are trying to address
here. Our question is whether in a friendly environment such as in the third scenario
one can make use of the extra memory. This could allow for more space efficient
computation.

It is natural to conjecture that the extra space cannot be used meaningfully. The
reason is that we do not have control over the initial content of the extra memory
and we cannot just simply erase it. For example, the content of the extra memory
can be incompressible (either in non-technical sense or in the sense of Kolmogorov
complexity). Then we have to essentially keep the content of the extra memory in
there assuming our own working memory is substantially smaller. Otherwise we
could lose some information and we would not be able to restore the initial content
of the extra memory when finishing.

On the other hand, if the content of the extra memory were indeed incom-
pressible one could try to use it for derandomization using the hardness versus
randomness paradigm [46, 39]. And, if it were compressible we could compress it
and use the extra space to perform our computation. So the usefulness of the extra
memory is not clear cut.

Hence, we are interested in the question of whether there are problems that can
be solved using the extra memory regardless of its initial content but that cannot be
solved using the same resources but without the extra memory.

The origins of this question can be traced back to the program of Steve Cook on
separating L (problems solvable in logarithmic space) from P (problems solvable
in polynomial time) [24]. In a project of Steve Cook and Yuval Filmus [21], they



propose to prove lower bounds on the size of branching programs for the Tree
Evaluation Problem in two steps: first prove the lower bounds under essentially
the assumption that the extra space does not help and then justify this assumption.
This assumption can be phrased in terms of catalytic branching programs that we
will see in Section 9. The setting of the parameters for the assumption of Cook and
Filmus is quite specific though so it is not clear how much the study of our general
question sheds light on their problem. However, a prototypical example for our
third scenario is Savitch’s recursive algorithm for solving the Graph Reachability
Problem, and hence understanding the general question provides insights about
the relationship between L and NL (problems solvable non-deterministically in
logarithmic space).

In the rest of the article we will survey what we know about the usefulness of
the extra memory and we will show perhaps surprisingly that the extra memory can
be used meaningfully despite the fact that we do not have control over its initial
content and we have to restore it by the end of the computation.

We will formalize this question in the next section. We will call the computation
with the extra tape a catalytic computation as the extra memory serves as a form of
catalyst to carry out the computation. Section 3 demonstrates the power of catalytic
computation on the Graph Reachability Problem. Section 4 provides complexity
background for the rest of the article, and builds the context for the results we
exhibit. In Section 5 we survey what is known about reversible computation
and its relationship to catalytic computation. In Section 6 we present our main
technical tool which is transparent computation, and we demonstrate the power of
transparent computation on the case of evaluating arithmetic formulas using few
registers. Section 7 shows how to simulate transparent computation using catalytic
memory. Known limits on the power of catalytic memory are discussed in Section
8. Sections 9 and 11 explore non-uniformity and non-determinism in the context
of catalytic computation. In Section 10 we discuss the space hierarchy for catalytic
computation. We conclude with a summary of main open problems in Section 12.

2 Catalytic computation
It is fairly easy to capture the scenarios described in the introduction in terms of
the usual computational models. We can take either a Turing machine or a random
access machine (RAM) and equip it with extra tapes or extra region of memory
that is initialized to an unknown content. The tape can be modified during the
computation but must be restored to its initial content by the end of computation.
For clarity, we will think of Turing machines but any other computational model
could easily be extended to obtain similar results. We will use the definitions of
Buhrman et al. [12].



A catalytic Turing machine is a Turing machine equipped with a read-only
input tape, a read-write work tape and an extra read-write tape — the auxiliary tape.
For every possible initial setting of the auxiliary tape, at the end of the computation
the catalytic Turing machine must have returned the tape to its initial content. We
will often refer to the auxiliary tape as the catalytic tape.

Definition 1. Let s, w : N → N be non-decreasing functions. We say that a
language L is decided by a catalytic Turing machine M in space s(n) and using
catalytic space w(n) if on every input x of length n and arbitrary string a of length
w(n) written on the auxiliary tape the machine halts with a on its auxiliary tape,
during its computation M uses (accesses) at most s(n) tape cells on its work tape
and w(n) cells initially containing a on its auxiliary tape, and M correctly outputs
whether x ∈ L.

We define CSPACE(s(n), w(n)) to be the set of all languages that can be decided
by a catalytic machine in space s(n) using catalytic space w(n). As a notational
shorthand let CSPACE(s(n)) = CSPACE(s(n), 2O(s(n)))

In our treatment we will assume that Turing machines work with the binary
alphabet {0, 1} but all the results can be easily extended to other alphabets.

It is natural to consider only functions w(n) where w(n) ∈ 2O(s(n)). The reason is
that otherwise the position of the head on the auxiliary tape encodes potentially
more information than the content of the work space. Indeed, if we had multiple
auxiliary tapes and infinite w(n) we could simulate arbitrary space computation
just using the positions of the heads on the auxiliary tapes [43]. Such a machine
would be essentially equivalent to counter machines. This justifies our definition
of CSPACE(s(n)).

We also allow only one work tape and one auxiliary tape. Since we are
concerned mainly about space this is without the loss of generality as we can
simulate multiple tapes on a single tape whenever s(n) ∈ Ω(log w(n)).

The most important class for us is the catalytic log-space, the class CL =

CSPACE(log n). It corresponds to polynomial size catalytic tape and logarithmic
work space. This seems to be the maximal reasonable auxiliary tape and the
minimal reasonable work space. It is natural to compare this class to the usual
deterministic logarithmic space L and non-deterministic logarithmic space NL. As
we will exhibit later that both classes are contained in CL. Indeed, Buhrman et al.
[12] show a (to the best of our knowledge) stronger statement that TC1

⊆ CL:

Theorem 2. Languages that are recognized by log-space uniform families of
polynomial-size Boolean circuits of logarithmic depth consisting of arbitrary fan-
in MAJ-gates and NOT-gates (i.e. log-space uniform TC1 circuits) are in CL.

We will survey classes between L and TC1 in Section 4. We remark that we
do not know whether log-space uniform TC1 = L as we do not know of any



separation of L from P or even NP. So to the best of our knowledge it could
be that L = TC1 = CL. That would imply a remarkable sequence of collapses
of complexity classes as we will see later. However, to appreciate the power
of catalytic space and CL in particular we will recall what is known about the
important Graph Reachability Problem (STCONN).

