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Abstract

The undisrupted operation of logical structures and services is a crucial
requirement in modern day communication networks. As the vertices and
edges of the network may occasionally fail or malfunction, it is desirable to
make those structures robust against failures.

Fault-Tolerant (FT) Logical Network Structures are low cost high re-
silient structures, constructed on top of a given network, that satisfy certain
desirable performance requirements concerning, e.g., connectivity, distance
or capacity.

In this survey, we review some recent results for designing FT network
structures. We classify the existing construction algorithms into four classes
and discuss the settings in which a given approach might become useful.
We hope that this would pave the way towards the development of a more
generalized theory for the design of fault-tolerant networks.

1 Introduction
The design of FT logical network structures can be viewed as a subarea of net-
work design in which robustness against faults is taken into considerations. In
network design, the general theme is to compute a logical structure, on top of a
given physical network, that possesses some desirable properties. Examples in-
clude graph structures such as shortest-path trees, spanners, Minimum Spanning
Trees (MSTs); clustered representations such as partitions and decompositions;
and data structures such as distance oracles and routing schemes. All these exten-
sively studied structures fall into the following network design framework: given a
graph G and a requirement predicate ρ(S,G)—e.g., related to connectivity, flows,
distances—compute the “cheapest" logical structure S that satisfies the predicate
ρ(S,G).

In fault-tolerant network design, the objective is to compute a cheap logical
structure that is also resilient against faults. Network design has various applica-
tions, especially in distributed computing and network algorithms. In these set-
tings, computer networks are modeled by a graph in which the vertices represent
processors and the edges represent the communication links. An important aspect
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of distributed systems that is not captured by the above network design framework
is the possibility of failure. By necessity, the optimal solutions for most classical
network design tasks are lean and intentionally avoid redundancy, and hence are
not robust against failures, and a deletion of even a single edge may lead to com-
plete loss of functionality. For example, in the cases where the optimal solution
is a tree—e.g., a minimum spanning tree or a shortest path tree—a failure of an
edge disconnects the tree, and its functionality is lost. To tolerate failures, the
optimal solutions for network design tasks should be augmented with additional
edges from the base graph G, which will provide some redundancy and flexibility.

To recap, fault-tolerant network design is concerned with the following ques-
tion:

How we can save a logical structure from being disconnected and losing func-
tionality by a failing edge/vertex, while at the same time keep the total size of
the structure small?

Roughly speaking, a logical structure is said to be fault-tolerant if it satisfies the
requirement predicate even when some of its elements (e.g., vertices, edges) fail
or malfunction. In this survey we focus on a notion of fault tolerance where for a
given bound f on the number of faults, the surviving part of the structure S \ F is
required to satisfy the predicate ρ(S\F,G\F) with respect to the surviving part of
the original network G \ F for every faulty-set F of at most f edges (or vertices).
This notion was termed competitive fault tolerance by Chechik and Peleg [16] and
it is discussed further in Sec. 5.
Our Focus. Fault-tolerant network design has become a broad and rich area and
as such it is full of variants and dimensions. This survey is focused on the spe-
cific context of constructing logical structures in fault-prone physical networks.
Within this framework, we further limit ourself to the following settings; Our fault
model is adversarial, meaning that the structure should maintain their functional-
ity against every possible fault setting. Moreover, we focus on logical structures
that are subgraphs, usually denoted by H ⊆ G.

We mainly consider a notion of fault-tolerance where the basic structure (e.g.,
as obtained by computing an optimal solution for the standard non-resilient set-
ting) is augmented by adding edges to it so that after the failure of some of the
network’s vertices or edges, the surviving part of the structure is still operational.
As this augmentation carries certain costs, it is desirable to minimize the number
of the added edges. In particular, our primary cost measure would be the size of
the resulting subgraphs and the computation time would be of secondary impor-
tance.
On the Recent History of Fault-Tolerant Network Structures. In this survey,
we focus on a recent line of studies concerning fault-tolerant network structures.



In 1998, Levcopoulos, Narasimhan, and Smid [33] introduced the notion of fault
tolerance in the context of geometric spanners (as will be explained later). Fault-
tolerant spanners for general graphs were studied later by Chechik at el. [15] in
2009. This last work has led to a line of further work, all aiming at designing
sparse fault tolerant structures on top of a general input graph, for predicates that
are mostly distance related. This survey will give a short overview of these studies.

It is worth noting that the virtue of fault tolerance network structures can be
traced back to the ancient graph theoretical notion of edge-connectivity2. Indeed,
edge connectivity is perhaps the most basic measure of the reliability of the net-
work. Therefore, fault-tolerant networks are usually designed by making them
highly connected (which usually requires more than just plain connectivity) [2].

Fault tolerant network design is also related to the area of survivable network
design introduced in 1969 by Steiglitz, Weiner and Kleitman [51]. In this area, one
is concerned with designing low-cost subgraphs that preserve certain connectivity
requirements. We provide a more detailed description of this area, as well as a
comparison with fault tolerant network design, in Sec. 5.

Two other related problems which have been studied since the early 80’s are
as follows: the most vital edges problems [4], which is defined as computing the k
edges whose removal from the structure has the highest effect on the functionality
of the structure, and the sensitivity analysis problem [53], which focuses on the
extent to which a given edge’s weight can be perturbed without changing the opti-
mal solution. Both of these problems have been studied in the context of shortest
paths and minimum spanning trees (MST’s).

We start, in Sec. 2, by presenting a collection of the major problems and
structures that have been studied within this framework. In Sec. 3, we classify the
current algorithmic construction techniques into four classes. In Sec. 4, we turn to
discuss the lower bounds and describe graph families for which introducing fault
tolerance requires a high cost. Finally, in Sec. 5, we discuss alternative notions
and models of fault tolerance.

