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Abstract

We explain the concept of p-values presupposing only rudimentary prob-
ability theory. We also use the occasion to introduce the notion of p-function,
so that p-values are values of a p-function.

The explanation is restricted to the discrete case with no outcomes of
zero probability. We are going to address the general case elsewhere.

1 Prelude

Q1: I have a question about the Cournot Principle that one of you wrote about [3].
According to the principle, it is practically certain that a predicted event of small
probability does not happen. How small should the probability be?

A: Traditionally there have been two camps of naive Cournotians, the lax ones
using the 5% threshold and strict ones using the 1% threshold.

Q: Why do you call them naive?

A: A better way is to report an appropriate p-value, without committing yourself
to a threshold.

Q: Oh yes, I heard about p-values and even tried to read about them but got con-
fused. Do you have a good reference?

A: Cox and Hinkley define p-values, even though they do not use the term, in §3
of the their 1974 book “Theoretical Statistics” [2]. That is the best reference that
we have.

Q: How about explaining the concept to me right now? But please take into ac-
count that, while I have been exposed to probability theory and logic, I have not
studied statistics.

1Q and A are Quisani (a former student of the first author) and the authors respectively.



A: The general case is somewhat involved [4], but the discrete case is important
and simple enough to explain the concept, especially if one presumes that every
outcome has positive probability.

2 Probability trials

Recall that a discrete probability space is given by a nonempty set Ω and a function
P from Ω to the real interval [0, 1] subject to the following three requirements.

1. Ω is countable, i.e. finite or infinite countable.

2. Every P(x) ≥ 0.

3.
∑

x∈Ω P(x) = 1.

To simplify our exposition, we replace (2) with a stronger and relatively innocuous
requirement

(2′) Every P(x) > 0.

The function P naturally extends to subsets E of Ω: P(E) =
∑
{P(x) : x ∈ E}.

Think of the probability space (Ω,P) as a probability trial. Elements of Ω are
outcomes, subsets of Ω are events, and P assigns probabilities to outcomes and
events. The probability distribution P is the null hypothesis of the trial. Think of
it as an alleged probability distribution. The purpose of the trial is to test P.

Q: I guess, a predicted event of small probability, if and when it occurs, provides
falsifying evidence against the null hypothesis.

A: Yes, but we do not need to define what probabilities count as small. For now,
it suffices to say this: The smaller the probability of the event in question, the
stronger the impugning power of the event. Suppose for example that Ω = {a, b, c}
and that P(a) = 990/1000, P(b) = 9/1000 and P(c) = 1/1000. We can order
the nonempty events in the order of increasing impugning power: {a, b, c}, {a, b},
{a, c}, {a}, {b, c}, {b}, {c}.

Q: But the event {a, b, c} has zero impugning power.

A: True, and we don’t say that it has any. We just say that its impugning power
is less than that of the other 6 events. Also, we ignore the empty event because it
does not occur.



3 The logic angle

Q: For logicians, a discrete probabilistic trial (Ω,P) is a relatively simple logic
structure, an extension of real arithmetic with a separate sort Outcome and a func-
tion P of type
Outcome→ Real, subject to requirements (1)–(3) of §2.

A: In applications, a trial comes with additional information. Here are two exam-
ples, in a simplified form, from the paper you cited.

Coin Example. A coin is tossed 42 times. The null hypothesis is that all 242

outcomes are equally probable. The actual outcome has 41 heads and just one tail.
Clearly the impugning power of that outcome exceeds that of a random outcome.

Lottery Example. 4,000,000 people bought 10,000,000 tickets. Any of them could
be the winner; thus these are 4,000,000 potential outcomes. The null hypothesis
is that the probability of a person to win is proportional to the number of his or her
tickets. The wife Donna of the lottery organizer John bought 3 tickets and won the
lottery. Clearly the impugning power of that outcome exceeds that of a random
outcome.

Q: Additional information complicates the matter. Clearly there are countless dif-
ferent kinds of additional information. How do statisticians deal with them?

A: They simplify the situation. They replace any additional structure with a linear
preorder of the outcomes and restrict attention to the downward closed events.

Q: This is quite a simplification!

A: Often the linear preorder is given implicitly, by means of a test statistic or a
nested family of events.