3 Graph Reachability Problem

The Graph Reachability Problem is the following algorithmic problem:

Input: Graph G and two of its vertices s and t.
Output: Decide whether there is a path from s to t in G.

We denote the corresponding language STCONN = {(G, s, t); there is a path
from s to t in G}. This is a well studied problem from the computational complexity
perspective but also from practical stand point. STCONN is the standard complete
problem for non-deterministic log-space, NL. Its undirected version USTCONN,
where the graphs are undirected, is known to be decidable in log-space, L. This
is a celebrated result of Reingold [48]. Previous to this result it was known that
USTCONN is in randomized log-space (RL) [5], and there is a sequence of results
getting ever so closer to logarithmic space [44, 45, 7, 58]. There are many other
restrictions of Graph Reachability such as reachability on planar graphs or graphs
with other special properties that people study [3].

For general STCONN the best space upper bound is provided by Savitch’s
Theorem which puts NL into DSPACE(log2 n), the class of problems solvable
deterministically using O(log2 n) space. No randomized log-space algorithm for
general STCONN is known. Savitch’s algorithm is very space efficient but its
running time is superpolynomial, namely nΘ(log n).

When we focus on deterministic algorithms running in polynomial time, the
landscape looks markedly different. Solving reachability in linear time can be
accomplished by algorithms using either breadth-first search or depth-first search.
However, all these algorithms typically require space at least linear in the number
of vertices of the graph. The most space efficient algorithm running in polynomial
time is the algorithm of Barnes et al. [9] that uses the unlikely space n/2Θ(

√
log n).

No better polynomial time algorithm is known, and the space used by this algorithm
matches a lower bound on space for solving STCONN on a restricted model of
computation so called Node Naming Jumping Automata on Graphs (NNJAG’s)
[28, 26]. NNJAG’s are a model specifically proposed for the study of STCONN and
most of the known sublinear space algorithms for STCONN can be implemented
on it. Hence, any polynomial time algorithm using space less than n/2ω(

√
log n)



is likely to require fundamentally new ideas. It is a major challenge to design a
polynomial time algorithm for STCONN working in space O(nε) for some ε < 1.

So our currently best algorithm for STCONN runs in space Θ(log2 n) and all
known polynomial time algorithms for this problem run in space almost linear.
Compare this to the result of Buhrman et al. [12]:

Theorem 3. STCONN can be solved on catalytic Turing machines in space
O(log n) with catalytic space O(n2 log n) and time O(n9).

The time bound O(n9) is a crude estimate for a naïve implementation of the
algorithm of Buhrman et al. on catalytic Turing machines. On catalytic RAM it
would achieve substantially better running time using the same space bounds. In
other words, if we are allowed to use someone else’s occupied memory of size
O(n2 log n), we can solve STCONN in polynomial time and logarithmic work space.
In terms of work space this is exponentially better than any known polynomial
time algorithm for STCONN. To us, this clearly justifies the study of the model,
and conceivably there could be even practical applications of this paradigm. Even
in the unlikely case of CL = L, catalytic space could provide nontrivial advantage
in terms of algorithm design or the actual running time.

4 Complexity classes and problems around L

This section serves as a brief overview of the landscape surrounding L. We assume
that the reader is familiar with basic concepts such as Turing machines. (More
background information can be found in standard textbooks, e.g. [51, 2].) There
is a surprising number of complexity classes people study that are close to L in
computational power. Most of these classes come quite naturally either as classes
that capture the computational complexity of some well-known problems or they
correspond to some natural restriction of a more general computational device.

Problems: STCONN, USTCONN, DET, IMM. We have already seen the prob-
lems STCONN and USTCONN in Section 3. Another problem relevant to our
study is the problem of computing a determinant. By DETn,R we denote the prob-
lem of computing a determinant of an n × n matrix over a ring R. A closely related
problem is the Iterated Matrix Multiplication IMMn,m,R which is the problem of
computing the product of n matrices, each over the ring R of dimension m × m.
Typically we may think of R being the ring of integers, and m = n. We will omit
the subscripts when the ring or dimensions are understood from the context. It is
well-known that by results of Cook [25, 6], the class of problems log-space many-
one reducible to DET is the same as the class of problems log-space reducible to
IMM. (A function f is log-space many-one reducible to the determinant if there is



a function g computable in log-space such that f (x) (viewed as a number written
in binary) is equal to the determinant of matrix g(x).)

Classes: L, NL, LOGCFL. Beside the computational classes L (problems solv-
able deterministically in logarithmic space), and NL (problems solvable non-
deterministically in logarithmic space) we will also refer to the class LOGCFL
which contains both L and NL. LOGCFL is the class of languages accepted by
non-deterministic Turing machines running in polynomial-time, working in space
O(log n) and using in addition to their work space an unlimited push-down stack,
so called AuxPDA’s [52]. Equivalently, LOGCFL is the class of problems that are
log-space many-one reducible to context-free languages.

Counting classes: #L, #LOGCFL, GapL. Instead of considering whether a non-
deterministic Turing machine accepts its input on some non-deterministically
chosen computational path or rejects on all of them we can count the number of
accepting paths of the machine on the given input. This gives a function that maps
inputs to integers. That is a more general concept than just acceptance by a non-
deterministic machine which corresponds to a function mapping inputs to {0, 1}.
The counting class #L is the class of functions obtained by counting the number
of accepting paths of a non-deterministic log-space machine, and #LOGCFL is
the class of functions that count the number of accepting paths of an AuxPDA
running in logarithmic space and polynomial time. The complexity of computing
the determinant is closely related to #L. In particular, f is log-space many-one
reducible to determinant if and only if it is the difference of two functions in #L
[55, 27, 61, 63]. The class of such functions is usually denoted by GapL. DET and
IMM are both in GapL.