2 Introducing Different Fault-Tolerant Graph Struc-
tures

2.1 Connectivity

Definition. Fault-tolerant connectivity structures are subgraphs H ⊆ G that pro-
vide the same connectivity guarantees as in the original graph for every failure

2The minimum number of edges whose failing disconnects the graph.



of f edges or vertices. Formally, given a graph G and a bound f on the num-
ber of edge failures, a subgraph H ⊆ G is an f -FT-connected subgraph if for
every pair s, t ∈ V and every set of at most f edges F, it holds that if s and t
are connected in G \ F, then they are also connected in H \ F. The minimum
f -FT-connectivity problem concerns the computation of the minimum size f -FT-
connected subgraph. These definitions naturally extend to vertex faults.

State of the Art. The minimum f -FT-connectivity problem was introduced by
Nardelli, Stege, and Widmayer [36] in the geometric setting. Particularly, they
considered the single failure case in the Euclidean setting and showed that this
problem is NP-hard. They also provided a 4-approximation algorithm (i.e., for
the size of the subgraph) that runs in time O(n log n). Chechik and Peleg [16]
considered the general graph setting and provided an O(log n)-approximation al-
gorithm for any constant number f of faults.

The minimum f -FT-connectivity problem is closely related to the area of sur-
vivable network design and particularly to the minimum-cost survivable network
problem [52]. In this problem, one is given a weighted n-vertex graph along with
connectivity requirements ri, j representing the number of vertex disjoint paths be-
tween vertices i and j in the output subgraph.
The goal is to compute the minimum cost subgraph that
satisfies the connectivity requirements.

However, we note that these problems are not equiva-
lent, even for the single pair case. To see that, consider
the figure to the right. In this case, there are two s − t
paths which are non vertex-disjoint, and hence the vertex-
connectivity of s and t is 1. Assuming that the path P is
cheaper than the other path, the solution for the minimum-cost survivable network
problem for rs,t = 1 is simply P. This is not a valid solution for the minimum 1-
FT-connectivity problem since when e fails, the path P gets disconnected, while
there is still an s − t path in G \ {e}.

Directed Connectivity: Fault-Tolerant Reachibility Structures. In the fault-
tolerant reachibility problem, one is given a directed graph G = (V, E), a source
vertex s and an arbitrary directed tree T rooted at s, and the goal is to compute a
set of edges E′ ⊆ E \ T of minimum size such that for every failure of a vertex
v ∈ V , the set of vertices reacheable from s in T ∪ E′ \ {v} is the same as the set
of vertices reachable from s in G \ {v}. These structures have been introduced by
Baswana, Choudhary and Roditty [6], who showed an optimal construction with
n − 1 edges in O(m log n) time for any given reachability tree T . An O(m)-time
algorithm was recently given by Georgiadi and Tarjan in [24].



2.2 Replacement Paths

Definition. The replacement path can be viewed as an analogous counterpart of
shortest path for the faulty setting. Given a graph G = (V, E) and a vertex pair s, t,
denote by πs,t the shortest path between s and t in G. When an edge e fails, the
shortest path πs,t survives when e < πs,t. However, when e ∈ πs,t, the s − t shortest
path in G \ {e} should be recomputed. The replacement path Ps,t,e is the shortest
path between s and t that avoids e. When drawn on top of the shortest path πs,t,
the replacement path Ps,t,e admits a rather convenient form3, consisting of three
segments: a prefix of the shortest-path πs,t up to some vertex b ∈ πs,t occurring
before the failing edge e, followed by a “detour" avoiding the path πs,t (and in
particular the failing edge e), and terminating with a suffix of πs,t.

For a given pair of vertices s and t, the replacement
path problem asks for computing as fast as possible the
collection of all replacement paths Ps,t = {Ps,t,e | e ∈
πs,t}. A brute force approach simply treats each replace-
ment path computation independently. However, the
clean decomposition of the replacement path has led to
the development of algorithms that compute the collec-
tion Ps,v efficiently, as discussed next.
State of the Art. In a seminal work, Malik et al. [35]
gave an algorithm for solving the replacement path problem with time complexity
of Õ(m) for undirected graphs on m edges. For directed graphs with arbitrary edge
weights, the best bound is O(mn · n2 log log n) due to Gotthilf and Lewenstein,
where n and m is the number of graph’s vertices and edges respectively. Weimann
and Yuster [55] were the first to apply fast matrix multiplication techniques to
the problem and obtained a randomized algorithm that runs in time O(Mn2.584)
for directed graphs with integer weights in [−M,M]. These bounds were later
improved by Vassilevska-Williams in [56] to Õ(Mnω) where ω is the exponent of
matrix multiplication. For a nearly optimal maintenance of replacement-paths in
data structures, see [7, 19].

It is worth noting that replacement paths are useful also in other contexts be-
yond short paths, such as in biological sequence alignment [14], in the computa-
tion of Vickrey Prices [29], and in finding the k shortest simple paths between two
nodes [48].

3upon a proper construction, e.g., breaking shortest-path ties in a consistent manner.



2.3 Fault-Tolerant BFS Structures

Definition. Given a graph G and a source vertex s, a fault-tolerant BFS structure
(or FT-BFS for short) is a subgraph H ⊆ G containing a BFS tree in G \ {e} for
every failing edge e ∈ E(G)4.

In other words, FT-BFS structure H with respect to the source s, is required to
satisfy the following:

dist(s, t,H \ {e}) = dist(s, t,G \ {e}), for every t ∈ V and e ∈ E(G).

For an illustration see the figure to the right, where the dashed edges are edges
added to the BFS tree (solid edges) to make it robust against a single edge failure.