Q: Please remind me the necessary definitions.

4 Test tools

Let (Ω,P) be a probability trial. A preorder of a nonempty set Ω is a binary
relation ≤ on Ω that is reflexive and transitive so that for all outcomes x, y, z we
have

• x ≤ x and

• if x ≤ y and y ≤ z then x ≤ z.



A preorder ≤ of Ω is linear if for all x, y we have

• x ≤ y or y ≤ x.

Definition 1.

• A test order of Ω is a linear preorder on Ω.

• A test pyramid over Ω is a family of events linearly ordered by inclusion.

• A test statistic on Ω is a function from Ω to the reals.

Coin Example, continued. Let Heads (x) and Tails (x) be the numbers of
the heads and tails in an outcome x respectively. The function M(x) =

Min {Heads (x),Tails (x)} is a test statistic. The relation M(x) ≤ M(y) is a lin-
ear preorder of the outcomes. Events {x : M(x) ≤ n}, where n ∈ {0, 1, . . . , 42}
form a test pyramid.

Given a linear preorder ≤ on Ω, an event E ⊆ Ω is downward closed if x ≤ y
and y ∈ E imply x ∈ E for all x, y. The downward closed events are nested: if
E1, E2 are downward closed then either E1 ⊆ E2 or E2 ⊆ E1. Indeed if E2 * E1

and x ∈ E2 − E1 then E1 ⊆ {y : y ≤ x} ⊆ E2.

Note that there may be distinct outcomes x, y with x ≤ y and y ≤ x; such
outcomes x, y are quasi-equal. Linear preorders are also known as linear quasi-
orders.

Test orders, test pyramids and test statistics are three tools to measure the
relative strength of the impugning evidence provided by a given outcome or event.
We adopt the following convention.

- For a given test order, smaller outcomes provide stronger impugning evi-
dence.

- For a given test statistic, smaller values provide stronger impugning evi-
dence.

And of course, for a given test pyramid of events, smaller events provide stronger
impugning evidence.

In the following two sections we show that the three tools are equivalent in an
appropriate sense.



5 Test orders and test pyramids

If ≤ is a test order, let [≤ x] be the downward closure {y : y ≤ x} of x.

Definition 2.

• Every test order ≤ induces a test pyramid, namely the family of events [≤ x].

• Every test pyramid F induces a test order

{(x, y) : (∀E ∈ F )[y ∈ E =⇒ x ∈ E]}

In words, the formula (∀E ∈ F )[y ∈ E =⇒ x ∈ E] says that every member
of F that contains y contains x as well.

Lemma 3. If a test order ≤ induces a test pyramid F then F induces ≤.

Proof. Let � be the test order induced by F .

x � y ⇐⇒ (∀E ∈ F )[y ∈ E =⇒ x ∈ E] by the definition of x � y
⇐⇒ (∀z ∈ Ω)[y ∈ [≤ z] =⇒ x ∈ [≤ z]] by the definition of F
⇐⇒ x ∈ [≤ y]
⇐⇒ x ≤ y �

Definition 4.

• Two test pyramids are equivalent if they induce the same test order.

• The canonic version F̂ of a test pyramid F is the test pyramid induced by
the test order induced by F .

• A test pyramid F is canonic if it is the canonic version of itself.

Q: Show me a non-canonic test pyramid.

A: Let Ω be the set of numbers ±1
n where n = 1, 2, . . . . The precise definition of

the distribution P on Ω is not important provided that every element of Ω has a
positive probability. Let ≤ be the standard order on the numbers ±1

n . The desired
test pyramid F is the collection of all subsets of Ω downward closed with respect
to ≤. Clearly F induces the test order ≤. The pyramid F̂ , induced by ≤, consists
of sets [≤ x] where x ∈ Ω. It is a proper subcollection of F . The difference F −F̂
consists of three sets: ∅, [≤ 0] and Ω.

Q: You could have require that a test order ≤ induces the pyramid of all the events
downward closed with respect to ≤. Then your counter-example would not work.



A: That is true. But then a non-canonic pyramid would be obtained from the
pyramid of downward-closed events by omitting one or more of the sets ∅, [≤ 0],
Ω.