Circuits. The above classes are defined in terms of Turing machines. We also
consider functions defined in terms of circuits. A circuit is a computational device
that consists of gates interconnected by wires. Wires carry values (typically 0 or 1)
from one gate to another gate, and each gate takes its incoming values, computes a
designated function (such as AND or OR) on them, and send the resulting value
along all its outgoing wires. The fan-in of a gate is the number of its incoming
wires. If a gate has fan-in two we say it is binary. We say that it has unbounded
fan-in when we do not place any restriction on its fan-in. Gates of fan-in zero are
the input gates, each such a gate is associated with one input bit (e.g. the 17-th
input bit), and when the circuit is provided with an input, the gate sends along its
outgoing wires the value of the associated input bit. The output of the circuit is the
output value of designated gates. One can represent a circuit by a directed graph
where nodes represent gates and directed edges represent wires. We will consider



only circuits whose graphs contain no directed cycle, i.e., they are directed acyclic
graphs (DAG’s). The output value of such circuits is well defined. A circuit is a
Boolean circuit if it computes with the Boolean values {0, 1}.

Uniformity. For each input length n we typically have a different circuit Cn

taking the appropriate number of input bits. To represent a function which takes
inputs of arbitrary length, one considers families of circuits {Cn}n≥1, where Cn

computes the function on inputs of length n. If we do not put any restrictions on
the circuit family {Cn}n≥1 we can compute any function, even uncomputable one
such as the Halting Problem. To restrict ourselves to computable functions we
will look on circuit families {Cn}n≥1 for which there is an algorithm that on input
1n outputs a description of the circuit Cn. Such a family is called uniform. It will
be log-space uniform if the algorithm uses work space O(log n) to compute the
description of Cn. In this article when we say uniform we will mean log-space
uniform unless specified otherwise. We will restrict ourselves essentially only to
log-space uniform circuit families.

Size and depth. An important parameter of a circuit is its size which is the
number of its gates. Since the graph of the circuit is acyclic each gate computes its
value ones it receives its input values, and multiple gates can compute their value
at the same time. Hence circuits are a model of parallel computation. The time to
finish the evaluation of a circuit is given by the depth of the circuit which is the
length of the longest path in the corresponding graph.

For a circuit family {Cn}n≥1, let s(n) be the size of Cn and d(n) be its depth.
If s(n), as a function of n, is bounded by a polynomial in n then we say that the
circuit family has polynomial size; it is exponential size if s(n) is bounded by
an exponential in n. If d(n) is bounded by O(log n) we say that the family has
logarithmic depth, if d(n) is bounded by a constant, that is d(n) ∈ O(1), then we
say that the family has constant depth.

Any Boolean function f : {0, 1}∗ → {0, 1} can be computed by family of circuits
of size O(2n/n) consisting of binary AND and OR gates and unary NOT gates
(see e.g. [2]). For most functions this is actually the optimal circuit size as can
be verified by a simple counting argument. Functions from P are computable by
circuit families of polynomial size consisting of binary AND, OR and unary NOT
gates. This is actually a precise characterization as a function is computable in
polynomial time on a Turing machine if and only if the function is computable
by a log-space uniform circuit family of polynomial size. We will look on circuit
families that compute functions with complexity close to log-space.



Circuit classes: TC0, NC1, SAC1, AC1, TC1. TC0 is the class of functions com-
putable by families of Boolean circuits of polynomial size and constant depth that
consist of MAJ gates, that is gates that output the majority value of their input bits,
and unary NOT gates. NC1 is the class of functions computable by families of
Boolean circuits of polynomial size and logarithmic depth that consist of binary
AND and OR gates and unary NOT gates. Equivalently, it is the class of functions
computable by polynomial size Boolean formulas over AND, OR and NOT. SAC1

is the class of functions computable by families of Boolean circuits of polynomial
size and logarithmic depth that consist of binary AND gates, unbounded fan-in OR
gates and unary NOT gates. AC1 is the class of functions computable by families
of Boolean circuits of polynomial size and logarithmic depth that consist of un-
bounded fan-in AND and OR gates and unary NOT gates. Finally, TC1 is the class
of functions computable by families of Boolean circuits of polynomial size and
logarithmic depth that consist of MAJ gates and unary NOT gates. It is standard
knowledge that TC0

⊆ NC1
⊆ SAC1

⊆ AC1
⊆ TC1, but none of these inclusions is

known to be proper. TC0 is known to contain problems such as computing the sum
and the product of n n-bit integers, computing the division of two n-bit integers,
etc. [11, 49, 32]. The class NL is contained in SAC1 which is equal to #LOGCFL
[62].

Arithmetic circuits: VP, #SAC1, #AC1. Beside circuits that operate over the
Boolean domain we consider also algebraic circuits that operate over some ring R.
When R is the ring of integers Z, these are also called arithmetic circuits. The most
relevant class for us is Valiant’s class VP(R) [60], which is the class of functions
computed by polynomial size algebraic circuits using + and × gates over R, where
the circuit corresponds to (represents) a multivariate polynomial of polynomial
degree. An alternative characterization of VP(R) is as the class #SAC1(R) of
functions computed by algebraic circuits of polynomial size and logarithmic depth
that use binary multiplication and addition with arbitrary fan-in [65]. The class
#AC1 contains functions computed by arithmetic circuits of polynomial size and
logarithmic depth where both addition and multiplication have arbitrary fan-in.

Taken over the integers, VP(Z) exactly equals #LOGCFL. Skew circuits are
algebraic circuits where each multiplication gate is binary and restricted so that one
of its inputs is either a constant or an input variable. Skew circuits over integers
having polynomial size and degree compute exactly GapL [56], i.e., functions
reducible to determinant. Hence, the question on the relationship between GapL
and #LOGCFL is exactly the question posed by Valiant [60] about the relationship
between the determinant and VP(Z), namely, whether evaluating a VP(Z) circuit
reduces to evaluating the determinant of a matrix that is at most polynomially
larger in size. (Valiant shows that a matrix of size nlog n is enough, and that this can
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#NC1(Mn×n(Z)) SAC1(Z) #AC1(Z2poly(n))

OO

Figure 1: Inclusion diagram for various classes. All these classes fall in CL.