G 

H 

s 

s 

State of the Art. The notion of FT-BFS structures, first introduced
in [38], is closely related to the problem of constructing replacement
paths and in particular to its single source variant, the single-source
replacement paths problem, studied in [28]. That problem requires
to compute the collection Ps of all s − t replacement paths Ps,t,e for
every t ∈ V and every failed edge e that appears on the s− t shortest-
path in G. Note that the collection Ps is in fact a FT-BFS structure H
and in fact these two notions are equivalent. Whereas the typical cost
measure when studying replacement paths is the time complexity, the
main objective when constructing FT-BFS structures is to minimize
the size of the resulting structure that contains the collection Ps of
all replacement paths given a source node s.

It is shown in [38] that FT-BFS structures require Θ(n3/2) edges, and this num-
ber of edges is sufficient. For the dual failure case, Parter showed in [42] a con-
struction with Θ(n5/3) edges; the case of multiple faults for f ≥ 3 remains open.
Table 1 summarizes the cost bounds for FT-BFS and FT-spanners structures.

Table 1: Bounds for f -FT-BFS structures resilient against f edge faults

Number of Faults Upper Bound Lower Bound
1 O(n3/2) [38] Ω(n3/2) [38]
2 O(n5/3) [38] Ω(n5/3) [42]
f ? Ω(n2−1/( f +1)) [42]

The rather dense lower bounds of FT-structures make one wonder how such
a price can be avoided. One option is to relax the predicate requirement, for

4This definition can be extended to multiple edge or vertex faults.



example by resorting to approximate distances. This approach was taken first by
Baswana and Khanna in [5] which provided a (1 + ε)-approximation for the single
source case with Õ(n/ε3) edges. For additional constructions of approximate fault-
tolerant structures, see [8, 9, 11, 39].

2.4 Fault-Tolerant Minimum Spanning Tree (FT-MST) Struc-
tures

Definition. For a weighted graph G = (V, E,W), the MST represents the cheapest
way to connect the network. To tolerate failures, the MST tree should be aug-
mented with as few edges as possible. The fault-tolerant MST problem asks for
constructing the cheapest subgraph (i.e., with respect to total edge weights) H ⊆ G
that contains an MST tree in G \ {e} for every e ∈ E.
State of the Art. The problem of computing the minimum FT-MST is closely
related to the MST sensitivity analysis problem which was introduced by Tarjan
in a seminal work [53] in the early 80’s. This problem is defined as follows: given
a graph G and minimum spanning tree T = MS T (G), decide how much each
individual edge weight can be perturbed without invalidating the identity of T
(i.e., that T is still an MST for the preturbed graph). Tarjan showed that the MST
sensitivity analysis can be perform in O(mα(m, n)) time, where m in the number
of edges, n is the number of vertices, and α is the inverse-Ackermann function.
This was later improved by Pettie to an O(m log(α(m, n))) time algorithm [47].

An FT-MST structure with at most 2(n− 1) edges can be computed within the
same time complexity as that of the MST sensitivity problem. If the weights of the
edges are non-unique, Nardelli, Stege and Widmayer showed that the minimum
FT-MST problem is NP-hard already for the single failure case in the Euclidean
setting [36]. For this setting, they also give a 4-approximation algorithm that runs
in time O(n log n). This problem has been later studied by Chechik and Peleg
[16] in the general graph setting where they showed an O(log n)-approximation
algorithm for an arbitrary constant number f of edge faults.

2.5 Fault-Tolerant Spanners

Definition. Graph spanners are sparse subgraphs that preserve the distances be-
tween all pairs up to some multiplicative or additive stretch (cf. [43, 45, 46]). For-
mally, a multiplicative k-spanner H ⊆ G satisfies that dist(s, t,H) ≤ k ·dist(s, t,G).
Introducing fault tolerance, the subgraph H is a fault-tolerant k-spanner if for ev-
ery s, t ∈ V × V and e ∈ E(G), it holds that

dist(s, t,H \ {e}) ≤ k · dist(s, t,G \ {e}) . (1)



A similar definition applies to f -edge (resp. vertex) fault-tolerant k-spanners
which tolerate at most f edge or vertex failures. Additive fault-tolerant spanners
are defined analogously with the only exception that the stretch on the distances
is additive rather than multiplicative.

State of the Art. The notion of fault-tolerant spanners was introduced by Lev-
copoulos at el. [33] for the geometric setting. They presented an efficient algo-
rithm that given a set S of n points in Rd, constructs an f -vertex fault-tolerant geo-
metric (1+ε)-spanner for S , that is, a sparse graph H satisfying that for every faulty
set F ⊆ S of size f and any pair of points u, v ∈ S \F, dist(u, v,H\F) ≤ (1+ε)|uv|,
where |uv| is the Euclidean distance between u and v. A fault-tolerant geometric
spanner with optimal maximum degree and total weight was presented in [18].

Later, Chechik et al. [15] provided the first construction of sparse fault-tolerant
spanners for general graphs. They obtain the following bounds: for the case of
f -edge faults and stretch k′ = 2k− 1, they construct an f -edge FT k′-spanner with
O( f · n1+1/k) edges. Recall that the standard k′-spanner (in the fault free setting)
requires O(n1+1/k) edges. Hence introducing fault tolerance against up to f edge
faults increases the size of the structure by at most an f factor. For the case of f
vertex faults, they provide a construction with Õ( f 2k f +1n1+1/k) edges. This result
was later improved by Dinitz and Krauthgamer [21] to Õ( f 2−1/k · n1+1/k) edges; a
factor of Õ( f 2−1/k) more edges compared to the standard k′-spanner.