Q: What about canonic test orders?

A: In our current setup every test order can be viewed as canonic. We saw already
that every test order is induced by a test pyramid. We’ll see below that every test
order is induced by a test statistic. This is not so in the general case. In fact, it is
not so even in the discrete case with outcomes of zero probability.

Lemma 5. Every pyramid F is equivalent to a unique canonic test pyramid,
namely to F̂ .

Proof. Let ≤ be the test order induced by F . By the definition, F̂ is the collection
of events [≤ x]. Clearly F̂ induces ≤, and so it is equivalent to F .

It remains to check that F̂ is the only canonic test pyramid equivalent to F .
Let F ′ be a canonic test pyramid that is equivalent to F and therefore induces ≤.
Since F ′ is canonic, it is induced by ≤. But then F ′ = F̂ . �

Corollary 6.

1. If a test pyramidF induces a test order ≤ then ≤ induces the canonic version
F̂ of F .

2. If a test order ≤ induces a test pyramid F then F is canonic.

Proof. (1) By the definition of F̂ .

(2) By Lemma 3, F induces ≤. By (1), F = F̂ . �

6 Test orders and test statistics

Definition 7.

• Every test order ≤ induces a test statistic f (x) = P[≤ x].

• Every test statistic f induces a test order {(x, y) : f (x) ≤ f (y)}.

For a test statistics f and a real number r, let [ f ≤ r] be the event {x : f (x) ≤
r}. In the following lemma, we take advantage of having no zero-probability
outcomes.



Lemma 8. For any test order ≤, we have x ≤ y if and only if P[≤ x] ≤ P[≤ y].

Proof. If x ≤ y then [≤ x] ⊆ [≤ y] and therefore P[≤ x] ≤ P[≤ y]. This establishes
the only-if implication. We prove the if implication by contrapositive. Suppose
that x > y. Then x belongs to [≤ x] but not to [≤ y] so that [≤ x] ) [≤ y]. Since
P(x) > 0, we have P[≤ x] > P[≤ y]. �

Lemma 9. For any test statistic f , we have:

1. If f induces a test order ≤ then every [≤ x] = [ f ≤ f (x)].

2. f (x) ≤ f (y) ⇐⇒ P[ f ≤ f (x)] ≤ P[ f ≤ f (y)].

Proof.

(1) [≤ x] = {y : y ≤ x} = {y : f (y) ≤ f (x)} = [ f ≤ f (x)].

(2) Follows from (1) and Lemma 8. �

Lemma 10. If a test order ≤ induces a test statistic f then f induces ≤.

Proof. Let � be the test order induced by f .

x ≤ y ⇐⇒ P[≤ x] ≤ P[≤ y] by Lemma 8,
⇐⇒ f (x) ≤ f (y) by the definition of f ,
⇐⇒ x � y by the definition of �. �

Definition 11.

• Two test statistics are equivalent if they induce the same test order.

• The canonic version of a test statistic f is the test statistic
f̂ (x) = P[ f ≤ f (x)].

• A test statistic is canonic if it is the canonic version of itself.

Lemma 12. Every test statistic f is equivalent to a unique canonic test statistics,
namely to f̂ .

Proof. First we check that f is equivalent to f̂ .

f (x) ≤ f (y) ⇐⇒ P[ f ≤ f (x)] ≤ P[ f ≤ f (y)] by Lemma 9,

⇐⇒ f̂ (x) ≤ f̂ (y) by the definition of f̂ .



Second we check that f̂ is the only canonic test statistic equivalent to f . If f ′ is a
canonic test statistic equivalent to f then

f ′(x) ≤ f ′(y) ⇐⇒ f (x) ≤ f (y) because f and f ′ are equivalent,

⇐⇒ f̂ (x) ≤ f̂ (y) because f and f̂ are equivalent.

Thus f ′, f̂ and f are all equivalent and therefore induce the same order ≤.

f ′(x) = P[ f ′ ≤ f ′(x)] as f ′ is canonic
= P[≤ x] by Lemma 8, part 1

= P[ f̂ ≤ f̂ (x)] by Lemma 8, part 1

= f̂ (x) as f̂ is canonic. �

Corollary 13.