be reduced to polynomial size in the case of skew circuits.)
Immerman and Landau [33] conjecture that computing determinant over the

integers is hard for TC1. It is known that TC1 circuits can evaluate #AC1 circuits
over Zm, the ring of integers mod m, for exponentially large m. This is because
TC0 circuits can evaluate an iterated sum and iterated product of integers, as well
as compute the remainder mod m. TC1 circuits cannot evaluate #AC1 circuits
over unbounded integers since #AC1 circuits represent polynomials of degree
up to nO(log n), and hence the representation of their output may require super-
polynomially many bits. If Immerman-Landau conjecture were true then #SAC1

circuits over the integers — which compute polynomials of degree polynomial in
the number of inputs — could simulate TC1, and hence #AC1. The latter can have
super-polynomial degree which seems to go against the conjecture. The conjecture
can not be ruled out entirely, because while polynomials of nO(1) degree over integer
variables can not simulate polynomials of larger degree over integer variables, they
could still conceivably simulate polynomials of nlog n degree over Z2n . Allender,
Gál and Mertz [4] give examples of such type of phenomena. [1, 15, 49] establish
relationship between TC0 and #AC0 over various integral rings and finite fields.
This relationship can be translated into a similar type of relationship between TC1

and #AC1 as depicted in Figure 1.

5 Reversible computation
Our requirement on catalytic computation is to restore the initial content of its
auxiliary tape by the end of a computation no matter what is its initial content.
This suggest that the problem of using the catalytic tape is related to reversible



computation as we are required to return to the same configuration of the auxiliary
tape. Indeed, catalytic computation is related to reversible computation but both
concepts are somewhat different.

The goal of a reversible (deterministic) computation is to perform each step
of the computation reversibly. This translates into the requirement that for each
configuration of the computer there is at most one other configuration which will
lead to the former one in one step of the computation. In other words, the graph
of all possible computational configurations of the computer consists of lines and
cycles. (In irreversible computation multiple different configurations can lead in
one step to the same configuration for example by setting to 0 a tape cell that in
one of the configurations contains symbol 0 and in the other one symbol 1. Hence,
the graph of configurations of an irreversible computation is formed by disjoint
trees (forest).)

The interest in reversible computation is motivated by minimizing energy
needed to carry out a computation. By laws of thermodynamics, irreversible steps
of a computation dissipate heat [41]. Reversible computation could in principle
be carried out without expending any energy. In 60’s this lead to a question what
functions can be computed reversibly. Bennett [13] provided an answer to this
question by showing that any irreversible computation can be simulated reversibly.
His technique is based on recording the history of all moves on an extra history
tape. This solution requires substantial amount of extra space that has to be initially
empty and that will eventually be restored to its empty state. In [14], Bennett
designed a better simulation that requires only polynomial amount of extra space
for recording only milestones in the history.

Lange, McKenzie and Tapp [42] came up with a different technique that is
based on traversing the tree of the computer configurations in an Eulerian fashion.
This technique in principle does not need any extra space. However, when run in
reverse it might not be able to recognize the correct initial configuration as there
might be many initial configurations that lead to the same final configuration (they
will be a part of the same tree of configurations). Hence, when the computation
is run in reverse it will cycle through all these initial configurations. Thus, one
either needs some easy to recognize initial configuration or extra space to keep
track of the length of the computation. This extra space is proportional to the
work space. The drawback of this technique is that the simulation might require
exponential time. Buhrman, Tromp and Vitányi [20], and independently Williams
[68] combined the two techniques to get various trade-offs between the running
time and space of the simulation.

One can also build reversible Boolean circuits using various types of reversible
gates such as Toffoli gates [57]. However, they also require extra space which
essentially stores the history of the computation and must be initialized to a
particular configuration. Hence, all of the above techniques require extra space that



has to be initially set to particular values, e.g., blanks. This makes them unsuitable
for catalytic computation as we cannot impose restrictions on the initial content of
the catalytic memory. Catalytic computation is more relaxed about the reversibility,
though. It does not require every step of the computation to be reversible but only
that we can restore the content of the tape. For example provided that the initial
content of the auxiliary tape is sufficiently compressible it is legal to compress
it, perform there some irreversible computation, and then decompress the tape
again. So the requirements on catalytic computation are different than on reversible
computation.

There is one more technique that computes in reversible fashion, and that we
did not discuss yet. Motivated by cryptographic applications, Coppersmith and
Grossman [22] studied which permutations can be computed reversibly on a very
simple model of computation. They showed that all permutations can be computed
in this model where odd permutations need a single extra bit of storage used in
a catalytic fashion. This aspect was noted by Bennett in his paper [14]. Ben-Or
and Cleve [10] extended the computational model further to get a remarkable
result that any arithmetic formula over a ring (finite or infinite) can be evaluated
using only three working registers to hold values from the ring. This result was
a generalization of Barrington’s famous theorem [8] which established that all
Boolean formulas can be evaluated on width-5 (permutation) branching programs.
The model and techniques allow one to overlay space for one computation over
the space of another computation. These techniques are the basis for the proof of
Theorem 2 that TC1

⊆ CL. We will describe the model and techniques in the next
section.

6 Transparent computation
In this section we present the model of transparent computation of Buhrman et
al. [12] which is a form of reversible computation. It generalizes the model of
Coppersmith and Grossman [22] and Ben-Or and Cleve [10].

The model of transparent computation is a non-uniform model. The compu-
tational device for transparent computation is a register machine equipped with
read-write working registers r1, r2, . . . , rm and read-only input registers x1, . . . , xn.
Each register holds a value from some designated ring R. The input to the device is
given in the registers x1, . . . , xn so, inputs of different lengths require machines with
different numbers of input registers and possibly also of working registers. Each op-
eration (instruction) of the machine is of the form ri ← ri + f (x1, . . . , xn, r1, . . . , rm)
or ri ← ri − f (x1, . . . , xn, r1, . . . , rm), where the function f gives a value from R
and the + and − operations are over the ring R. One may allow different rings for
different input sizes (and registers).