Additive fault-tolerant spanners that are resilient against edge failures were
defined and studied by Braunschvig, Chechik and Peleg [13], establishing the
following general result. For a given n-vertex graph G, let H1 be an ordinary
β-additive spanner for G and H2 be a fault-tolerant α multiplicative spanner for
G resilient against up to f edge faults. Then H = H1 ∪ H2 is a β( f )-additive
fault-tolerant spanner for G, for up to f edge faults, for β( f ) = O( f (α + β)).
Additive fault-tolerant spanners that are resilient against single vertex fault has
been studied in [40]. For additional results on FT-spanners and FT-geometric
spanners, see [1, 12, 22, 23, 34].

On the Difference to FT-BFS Structures. Note that both FT-BFS structures
and FT-spanners are fault-tolerant distance preserving structures, yet they differ
on two important features. First, FT-BFS structures are “single source” as they
require to maintain the distances from a given source. In contrast, FT-spanners
are “all pairs" structures as they aim to preserve the distances between any pair of
vertices. In this sense, the FT-BFS requirement seems easier to achieve (where
“easier" means requires the addition of fewer edges). On the other hand, FT-BFS
structures insist on maintaining the exact distance whereas FT-spanners allows a
multiplicative slack. In this sense, the FT-BFS requirement is harder to achieve.
As will be revealed later, it turns out that the insistence on exact distances plays
a more dominant role and makes the FT-BFS problem significantly harder (i.e.,



FT-BFS structures are much denser than FT-spanners), despite the fact that they
only concern a “single source” solution.
The Cost of Introducing Fault Tolerance. The cost of adding fault-tolerance
can be measured by the ratio between the number of edges of the FT-structure
and the number of edges of the non-resilient structure. This measure depends
on the strength of the requirement predicate. Whereas for weak predicates such
as connectivity the cost is linear in the number of faults, the cost becomes poly-
logarithmic in the graph size n when considering vertex faults and requiring a
constant multiplicative stretch for the pairwise distances. Strengthening the re-
quirement to maintaining additive approximate distances increases the cost sig-
nificantly, i.e., by factor nε for some ε ∈ (0, 1). Finally, when insisting on exact
distances, the structures become rather dense already for the single source and sin-
gle edge failure case, i.e, FT-BFS structures require Ω(n3/2) edges – an increase of
factor Ω(

√
n)compared to BFS trees. For a schematic illustration, see Fig. 1.
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Figure 1: A schematic illustration of the cost of introducing fault tolerance, measured by
the ratio between the size bounds of the fault-tolerant structure and the standard (non

resilient) structure.

3 Recipes for Algorithms and Upper Bounds
We consider the following general setup: given a graph G, a predicate ρ(H,G)
and a bound f on the number of faults, the goal is to output the minimum size
subgraph H ⊆ G satisfying ρ(H \ F,G \ F) for every F ⊆ G, |F| ≤ f . The naïve
approach would be to consider the collection of all

(
|E|
f

)
subsets of f faults F ⊆ E,

and take the union of all subgraphs that satisfy the predicate in G \ F, for different
failing sets F.



Algorithm BruteForceFT(G, ρ)
• H ← ∅.
• For every F ⊆ E f

– Compute HF satisfying ρ(HF ,G \ F).
– H ← H ∪ HF .

Although the correctness of the output structure is immediate, its size might be
quite large as it consists of a union of O(n2 f ) structures, and hence we might end
up taking the entire graph. We next describe four approaches in this area that lead
to significantly better size bounds.

3.1 The Iterative Approach
In contrast to the O(n2 f ) iterations of Alg. BruteForceFT, the iterative approach
consists of only f + 1 iterations and hence the size of the output subgraph is
increased by factor O( f ) compared to its non-resilient counterpart. The main
essence of this approach is to compute a collection of ( f + 1) edge-disjoint so-
lutions for the standard (non-resilient) network design task at hand. Starting with
the empty subgraph H, in each iteration i, a subgraph Hi that satisfies the predicate
in G \ H is computed and added to H. The pseudo code is given below.

Algorithm IterativeFT(G, ρ)
• H ← ∅, G′ ← G.
• For i = 1, . . . , f + 1:

– Compute Hi satisfying ρ(Hi,G′).
– H ← H ∪ Hi.
– G′ ← G′ \ Hi.

This approach has been applied to construct fault-tolerant connectivity structures
and fault-tolerant spanners that are resilient to f -edge faults, as we described next.
Sample Problem: Edge Fault-Tolerant Spanners. Recall that an f -edge FT
k-spanner is a subgraph H satisfying Eq. (1) (see Subsec. 2.5). Chechik et al.
[15] employed the iterative approach for constructing f -edge FT k′-spanner with
O( f · n1+1/k) edges for k′ = 2k − 1. Starting with H = ∅, in each iteration i, a
k′-spanner Hi is constructed in G \H and added to H. Hence, the output subgraph
is simply a collection of ( f + 1) edge-disjoint k′-spanners, each of which contains
O(n1+1/k) edges. Whereas the size bound is immediate, the correctness analysis
requires some arguments. Consider a pair s, t and a failing set F of at most f



edges and let Ps,t,F be the s − t shortest path in G \ F. It is then required to show
that there exists an s − t path in H \ F whose length is at most k′ · |Ps,t,F |. Since
the stretch is multiplicative, it is sufficient to show that for every edge (u, v) on the
path Ps,t,F there exists a u − v path of length at most k′ in H \ F. Consider such an
edge (u, v) ∈ Ps,t,F . If this edge was added into H, the claim is immediate because
then dist(u, v,H \ F) = 1. However, if (u, v) was not added into the subgraph H,
it follows that in each of the ( f + 1) edge-disjoint k′-spanners that were added to
H, there was a u− v path of length at most k′ (otherwise, they would add the (u, v)
edge to the spanner). Since there are ( f + 1) edge-disjoint paths in H, each of
length ≤ k′ and at most f failing edges, one of these paths survived the failure of
F. We therefore have that dist(u, v,H \ F) ≤ k′, as required.
When to apply? The main benefit of the iterative approach is its simplicity and
the sparsity of the output structures. This approach supports only edge failures
and cannot be applied to handle vertex faults. In addition, the iterative approach is
useful in cases where the predicate is edge-sufficient, i.e., it is sufficient to satisfy
the predicate for every two neighboring vertices rather than all pairs. Indeed, it
can be easily verified that both the multiplicative spanner and the connectivity
predicates are edge sufficient.