• If a test statistic f induces a test order ≤ then ≤ induces the canonic version
f̂ of f .

• The test statistic induced by any test order is canonic.

Proof.

(1) Let f ′ be the test statistic induced by ≤. We have

f ′(x) = P[≤ x] by the definition of f ′,
= P[ f ≤ f (x)] by Lemma 9,

= f̂ (x) by the definition of f̂ .

(2) Let f be the test statistic induced by a given test order ≤. By Lemma 10, f
induces ≤. By (1), f = f̂ . �

7 Exact p-values

In this section we define exact p-values. A more general notion of p-value will be
given in the next section.

Definition 14. Given a probabilistic trial (Ω,P) furnished with a test order ≤, the
exact p-value of an outcome x is the probability P[≤ x].



Notice the dependence on the test order. Of course, the test order can be given
by means a test pyramid or test statistic. Test statistics are especially popular
in applications. In this connection, let us give an alternative definition of exact
p-values.

Definition 15. Given a probabilistic trial (Ω,P) furnished with a test statistic f ,
the exact p-value of an outcome x is the number f̂ (x) = P[ f ≤ f (x)].

Of course the two definitions are consistent.

Lemma 16.

1. If a test statistic f induces a test order ≤ then P[≤ x] = P[ f ≤ f (x)].

2. If a test order ≤ induces a test statistic f then P[ f ≤ f (x)] = P[≤ x].

Proof. (1) Use Lemma 9, part 1.

(2) By Lemma 10, f induces ≤. Now use (1). �

Q: Let’s go back to the two examples of §3, compute the exact p-values of the
actual outcomes and compare them.

A: The examples do not have sufficient information. We need to furnish them
with reasonable test tools. For the Coin Example, we can use the test statistic
M(x) = Min {Heads (x),Tails (x)} defined in the continuation of the Coin Example
in §4. With respect to that test statistic, the exact p-value p1 of the actual outcome
is as follows.

p1 = P[ f ≤ 1] =
2(1 + 42)

242 <
2 × 26

242 = 2−35

Concerning the Lottery Example, one possible approach is given by the fol-
lowing graph G.

• The vertices of G are the 4,000,000 lottery participants plus John, the lottery
organizer, whether he bought any lottery tickets or not.

• Two distinct vertices X and Y are connected by an edge in G if and only if
at least one of the following conditions holds:

– X is a parent of Y or the other way round.

– X,Y are spouses.

– X,Y are close friends.



Given the graph G, we have a natural test statistic δ(X) on the lottery participants,
namely the length of the minimal chain of edges from John to X. If John bought
at least one ticket then the minimal value of δ is 0; otherwise it is one. Donna,
John’s wife, is at distance 1 from John, and she bought 4 tickets. We can estimate
the exact p-value p2 of the actual outcome from below.

p2 = P(δ ≤ 1) ≥
4

10, 000, 000
>

22

24 × 210 × 210 = 2−22.

It follows that
p1 < 2−35 < 2−22 < p2.

Q: This is interesting. The win of the lottery organizer’s wife seemed more striking
to me than getting 41 heads in 42 coin tosses. I wonder whether p2 is small enough
to impugn the hypothesis that the lottery was fair.

A: Well, it seems safe to assume that the lottery participants at distance ≤ 1 from
John bought less than 10,000 tickets. Under this assumption,

p2 <
10, 000

10, 000, 000
=

1
1000

= 0.1%

which is small enough for the lax as well as strict Cournotians.

8 p-functions

In this section ε ranges over the non-negative reals.

Lemma 17. Let f be a canonic test statistic.

1. P[ f ≤ ε] = ε if ε ∈ Range( f ).

2. P[ f ≤ ε] = ε if ε = sup(S ) for some S ⊆ Range( f ).

3. P[ f ≤ ε] ≤ ε for every ε.

Proof. (1) If ε = f (x) then

P[ f ≤ ε] = P[ f ≤ f (x)]
= f (x) as f is canonic
= ε



(2) If ε = sup(S ) for some S ⊆ Range( f ) then there is a sequence s1 < s2 < . . .
of elements of S converging to ε. Then

P[ f ≤ ε] = P[ f ≤ s1] + P[s1 < f ≤ s2] + P[s2 < f ≤ s3] + · · ·

so that the probability

P[ f ≤ sn] = P[ f ≤ s1] + P[s1 < f ≤ s2] + · · · + P[sn−1 < f ≤ sn]

converges to P[ f ≤ ε] as n→ ∞. Therefore

P[ f ≤ ε] = lim
n→∞

P[ f ≤ sn]

= lim
n→∞

sn by (2)

= ε by the choice of s1 < s2 < . . . .