Coppersmith and Grossman consider the case when R = F[2] and when the
instructions can use arbitrary functions f . Ben-Or and Cleve consider an arbitrary
ring R but allow only instructions of the form ri ← ri ± v and ri ← ri ± r j ∗ v, where
ri and r j are different working registers and v is either an element of R (constant) or
one of the input registers x1, . . . , xn. (The ∗ denotes multiplication over R.) We will
call such instructions skew bases. Cleve [23] and Buhrman et al. [12] use arbitrary
rings R and instructions of the form ri ← ri ± v and ri ← ri ± u ∗ v, where both u
and v can be either elements from the ring R, input registers, or working registers
different from ri. We will call such instructions standard bases.

A program for the register machine is a sequence of operations. We call P a
transparent program. We say that f (x1, x2, . . . , xn) can be computed transparently
into a register ri if there is a transparent program P that when executed on regis-
ters r1, r2, . . . , rm with arbitrary initial values τ1, τ2, . . . , τm and the input given in
registers x1, . . . , xn, ends with value τi + f (x1, x2, . . . , xn) in register ri; the other
registers may contain any values at the end of the computation. However, if the
other registers do not change their value we say the program is clean. Clearly, we
are interested in clean programs, and as we will see in a moment, any program can
be made clean.

Notice, ri ← ri + f (x1, . . . , xn, r1, . . . , rm) is an inverse operation to ri ←

ri − f (x1, . . . , xn, r1, . . . , rm) provided that f does not depend on the value of ri.
This is in particular true for the standard and skew bases. Thus for a transparent
program P = a1, a2, . . . , a` we let the reverse program P−1 be a−1

` , a−1
`−1, . . . , a−1

1
where a−1

i is the same instruction as ai but the + and − are interchanged. It is easy
to verify by induction on the length of P that P, P−1 computes identity. Hence, all
transparent programs are reversible.

Clearly, if we have a program that transparently computes f into a register ri

we can modify it by relabeling registers to compute f transparently into a different
register. To make a program that computes ri ← ri + f (~x) in a clean fashion, we
use an extra working register r′i . Let P′ be a transparent program for r′i ← r′i + f (~x).
Consider the following program:

1. ri ← ri − r′i .

2. P′

3. ri ← ri + r′i .

4. P′−1

One can easily verify that the only effect of this program is adding f (~x) to ri.
In addition to computing a single function in a transparent fashion one can si-

multaneously compute several functions f1(~x), f2(~x), . . . , fk(~x) into registers ri1 , ri2 , . . . , rik



so that the execution of P ends with the value τi j + f j(~x) in each register ri j . (In
case of a clean program the values of the remaining registers should remain the
same, and any program can be made clean using an additional working register.)

Observe that a transparent program P over the standard bases computes a
polynomial over R in the input variables x1, . . . , xn. The degree of this polynomial
is at most exponential in the length of P, and it is at most polynomial in the length
of P when P is over the skew bases. Ben-Or and Cleve [10] prove the following:

Theorem 4 (Ben-Or and Cleve). Let f : Rn → R be a function over some ring R.

1. If f can be computed by an arithmetic formula of depth d over R consisting
of +,−, ∗ with variables x1, . . . , xn then f can be computed transparently by
a program of length 4d over skew bases using at most three working registers.

2. If f is computed transparently by a program of length ` using skew instruc-
tions and m working registers then f is computable by an arithmetic formula
over R of depth O(log ` · log m).

The first part is the important part as it allows to evaluate an arbitrary arithmetic
formula using only three registers. It is well known that any arithmetic formula
can be balanced, i.e., transformed so that its depth becomes logarithmic in its
size. This was proven originally for commutative rings by Brent et al. [17, 19] but
their argument is known to hold also for non-commutative rings. This implies that
any arithmetic formula can be computed transparently by a program using three
working registers whose size is polynomial in the size of the formula. This holds
for any ring. As noted by Cleve [23] it even holds over the ring of n × n matrices
over R.

That means that the Iterative Matrix Multiplication IMMn,n,R can be transpar-
ently computed using three registers holding values from Rn×n. Alternatively, if
we view IMMn,n,R as a function from Rn3

into Rn2
then there is a polynomial size

transparent program computing IMMn,n,R using 3n2 working registers with instruc-
tions over R [23]. In the next section we will describe how to simulate transparent
programs on a catalytic machine. This simulation directly allows one to conclude
#L ⊆ CL since IMMn,n,Z is hard for #L.

To illustrate the technique used for transparent computation we give the proof
of Ben-Or and Cleve’s theorem.

Proof. First, we prove Part 1. We will prove by induction on the depth d of the
formula computing f a slightly stronger statement that there is a clean transparent
program computing ri ← ri +u∗ f (x1, . . . , xn) and ri ← ri−u∗ f (x1, . . . , xn), where
u = 1 or u is a working register different from ri.



If d = 0 then f (x1, . . . , xn) = v, where v is either an input variable xi or a
constant from the ring R. The required program is a single instruction ri ← ri±u∗v,
where we put + or − depending on whether we want to add u ∗ f to ri or subtract it.

So assume that the claim is true for functions computed by formulas of depth
less than d, where d ≥ 1. There must be some functions g(x1, . . . , xn) and
h(x1, . . . , xn) computed by formulas of depth less than d so that f = g � h, where
� ∈ {+,−, ∗}. Consider first the case f = g+h. Computing ri ← ri +u∗ f (x1, . . . , xn)
can be decomposed into two parts:

1. ri ← ri + u ∗ g(x1, . . . , xn)

2. ri ← ri + u ∗ h(x1, . . . , xn)

By the induction hypothesis we have a clean program Pg implementing the first
part, and a program Ph implementing the second part, both of length at most 4d−1.
The concatenation of the two programs Pg and Ph yields the required program of
length at most 2 ·4d−1 ≤ 4d. Subtraction ri ← ri−u∗ f (x1, . . . , xn) is done similarly,
as well as the case f = g − h.

The only remaining case is the case of f = g ∗ h, and this is the place where
magic happens. Let rk be a working register different from ri and u. Consider the
program:

1. rk ← rk + u ∗ g(x1, . . . , xn)

2. ri ← ri + rk ∗ h(x1, . . . , xn)

3. rk ← rk − u ∗ g(x1, . . . , xn)

4. ri ← ri − rk ∗ h(x1, . . . , xn)

By induction hypothesis we have a clean transparent program of size at most 4d−1

for each of the parts. A careful inspection of the code should convince the reader
that the four parts together form a clean program for ri ← ri + u ∗ f (~x). The size
of the program is at most 4d. Subtracting u ∗ f can be done similarly, one just
switches + and − on the second and last line. This proves the first part.