3.2 The Edge Swapping Approach
The edge swapping approach is one of the most useful methods for introducing
fault tolerance into tree structures. Consider an optimal tree structure for some
given requirement predicate (e.g., MST). When one of the tree edges e fails, the
tree is decomposed into two components. The edge swapping approach computes
the replacement edge, or the swap edge e′, that reconnects the tree in the best
possible manner, depending on the objective in hand. Regardless of the exact
requirement predicate, the output structure of these algorithms consists of at most
2(n−1) edges: the n−1 edges of the original tree plus (at most) n−1 swap edges,
one per each of the tree edges. Within this setting there are two main objectives:
the first objective concerns the size of the output structure (2-approximation is
trivial but maybe one can do better). The second objective concerns the time
efficiency of the computation.

Algorithm SwapEdgeFT(G, ρ)
• H ← T .
• For every e ⊆ T

– Find the best edge e′ satisfying ρ((T \ {e}) ∪ {e′},G).
– H ← H ∪ {e}.



Sample Problem: FT-MST. For the definition of FT-MST, see Subsec. 2.5. For
a given weighted graph G = (V, E,W) and an MST tree T ⊆ G, the best swap
edge e′ for a tree edge e ∈ T is the minimum weight edge that reconnects the two
disconnected components of T \ {e} (i.e., the minimum edge that crosses the cut
induced by the removal of the edge e in T ). It can be easily verified that the new
tree Te = (T \ {e}) ∪ {e′} is a valid MST for the remaining graph G \ {e}. Hence,
an FT-MST structure can be computed by adding the best swap edge for each of
the tree edges into the structure. See Fig. 2 for an illustration of this approach.

Figure 2: A weighted graph G = (V, E,W). The MST tree T edges are marked in green.
When the edge e fails, the tree disconnects into two components. To recover the MST,

the lightest edge e′ connecting the two components is added to the structure. The edge e′

is the best swap edge to e since (T \ {e}) ∪ {e′} is an MST in G \ {e}.

When to Apply? The edge swapping approach is useful in settings where the
optimal non-resilient structure is a tree and the requirnment is to make it robust
against a single edge fault. Note that this approach does not apply for every pred-
icate even if the optimal structure is a tree. For example, an FT-BFS structure
cannot be obtained using this technique. Interestingly, Bilò at el. [8] showed that
an approximate version of FT-BFS5 can actually be obtained by computing the
best swap edges for a proper definition of the objective function. The efficient
computation of best swap edges has been studied for minimum diameter spanning
tree [26], minimum average distances tree [50] and tree spanners [10].

3.3 The Sampling Approach: Handling Vertex Faults
The sampling approach for FT-network design was first introduced by Weimann
and Yuster in [55] to compute efficiently the collection of all replacement paths.
It is inspired by the color-coding technique of Alon, Yuster and Zwick [3]. The
basic idea of this approach is to sample (many) nodes to act as a faulty set, and then
apply the standard algorithm to compute a subgraph that satisfies the predicate on

5where the sourcewise distances are preserved up to multiplicative stretch 3.



what remains. These sampling experiments are repeated for polynomially (in the
number of faults f ) many iterations and the output subgraph is obtained by taking
the union over all experiments. The core idea behind this approach is that the
sampling of the faulty set in each experiment oversamples nodes, hence instead of
computing a structure in a subgraph G \ F for |F| ≤ f , the subgraph is computed
in G \ F′ for a much larger faulty set F′, i.e., |F′| = O(1 − 1/ poly( f )) · n. This
allows one to satisfy many fault sets of size f within a single experiment. Alg.
SamplingFT(G, ρ) describes the general procedure of this approach.

Algorithm SamplingFT(G, ρ)
• H ← ∅.
• For every i = 1, . . . , poly( f )

– Add v to Fi with prbability p f = 1 − 1/ poly( f ).
– Let Hi be the subgraph satisfying ρ(Hi,G \ Fi).
– H ← H ∪ Hi.

Sample Problem: Fault-Tolerant (Vertex) Spanners. The sampling approach
was used by Dinitz and Krauthgamer [21] for constructing fault-tolerant spanners
that are resilient against f vertex faults (see Subsec. 2.5). Let Spanner(G, k) be
any algorithm for computing k-spanner H for the graph G.



Algorithm VertexFTSpanner(G, ρ)
• H ← ∅.
• For every i = 1, . . . ,O( f 3 · log n)

– Sample faulty set Fi by adding every v ∈ V to Fi independently with
probability p f = 1 − 1/ f .

– Hi ← Spanner(G \ Fi, k).
– H ← H ∪ Hi.

The crucial part of this technique is the correctness argument; the size analysis
follows immediately. Consider an s − t pair and a faulty set of F vertices and let
Ps,t,F be the shortest s−t path in G\F. It is sufficient to show that dist(u, v,H\F) ≤
k for every edge e = (u, v) ∈ Ps,t,F .