(3) Let ε0 = sup{s ∈ Range( f ) : s ≤ ε}. Then [ f ≤ ε] = [ f ≤ ε0] and therefore
P[ f ≤ ε] = P[ f ≤ ε0] = ε0 ≤ ε. �

Definition 18.

• A p-function is a test statistic f such that P[ f ≤ ε] ≤ ε for every ε.

• A p-function f is exact if P[ f ≤ ε] = ε for every ε ∈ Range( f ); otherwise
f is conservative.

• Values of a p-function are p-values.
If f is a p-function then c f is a p-function for every c ≥ 1. Indeed

P[c f ≤ ε] = P[ f ≤ ε/c] ≤ ε/c ≤ ε.

If c < 1 then c f may not be a p-function. In particular if P[ f ≤ ε] = ε for at least
one ε then c f is not a p-function because, for that ε, we have

P[c f ≤ cε] = P[ f ≤ ε] = ε > cε.

Theorem 19. For any test statistic f , the following two claims are equivalent:

1. f is canonic.

2. f is an exact p-function.



Proof. The implication (1)→(2) is proven in Lemma 17. To prove the implication
(2)→(1), assume that f is an exact p-function, x is an arbitrary outcome and ε =

f (x). We have

P[ f ≤ f (x)] = P[ f ≤ ε]
= ε as f is exact
= f (x). �

Corollary 20. • Exact p-values are values of a exact p-function.

• Every test order induces a unique exact p-function.

• Every test statistic f is equivalent to a unique exact p-function.

9 Data snooping

Q: What about conservative p-functions? Do you really have any use for them?

A: Yes. A good example is the so-called Bonferroni correction. There is a good
explanation in [1].

Q: But what is the idea?

A: Consider a version of our coin example where, for simplicity, you toss a coin
only 15 times. Again the null hypothesis is that all outcomes are equally probable,
and again we will use the test statistic M(x) = Min{Heads(x),Tails(x)}. Suppose
that you really want to impugn the null hypothesis. So you repeat the trial over
and over until you encounter an outcome where M is 1. At this point, you report
that you performed a trial and got an outcome with p-value

P[M ≤ 1] =
2(1 + 15)

215 =
25

215 = 2−10 =
1

1024
.

Q: But this is cheating.

A: Exactly. Yet, such data snooping occurs in science though rarely in such a
blatant form; a scientist may genuinely forget about some steps in the preliminary
analysis of data. In this connection, you may enjoy a relevant issue [6] of the
XKCD webcomic.

Q: I remember hearing about publication bias. What is it?



A: It is a rather insidious kind of data snooping. Imagine that a large number of
groups of scientists are testing an important null hypothesis. Eventually some
group gets a significant p-value and submits their findings for publication while
the other groups don’t publish anything on the issue. Some influential statisticians
argue that most published research findings are wrong and that publication bias
may be the main reason for that [5].

Q: You cannot avoid multiple testing of a null hypothesis. What do you do?

A: Consider a case where the same probabilistic trial is performed n times, using
test statistics f1, . . . , fn and getting p-values p1, . . . , pn. Of course one would love
to report the p-value min{p1, . . . , pn} but it needs to be adjusted for the multiple
testing of the null hypothesis. The Bonferroni correction is one way to adjust that
p-value, by multiplying it by n. The p-value n · min{p1, . . . , pn} is valid though
usually conservative. More exactly the test statistic f = n min( f1, . . . , fn) is a
p-function, typically conservative. Indeed,

P[ f ≤ ε] ≤ P
(
∪n

i=1 [ fi ≤ ε/n]
)
≤

n∑
i=1

P[ fi ≤ ε/n] ≤
n∑

i=1

ε/n = ε.
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