To prove the second part, observe that we can think of a skew transparent
program as acting on a vector of registers r̃ = (r1, r2, . . . , rm, 1). Each instruction
ri ← ri + r j ∗ v corresponds to a (m + 1)× (m + 1) matrix obtained from the identity
matrix by replacing the ((m + 2 − j), i)-entry by v, and each instruction ri ← ri + v
is obtained by replacing the (1, i)-entry by v. Multiplying r̃ from right by the
sequence of matrices corresponding to individual instructions of the transparent
program gives a vector with the resulting register values.

If the program computes r1 ← r1 + f (x1, . . . , xn), then (1, 1)-entry of the product
of the matrices is the value of f (x1, . . . , xn). Since each entry of the product of two



(m + 1) × (m + 1) matrices can be computed by an arithmetic formula of depth
O(log m), each entry of the product of ` matrices can be computed by an arithmetic
formula of depth O(log ` · log m) by forming a log-depth tree of matrix products.
This proves the claim. �

Theorem 4 allows one to transparently compute any function from GapL. This
requires only three matrix registers and skew instructions over matrices. To go to
the (possibly) higher class TC1 Buhrman et al. [12] use the full standard bases and
polynomially many registers. The extra instruction ri ← ri + r j ∗ rk allows one to
efficiently compute iterated product of registers, polynomially large powers of a
register, and equality test.

The main theorem of Buhrman et al. [12] regarding transparent computation is
the following.

Theorem 5 (Buhrman, Cleve, Koucký, Loff, Speelman). For any sequence of
primes (pn)n∈N of size polynomial in n, functions from TC1 can be computed
transparently using polynomially many working registers over F[pn] by programs
of polynomial length with instructions from the standard bases.

This claim holds uniformly as well as non-uniformly, so if a function f is
computed by log-space uniform TC1 circuits then it is computed by log-space
uniform transparent programs, that is in log-space on input 1n one can compute a
prime pn and the description of the transparent program computing f on inputs of
size n. Here each input bit is represented by one register containing either 0 or 1,
and the output of the function is also either 0 or 1. Other representations are also
possible.

In the next section we will show how to simulate transparent computation by
catalytic machines.

7 Catalytic simulation of transparent programs

Buhrman et al. [12] show how to simulate transparent programs on catalytic
machines. The main idea is to use the catalytic tape to simulate registers of the
machine. This is fairly straightforward for rings of size 2k, where k is some integer.
Each register can be represented by a block of k bits on the catalytic tape and the
work tape can be used to manipulate these registers.

Imagine that we have a function f : Rn → R computed transparently by a
program P into the register r1, i.e., r1 ← r1 + f (x1, . . . , xn). We let the catalytic
machine simulate instructions of P one by one to obtain r1 + f (x1, . . . , xn) on the
catalytic tape. The question is how do we recover the value of f (x1, . . . , xn) at this



point? Consider the case when R is small enough so that we can fit a value from R
into the work memory of the catalytic machine.

Then to compute f (x1, . . . , xn) we first store the initial value of r1 on the work
tape, execute P, extract f (x1, . . . , xn) from the current and initial value of r1 by
subtracting them, and we recover the initial content of the catalytic memory by
reversing P, i.e., running P−1.

If R is large so we cannot fit the whole value of r1 onto the work tape then we
can recover f (x1, . . . , xn) bit by bit by repeatedly computing r1 ← r1 + f (x1, . . . , xn)
back-and-forth and extracting a different bit during each iteration. This works well
when the operations on R are simple enough so that we have enough work space
to add, subtract and multiply its elements. For example, for the case of R = Z2n ,
arithmetic over Z2n can be done in logarithmic space despite the fact that each value
occupies n-bits. We have seen that IMMn,n,Z2n can be computed transparently so
we can compute IMMn,n,Z2n catalytically using catalytic space 3n3 and logarithmic
work space.

Since IMMn,n,Z2n is complete for #L and catalytic space is closed under log-space
reductions (even catalytic log-space reductions) one obtains that #L ⊆ CL and this
also implies the correctness of Theorem 3.

Similarly, one can simulate transparent programs for functions in TC1. The
only difficulty is that those programs need rings of prime size. In such a situation
the initial content of the catalytic tape might represent values outside of the ring
R and one cannot directly compute with them. This issue can be overcome using
compression as was done by Buhrman et al. to establish Theorem 2. Currently
we do not know of other methods how to catalytically compute some interesting
functions. One possible direction for further algorithms that we will describe in
Section 11 is to use non-deterministic catalytic computation.

8 Limits on the power of catalytic space
We have seen that CL has surprising computational power. Is there any limit to
that power? Naturally, CL ⊆ PSPACE as we can trivially simulate catalytic tape
by an ordinary work tape. Buhrman et al. [12] provide a more interesting answer:
CL ⊆ ZPP. The class ZPP stands for problems solvable by zero-error randomized
algorithms running in expected polynomial time, i.e., algorithms that on each input
run in polynomial time in expectation over their random choices and whenever
they stop, they provide a correct answer.

The key observation of Buhrman et al. is that a log-space catalytic computation
must finish in polynomial time on average over the initial content of the catalytic
tape. Indeed, if there are W ways how to initialize the catalytic tape then there
are at most W · poly(n) possible configurations of the whole machine on a given



input. On two different initial contents of the catalytic tape the machine cannot
visit exactly the same configuration as the computation would be the same from
then on so it would fail to restore the catalytic tape in one of the cases. So on
average, a computation can visit at most W · poly(n)/W = poly(n) configurations
and so it is polynomial time on average.

To simulate CL computation probabilistically we simulate the catalytic tape on
a work tape, we randomly choose its initial content and run the simulation. If the
simulation finishes in O(poly(n)) steps we use its output as it must be correct. If
the simulation runs for too long, we restart it with a new random initial content of
the catalytic tape.