We say that iteration i in Alg. VertexFTSpanner(G, ρ) is good for the edge
(u, v) ∈ Ps,t,F , if the sampled faulty set Fi contains both u and v but does not contain
any vertex from f . Note that if iteration i is good then the k-spanner Hi constructed
in G \ F satisfies that dist(u, v,Hi) ≤ k and hence also dist(u, v,H \ F) ≤ k. Since
every vertex v is sampled into Fi independently with probability p = 1 − 1/ f , the
probability that iteration i is good is p f · (1 − p)2 = 1/(e · f 2) ∼ 1/ f 2. Since there
are O( f 3 · log n) iterations and

(
n
f

)
·n2 triples u, v, F, the probability that there is no

good iteration for one of the triples is at most n f +2 · (1 − 1/ f 2)c· f 3·log n = O(1/nc′)
for some constant c′ ≥ 1.
When to Apply? The sampling approach works when one can partition the col-
lection of

(
n
f

)
possible sets of (vertex) failures into a much smaller number of

groups – and to protect all the failure possibilities in the same group using one ba-
sic (non-resilient) structure that is computed in G \ F′ where F′ is the union over
all failure possibilities in this group. For example, in the FT-spanner problem, the
task boils down to satisfing the desired stretch on the edges (rather than for each
vertex pair). Then, to provide a good stretch for an edge (u, v) in the presence of
a faulty set F, it is sufficient to require that the much larger faulty set Fi does not
contain a failed vertex from F and also that it does not contain the edge endpoints
u and v. This approach can also be applicable for edge faults, see [55].

3.4 The Structural Approach
The structural approach is based on Algorithm BruteForceFT(G, ρ) which simply
adds into the output subgraph the union of (non-resilient) solutions over all pos-
sible fault sets. Whereas the correctness of the algorithm is immediate, the main
challenge is to prove that the output structure is small. To do that, one needs to
zoom in on the structure of the computed subgraphs and to show that they satisfy



some simplifying structural properties. The key intuition that makes this approach
successful in certain cases is rooted in the fact that there is a large dependency
(e.g., mutual edges) between subgraphs that correspond to different faulty sets F
(i.e., subgraphs that are solutions for G \ F for different fault sets F), as they are
all related to the same base graph G and the number f of faults is mostly bounded
by a constant.
Sample Problem: FT-Spanners and FT-BFS. To recall the definitions of FT-

Spanners and FT-BFS structures, see Subsec. 2.5 and 2.3, respectively. To con-
struct f -vertex fault-tolerant k′-spanners, for k′ = 2k − 1, Chechik et al. [15] ap-
plied the spanner construction of Thorup and Zwick [49] to every possible fault-
set, eventually taking the union of all of these spanners. They showed that the
union of these O(n f ) spanners increases the size bound (of the standard spanners)
only by an O( f 2 · k f ) factor.

FT-BFS structures are constructed via a similar naïve idea; however, the ar-
gumentation is clearly very different. Parter and Peleg [38] showed that one can
obtain an FT-BFS structure with O(n3/2) edges, simply by doing the following;
take the union of m BFS structures, one for subgraph G \ {e}, for each e ∈ E, while
breaking ties in a consistent manner.

Limitation of the Structural Approach. The main advantage of the structural
approach is the simplicity of the construction algorithm. The size analysis of
these simple looking algorithms is unfortunately rather involved. For example,
the structural approach of [38] for single failure FT-BFS was extended recently
in [42] to the dual failure case. When concerning replacement-paths, there is a
sharp qualitative difference between a single failure and two or more failures and
hence the extension of the structural approach to multiple faults is far from trivial.

4 Lower Bound Constructions

Unlike the algorithmic side, for which we have many techniques by now, some-
what less is known about lower bounds. To the best of our knowledge, the first
lower bound for FT-structures (i.e., one that is stronger than the standard lower
bounds for the fault free setting) was given for FT-BFS structures. (In the setting
of data structures, other lower bounds were known such as [19], but in this survey
we focus on subgraphs).

In this section we thus describe the lower bound construction for FT-BFS
structures, which turns out to be the basis for further subsequent constructions
as described later on. See Subsec. 2.3 for the definition of FT-BFS structures and
recall from Sec. 3.4, that there exists an upper bound of O(n3/2) edges on their
size. We now sketch the matching lower bound construction [38].



The core of our lower bound graph G is a complete bipartite graph B(X,Z)
whose top layer X consists of Θ(n) vertices and whose bottom layer Z consists of
Θ(
√

n) vertices, hence the graph B consists of Θ(n3/2) edges. Eventually, it will
be shown that every FT-BFS structure H for G with respect to a suitably chosen
source vertex s must include each of the edges of B. This is done by adding a path
P rooted at s of length Θ(

√
n). The last vertex of the path P is connected to each

of the vertices in X and every vertex in P (except for the last) is connected to a
vertex in Z by a sequence of paths that are vertex disjoint and have monotonically
increasing lengths. See Fig. 3 for an illustration.

To see why every FT-BFS structure with respect to the source s must contain
all the edges of the bipartite graph B, consider a given edge (x j, zi) in B. When the
edge ei on the path P fails (see Fig. 3), the shortest path from s to x j cannot use
the bypasses below the failing edge, although they are shorter than those above it,
since they are disconnected from s by the failing. Hence, the s− x j path must use a
bypass that starts above the failing edge. As these bypasses are strictly increasing
in their lengths, the shortest s − x j path in G \ {ei} takes the first one which uses
the edge (zi, x j). Since this edge is missing in H, any alternative path in H \ {ei} is
strictly longer, which contradicts the fact the H is a legal FT-BFS structure (i.e.,
dist(s, x j,H \ {ei}) > dist(s, x j,G \ {ei})).

e 

s 

t 

𝑷𝒔,𝒕,𝒆 

𝝅𝒔,𝒕 

𝒃 

Figure 3: Lower bound graph G = (V, E) for FT-BFS structures. For a subgraph H not
containing the edge (x j, zi), we get that dist(s, x j,H \ {ei}) > dist(s, x j,G \ {ei}). Hence all

edges of the bipartite graph B(X,Z) must be taken into H.