Theorem 6 (Buhrman, Cleve, Koucký, Loff, Speelman). CL ⊆ ZPP and more
generally, CSPACE(s(n)) ⊆ ZPTIME(2O(s(n))).

An immediate consequence is that under the Exponential-Time Hypothesis [35]
SAT < CL and so NP * CL. It is widely believed that ZPP = P so under
standard derandomization assumptions CL ⊆ P. However, it is still possible that
CL = PSPACE. Indeed, relative to an oracle this is true.

Theorem 7 (Buhrman, Cleve, Koucký, Loff, Speelman). There exists an oracle A
such that CLA = PSPACEA.

It is an interesting question whether one could derandomize the probabilistic
simulation of CL computation. This could in principle be easier than derandomizing
the whole ZPP.

9 Non-uniform catalytic computation
The catalytic computational model we have seen so far is uniform, i.e, there is
a single algorithm that works for all input lengths. It is natural to consider also
the non-uniform variant where the algorithm might be completely different for
each input length. There are two standard ways how to facilitate non-uniformity:
either via so called advice function or via some inherently non-uniform model of
computation such as Boolean circuits or branching programs.

Advice function a : N→ {0, 1}∗ augments the usual uniform algorithm so that
the algorithm on an input x of length n also gets for free the advice string a(n) [36].
The advice might help the algorithm to decide about the input x. The length of
a(n) controls the amount of non-uniformity the algorithm receives. For example
L/poly is the class of problems solvable in log-space with advice function of length
polynomial in n, L/O(1) is the class of problems solvable in log-space with advice
of constant length.



We can equip a catalytic machine with an advice to get classes such as CL/poly
and CL/O(1). (We assume that there is a single advice for all possible initial setting
of the catalytic space, and the machine has to restore the tape only with appropriate
advice. This deviates from the original definition of Karp and Lipton [36] which
would require the machine to restore the catalytic space on any advice.)

The other possibility to define a non-uniform model for space bounded compu-
tation is via branching programs. A branching program for inputs of length n is a
directed acyclic graph, where each node is labeled by one of the input variables
x1, . . . , xn except two designated nodes ACCEPT and REJECT. Each node labeled
by a variable xi has two outgoing edges, one labeled by 0, the other by 1. The
computation of the branching program on an input x starts in a designated initial
node INI and follows a path consistent with the input, i.e., in a node labeled by xi

we follow the edge labeled by the actual value of the i-th input bit. Once we reach
either ACCEPT or REJECT the computation ends and the final node represents the
output. Families of branching programs of polynomial size are known to compute
functions from L/poly.

The model that corresponds to catalytic computation are the catalytic branching
programs. In the context of proving lower bounds they were originally studied by
Cook and Filmus [21], and later they were investigated by Girard, Koucký and
McKenzie [30]. A catalytic branching program has W initial nodes INI1, . . . , INIW

and 2W final nodes ACCEPT1, . . . , ACCEPTW and REJECT1, . . . , REJECTW . When
the computation starts in INIi it must finish in either ACCEPTi or REJECTi. (The
W initial nodes correspond to W possibilities for initial setting of the catalytic
space.) Hence, starting from INIi the catalytic branching program computes some
function fi, and overall it computes some W-tuple of functions ( f1, . . . , fW).

The basic question is what is the smallest size of a catalytic branching program
for a given W-tuple of functions. A trivial construction of a catalytic branching
program for ( f1, . . . , fW) puts together W branching programs, each computing one
of the functions. The size of such a branching program is the sum of the sizes
of the W programs. Is there a more efficient way to construct catalytic branching
programs?

It is tempting to conjecture that the trivial construction is the best possible. This
is known for some functions, for example for a W-tuple of random functions or for
functions computed by read-once Boolean formulas [30]. However, in general this
is not the case as demonstrated in [30].

Theorem 8 (Girard, Koucký, and McKenzie). For any n there are functions
f1, . . . , fW : {0, 1}n → {0, 1}, W = 2n/2, such that the minimal branching pro-
gram for each fi has size Ω(2n/n) but the size of a catalytic branching program for
( f1, . . . , fW) is O(2n/n).

Thus, the trivial construction can be far from optimal. Currently, we do not



know of any single complex function where the trivial construction of catalytic
branching programs for its W-tuple would be optimal. [30] conjecture that a
random function should be such an example but the counting argument which
works for a W-tuple of independent random functions does not work for a single
random function.

Girard, Koucký and McKenzie establish a correspondence between catalytic
branching programs and catalytic computation. A description of a catalytic branch-
ing program of size S for W-tuple ( f , . . . , f ), i.e., f iterated W times, can be given
as an advice to a catalytic machine working in space log S/W with catalytic space
log W to compute f , and vice versa. If f can be computed by a catalytic machine
in space s with catalytic space w, then 2w-tuple of f can be computed by a catalytic
branching program of size 2w · 2s. This works also when the catalytic machine is
getting some non-uniform advice.

Using this correspondence, Girard, Koucký and McKenzie argue that if NL *
L/poly, i.e., when non-deterministic log-space is not in non-uniform log-space,
then for STCONN there are catalytic branching programs computing 23n3

-tuple of
STCONN more efficiently than the trivial construction. This builds on the result of
Buhrman et al. [12]. A similar claim holds also for complete functions in LOGCFL
under this or the weaker assumption LOGCFL * L/poly.

We do not know of any example of a single function, where we could obtain
savings over the trivial construction unconditionally. Possible candidates are
symmetric functions. We have nontrivial lower bounds for them [18], and also they
can be computed by permutation branching programs. That could be useful in a
construction of a nontrivial catalytic branching program.

The question on the size of catalytic branching programs is related to direct
sum type of questions for space. Consider two functions f : {0, 1}n → {0, 1}n

and g : {0, 1}n → {0, 1}. What is the space needed to compute their composition
g( f (·))? Is it the sum of the space needed to compute each of them separately? It
is easy to see that the space can be less if there is an efficient catalytic program
for f . These questions are also related to the question on the depth of formulas
computing composition of functions [37, 31].