This basic construction has been extended in [42] to multiple f -faults, to addi-
tive approximate distances [41] and to other models of fault tolerance, discussed
in Sec. 5, cf. [41]. Despite these results, the understanding lower bounds for fault



tolerant structures is still lacking. See Sec. 6, for a concrete open question in this
area.

5 Other Notions for Fault-Tolerance
In this section, we review different models for fault tolerance that have been stud-
ied in the literature.
Rigid and Competitive Fault Tolerance. As pointed out by Chechik and Pe-

leg [16], fault tolerance can be formalized in two ways. One interpretation of
fault tolerance, called rigid fault tolerance, requires that the surviving part of the
structure S after the failing of f edges (or vetices) F would satisfy the predicate
ρ(S \ F,G) in the original network. In the second interpretation, competitive fault
tolerance, the surviving part of the structure S \ F is required to satisfy the predi-
cate ρ(S \ F,G \ F) with respect to the surviving part of the original network.

Clearly, rigid fault tolerance is a much stronger requirement than the com-
petitive one. However, in most cases, it is usually asking for more than what
possibly can be obtained. For example, consider the predicate of connectivity,
where ρcon(H,G) = 1 iff the subgraph H is connected. For an 1-edge connected
input graph G, one cannot construct a fault-tolerant connected subgraph in the
rigid sense, even when taking H = G. Rigid fault tolerance can still be obtained in
certain cases, such as in the geometric setting [36]. Although not realistic in most
scenarios, the rigid notion is an important aspect to have in mind when design-
ing the underlying networks. In (the more common) case where the underlying
network is already given and it is required to compute a logical structure on top
of that, one has to resort to the notion of competitive fault tolerance which can
always be attained.
Survivable Network Design. Steiglitz, Weiner and Kleitman [51] initiated the
study of survivable network design by defining the minimum cost survivable net-
work problem. Recall that in this problem, one is given a complete weighted
n-vertex graph and a collection of demands ri, j, each of which requires to have ri, j

vertex-disjoint paths between vertices i and j. The goal is to compute a network
of minimum total edge weights that satisfies the connectivity demands ri, j for each
pair i, j. One of the most extensively studied problems in this area is the minimum
k-connected subgraph problem which requires to compute the minimum collec-
tion of edges (in size or total edge weights) that has vertex or edge connectivity
k.

The main difference between fault tolerant network design and survivable net-
work design is the following: in FT-network design, the functionality of the sur-
viving part of the subgraph H is compared to that of the surviving part of the
original network G, for every failing set F. In other words, it is required that



H \ F “behaves" as G \ F for every set of failing edges F. In contrast, in surviv-
able network design, there is one set of (connectivity related) constraints that the
subgraph H should satisfy. Roughly speaking, survivable network design requires
to maintain the same “connectivity level" between a given pair s and t—e.g., that
the number of vertices, or edges, that disconnect s and t in the subgraph H is the
same as that in G—but that still does not guarantee that for every failing set F, the
“connectivity level" between s and t in H \ F is the same as that of G \ F.

To get a better flavor of this distinction, let us consider two representative
problems: the minimum FT-MST subgraph problem [16] and the minimum bi-
connected subgraph problem [31, 32]; the former is from the area of FT-network
design and the latter is from survivable network design. These two problems may
look similar at first glance, however they are not equivalent. In the problem of
the minimum FT-MST subgraph, it is required to compute a minimum weighted
subgraph H that contains an MST tree in G \ {e} for every failing edge e. In the
minimum biconnected subgraph, it is required to compute the minimum subgraph
(i.e., minimum of the total edge weights) that is biconnected. Note that a solution
for the minimum biconnected subgraph is not necessarily a solution for the mini-
mum FT-MST problem and vice versa. This is because survivable network design
optimizes for the size of the output subgraph without requiring to obtain the same
functionality as in G \ F. In particular, to obtain a minimum size structure, in the
minimum biconnected subgraph, we might end up taking edges that are heavier if
they satisfy many cuts. On the other hand, in the FT-MST problem, for every cut
induced by a failing set, we must take the lightest edge that crosses the cut, even
if the output structure H ends up being heavier.

The Fault Model. Two main fault models have been considered in the literature:
adversarial and random. In the adversarial model, the failure edges are chosen in
an adversarial manner. Hence, the designed structure should be resilient against
the failure of any set of f edges (or vertices) where the bound f on the number of
faults is given as input.

In contrast, in the random fault model, edges fail according to some predefined
probability distribution and the output structure should maintain its functionality
despite these faults with good probability.

In the network reliability problem, one is given an n-vertex graph G with m
edges, each edge has probability p of failing. The goal is to compute the probabil-
ity that G becomes disconnected under random, independent edge failures. Karger
showed in [30] a fully polynomial randomized approximation scheme (FPRAS)
for this problem.

A somewhat more related problem to our setting has been studied by Chechik,
Emek, Patt-Shamir and Peleg [17]: given a connected graph G and a failure prob-
ability pe for each edge e in G, it is required to find a sparse backbone that approx-



imate the reliability of G, where the reliability of a graph is the probability that the
graph remains connected when every edge is removed independently with proba-
bility pe. Their main result was the construction of subgraph with O(n log n) edges
whose reliability is (1 − nΩ(1)) times that of G. For a more detailed description on
the random fault model, see [25].

Cost Measures. Fault-tolerant network design mostly concerns two types of cost
measures: computation time and size of the output subgraph (in the weighted
case, the size is the total weight of subgraph’s edges). The motivation for having
time efficient constructions is clear. A typical motivation for having the size as
the primary complexity measure is where the graph edges represent the channels
of a communication network, and the system designer would like to purchase or
lease a minimal collection of channels (i.e., a subgraph G′ ⊆ G) that maintains
its requirement predicate even when edges fails. In such a context, the cost of
computation at the preprocessing stage may often be negligible compared to the
purchasing/leasing cost of the resulting structure.
Additional FT-Mechanisms: Reinforcement vrs. Backup. So far, we mainly

focused on a notion of fault-tolerance where the structure is augmented by adding
to it various edges. However, fault tolerance can be introduced in a different way.