10 Catalytic space hierarchy
One of the first complexity questions about catalytic space one might ask is whether
the catalytic space obeys some form of space hierarchy, i.e., providing the machine
with more space allows one to compute more problems. It is natural to expect
that such a space hierarchy should exist. However, proving it is a different matter.
The model imposes semantic condition on the behavior of the machine, and we
do not now how to enumerate correctly behaving catalytic machines. That means



that diagonalization, the usual tool for proving hierarchy theorems, is not directly
applicable to our model. This is similar to the situation with other semantic classes
such as bounded-error probabilistic computation (BPP, etc.). However, one can
apply general techniques that were developed for proving hierarchy theorems
for semantically defined classes in the non-uniform setting. Using the technique
of Kinne and van Melkebeek, and van Melkebeek and Pervyshev [29, 40, 64],
Buhrman et al. [16] conclude the following.

Theorem 9. For any integer a ≥ 1 and real k > 0 there exists k′ > k such that

1. CSPACE(ω(log n))/1 * CSPACE(log n)/a = CL/a,

2. CSPACE(nk′)/1 * CSPACE(nk)/a.

Similar claim holds also for the non-deterministic catalytic space. Since

CL ⊆ PSPACE ( DSPACE(nω(1)) ⊆ CSPACE(nω(1))

uniformly one can conclude a much weaker statement:

CL ( CSPACE(nω(1)).

Separating CL even from
⋃

k>0 CSPACE(nk) might be difficult as we know of an
oracle A where CLA = PSPACEA.

These statements work for classes where the catalytic space is exponential in the
work space. One might ask whether CSPACE(s(n), o(w(n))) ( CSPACE(s(n), w(n))?
Currently we do not know whether this is true even non-uniformly. The Iterated
Matrix Multiplication of

√
w(n) ×

√
w(n) matrices over Z is a candidate problem

that is known to be in CSPACE(log n, w(n) · log n) [12] but not known to be in
CSPACE(log n, o(w(n))).

11 Non-deterministic catalytic computation
Non-deterministic computation is a useful paradigm for understanding and clas-
sifying some algorithmic problems. In the context of catalytic computation non-
determinism could provide an avenue for designing algorithms for problems not
known to be in CL. Motivated by this, Buhrman et al. [16] define non-deterministic
catalytic computation. There are different ways how to define non-determinism for
catalytic machines, Buhrman et al. chose the following requirements:

a) Catalicity. For each initial setting of the catalytic tape and any choice of
non-deterministic bits the machine halts and restores its catalytic tape to its
initial setting.



b) Consistency. If a machine non-deterministically accepts an input x for some
initial setting of the catalytic tape then it non-deterministically accepts x on
every possible initial setting of the catalytic tape.

These requirements seem the most natural as they preserve the spirit of the
catalytic model. Additionally, they also allow composition of non-deterministic
computation as is done for example for computing the union of two languages.
We will denote by CNL the class of languages accepted non-deterministically by a
catalytic machine using polynomial catalytic tape and logarithmic work tape.

For the classical computation Savitch [50] established a relationship between
determinism and non-determinism: NSPACE(s(n)) ⊆ DSPACE(s2(n)). We do not
know of similar relationship for catalytic computation. Savitch’s proof goes by
arguing about reachability in the graph of configurations of the machine. There
seem to be various obstacles to establishing some variant of Savitch’s Theorem for
CNL. On a particular initial setting of the catalytic tape, the graph of reachable
configurations can be exponentially large. Even if it were polynomial, it is not clear
how to deterministically cycle through all the configurations that are reachable
from the initial configuration. These issues seem to break Savitch’s technique.
Interestingly though, CNL is still in ZPP.

Theorem 10 (Buhrman, Koucký, Loff, Speelman). CNL ⊆ ZPP and more gener-
ally, CNSPACE(s(n)) ⊆ ZPTIME(2O(s(n))).

The argument is similar to the one for deterministic CL as the average number
of reachable configurations is still polynomial.

Buhrman et al. [16] provide also a variant of the Immerman-Szelepcsényi
Theorem [34, 53] which shows that non-deterministic log-space is closed under the
complement (i.e., complements of languages from NL are also in NL). The proof
of Buhrman et al. requires use of pseudo-random generators [38] so the theorem is
known to hold only under certain derandomization assumption.

Theorem 11 (Buhrman, Koucký, Loff, Speelman). If there exists ε > 0 and
L ∈ DS PACE(n) which cannot be computed by Boolean circuits of size 2εn then
CNL = coCNL.

In a non-uniform setting the conclusion would hold without any assumption.
The proof uses the inductive counting technique of Immerman and Szelepcsényi. To
overcome the problem with exponentially many reachable configurations Buhrman
et al. use the pseudo-random generator. For the actual inductive counting they do
not enumerate over all possible configurations but only the reachable ones and they
use finger-printing technique to distinguish them.

It was observed recently together with Tewari [54] that a similar technique
should also establish an equivalent of the Reinhardt-Allender Theorem [47, 67] that



NL/poly ⊆ UL/poly. UL is the class of languages accepted by a non-deterministic
Turing machine running in log-space that has at most one non-deterministic accept-
ing computation on every input. UL is the space analog of UP with the complete
problem UNIQUE-SAT [59, 66].

It would be interesting to see some problems outside of TC1 to be put in CNL.
Languages in NC2 would be natural candidates. (NC2 is defined similarly to NC1

but one allows depth of O(log2 n). It is well known that TC1
⊆ NC2.)

12 Conclusions
We have seen that the catalytic space provides unexpected power to computation.
There are many questions remaining to be answered. We summarize here some of
the major ones.

1. Are there problems beyond TC1 that are computable in catalytic log-space?

2. What are other techniques for using the catalytic space beyond simulating
transparent computation? What is the relationship between transparent
computation and catalytic computation?

3. Is catalytic log-space contained in P? Is it in NC2?

4. Is there uniform hierarchy of catalytic space? Is there hierarchy with respect
to the amount of catalytic space?

5. What is the relationship between deterministic and non-deterministic cat-
alytic computation?

6. What can one say about randomized catalytic computation?

7. Is there some meaningful relaxation of catalytic computation? For example,
one could allow the machine with low probability to destroy the content of
the catalytic tape.

Nontrivial answers to some of these questions would provide us with more insight
into the role of space in computation.
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