In [41], Parter and Peleg introduced a mixed model that combines two orthog-
onal protection mechanisms: (a) backup, namely, augmenting the structure with
many (redundant) low-cost but fault-prone components, and (b) reinforcement,
namely, acquiring high-cost but fault-resistant components (that would never fail).
Such a mixed model changes the way fault-tolerant systems are viewed. In the
conventional view, the fault tolerance of a network is a function merely of its
topology (i.e, the way the vertices are connected). By allowing one to introduce
into the structure components with different levels of resilience, the fault tolerance
of the network becomes a complex function of the quality level of its individual
components and the way they interact.

To illustrate this point, consider for example an n-vertex
network consisting of a single vertex s connected via a single
edge e to an (n−1)-vertex clique. The edge connectivity of this
network is 1, as the removal of e disconnects the graph. Hence
the conservative approach of keeping all existing edges leaves
this network with a low level of survivability. In contrast, in a
mixed model allowing also reinforcements, it is sufficient to re-
inforce a single edge, namely, e, in order to obtain a high level
of survivability, even by purchasing only a fraction of the edges
of the clique.

For bypassing the high cost of FT-structures as well as to
study the tradeoff between backup in reinforcement, Parter and Peleg [41] consid-



ered the concrete problem of designing a (b, r) fault-tolerant BFS structures. In
these subgraphs there are two types of edges: r(n) reinforced edges, which are as-
sumed to never fail, and b(n) fault prone backup edges such that subsequent to the
failure of one of the backup edges e the surviving part of H still contains a BFS
tree of G \ {e}; see Fig. 4(a) for an illustration. The following tradeoff between
r(n) and b(n) has been established: For every ε ∈ (0, 1/2], if r(n) = Θ̃(n1−ε), then
b(n) = Θ̃(n1+ε). This tradeoff is tight up to polylogarithmic factors, see Fig. 4(b)
for an illustration.
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Figure 4: (a) Shown here is a (b, r) FT-BFS structure. The red edges are fault resistance
and the blue edges are backup edges. The distances from s are preserved as in the

surviving part of the original network when a single blue edge fails. (b) A schematic
illustration of the tradeoff between backup and reinforcement. For example, when

r(n) = Θ(n1/2), the number of backup edges needed is still b(n) = Θ(n3/2). To see this,
consider the lower bound construction of Fig. 3: reinforcing half of the edges on the

s − u shortest path still requires Θ(n3/2) backup edges to protect against the failure of an
edge the other half.



6 Discussion and Open Problems

The study of FT-network design has experienced much development in recent
years. Yet, when considering the many thousands of papers on network design
tasks, there is still much work to be done to establish a comprehensive picture for
FT-network design.

So far, most studies considered the centralized computation model. However,
since FT-structures have a wide range of applications in distributed systems, it is
important to devise for them efficient construction algorithms in the distributed
setting [43].

In the centralized setting, tightening the bounds for the problems mentioned in
this survey is a clear direction. An important open problem concerns the construc-
tion of FT-BFS structures with o(n2) edges that are resilient against f edge faults,
for f ≥ 3. Beyond that, future research may develop in the following directions.
Approximation algorithms for FT-network design. As the lower bounds sec-

tion suggests, some of our FT upper bounds are optimal as they match the worst-
case lower bounds. Yet, these existentially-optimal structures might be rather
dense with respect to the best that can be achieved for the specific input graph. In
particular, the Θ(n3/2) upper bound for FT-BFS structure might still be far from
optimal for certain instances, see [37]. This motivates the study of FT-network
design from the combinatorial optimization point of view, attempting at providing
the sparsest possible subgraph that can be obtained for the given input graph.

For example, in the optimization version of FT-BFS structures, denoted as the
Minimum f -FT-BFS problem, one is given a graph G = (V, E), a constant integer
f ≥ 1, and a source vertex s ∈ V . It is then required to construct an FT-BFS
subgraph H of minimum size (i.e., number of edges) resilient against the failure
of f edges. By establishing a connection to the Set Cover problem [54], Θ(log n)
approximation algorithms can be provided [38, 42].

Optimization algorithms for FT-spanners with small stretch k = 2, 3, 4 have
been studied by Dinitz and Krauthgamer in [21, 23]. The main challenge in this
context is to obtain approximation ratios which are independent of the number
of faults f . This was obtained in [21] by Dinitz and Krauthgamer for k = 2.
Recently, Dinitz and Zhang [22] obtained this for k ∈ {3, 4}, at the cost of turning
to bi-criteria approximation.

Note that having an α-approximation algorithm for an FT-structure does not
reveal any upper bound on the number of edges that are actually needed to be
taken into the structure. Hence, it is important to study the construction of FT-
structures from both the approximation guarantee and the existential optimality
points of views.

Lower Bounds. In contrast to the richness in approaches to designing upper



bounds and algorithms, our knowledge on the lower bound sides is much nar-
rower. One of the most basic FT-structures that calls for a lower bound construc-
tion is fault-tolerant additive spanners, namely, subraphs that provide an additive
approximation for all pairs distances in presence of up to single (or more) faults.
Whereas an upper bound construction of O(n5/3) edges was provided in [40] for
the single vertex case, no lower bound of Ω(n3/2+ε) for any ε > 0 is known.

Beyond Distances. So far, the main predicate requirements considered in FT
design tasks are related to distances and connectivity. Future study may consider
other graph functions, such as cuts, flows, electrical resistance, etc.
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