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Abstract

Determining what are the most important nodes in a network is one of the
main problems in the field of network analysis. Several so-called centrality
indices have been defined in the literature to try to quantitatively capture the
notion of importance (or centrality) of a node within a network. It has been
experimentally observed that being central for a node, according to some
centrality index, leads to several benefits to the node itself.

In this paper, we study the problem of maximizing the centrality index
of a given node by adding a limited number of edges incident to it. We sur-
vey on some recent results on this problem by focusing on four well-known
centrality indices, namely harmonic centrality, betweenness centrality, ec-
centricity, and page-rank.

1 Introduction
In the past decades, there has been an increasing interest in the analysis of real-
world complex networks in diverse research areas from sociology to computer
science, going through biology and economy. Relevant examples of networks
are autonomous-systems networks within the Internet, the World Wide Web, net-
works deriving from transportation infrastructures like roads or public transport,
networked energy systems, social networks, coauthorship networks, and financial
systems. It is somewhat surprising to observe that several networks originating
from different contexts exhibit similar structural properties.

One of the most studied network properties goes under the name of centrality
of a node in a network. Informally speaking, a node is considered “central” if
it is important within the network and it is believed that the importance that a
node has within a network reflects, to some extent, the position of the node in the
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network and, more in general, the network structure. However, researchers do not
agree on a common definition of centrality, instead several centrality indices have
been proposed in the literature to try to quantitatively capture this notion. Most
of the centrality indices are based on distances between nodes (like the closeness
centrality [2]), on the number of shortest paths passing thorough a node (like the
betweenness centrality [17]), or on spectral properties (like the page-rank [8]).
For more details on centrality indices, see [5, 30]. What is the right definition of
centrality of a node is not clear and the choice depends on the application domain.

On the other hand, it has been experimentally observed that being central for
a node, according to some centrality index, has several benefits for the node itself.
For example, closeness centrality is significantly correlated with citation counts
of an author in author-citation networks [36], betweenness centrality is correlated
with the efficiency of an airport in transportation networks [28], and both close-
ness and betweenness are correlated with the efficiency of an individual to prop-
agate the information in a social network [27]. Therefore, a lot of research effort
has been done on the problems of computing the centrality indices of a given node
or determining the most central nodes of a network, according to some index.

In this paper we look at centrality indices from a proactive point of view, that
is we want to modify an existing network with the aim of improving the centrality
of a given node. A network can be modified by adding or removing edges and
nodes. By performing these operations the centrality of a node can increase, while
the centrality of other nodes can decrease. For example by adding edges, the
distances between nodes decreases and hence the closeness centrality of some
node increases, while by removing edges the closeness centrality might decrease.

Which “strategy” should a node adopt in order to increase its own centrality
value as much as possible? In this paper we formulate this question as an opti-
mization problem which consists in finding a limited amount of edges to be added
in a graph in order to maximize the centrality of a given node within a network.

Generally speaking, adding edges incident to a given node v reduces the dis-
tances between v and the other nodes and hence it increases the centrality of v in
some centrality indices. Moreover, looking at social networks from a user (node)
perspective, it is not difficult to imagine scenarios in which a node can only add
edges incident to itself and hence it is reasonable to consider such constraint in our
optimization problem. More specifically, we consider the problem of efficiently
determining, for a given vertex v, the set of k edges incident to v that, when added
to the original graph, maximizes the centrality of v, according to some index.
We denote this optimization problem as Centrality Maximization problem (cm).
In this paper we survey some recent results on the cm problem in which we use
four relevant centrality indices to be maximized: harmonic centrality, between-
ness centrality, eccentricity and page-rank. The results outlined in this paper are
reported in Table 1.



Structure of the paper. In the next section, we give the notation used in the pa-
per, define the centrality indices that we aim at maximizing, and give the problem
statement. In Section 3, we survey on the known results on the cm problem. Fi-
nally, in Section 4, we outline some future research directions that deserve further
investigation.

2 Preliminaries
Let G = (V, E) be a directed or undirected graph. For each node v, if G is directed,
N i

v and No
v denote the set of in-neighbors and out-neighbors of v, respectively, i.e.

N i
v = {u | (u, v) ∈ E} and No

v = {u | (v, u) ∈ E}. If G is undirected, Nv denotes the
set of all neighbors of v, Nv = {u | {u, v} ∈ E}. Given two nodes s and t, we denote
by dst, σst, and σstv the distance from s to t in G, the number of shortest paths
from s to t in G, and the number of shortest paths from s to t in G that contain v,
respectively. When we discuss about page-rank, we will assume that the graph is
strongly connected.

2.1 Centrality indices
A centrality index c (also called centrality metrics or centrality measures) is a
function c : V → R that associates a number to each node according to the
importance of the node, that is if node v is at least as important as node u, then
cv ≥ cu. A centrality index induces a partial ordering of the nodes in V . The
ranking of a node v according to some centrality index c is the placement of v in
the ordering induced by c and it is defined as

rc
v = |{u ∈ V | cu > cv}| + 1.

According to [4], centrality indices can be classified into three non-disjoint
categories: geometric indices, path-based indices, and spectral indices. The first
category includes all those measures that evaluate the importance of a node on
the basis of a function of the distances from the node to any other node, more
in details, a geometric index depends only on how many nodes exist at every
distance from the given node. Examples of geometric indices are: node degree,
closeness centrality [2], Lin’s index [26], harmonic centrality [4], and eccentricity.
Instead of considering distances to a node, path-based indices take into account
all the shortest paths (or all simple paths) passing through a node. Examples
in this category are stress centrality [34], betweenness centrality [6, 17] and its
variants [7]. Spectral indices evaluate the importance of a node on the basis of
the left dominant eigenvector of a matrix derived from the graph. Examples of
spectral indices are: Katz’ index [22], page-rank [8], and HITS [25].



In this paper we study the problem of augmenting a graph in order to maxi-
mize the centrality of a node according to some index. We focus on four relevant
centrality indices that are representative of the above categories. In what follows
we define such centrality indices.

• The harmonic centrality [4] of a node v is defined as the harmonic mean of
the distances from all the other nodes to v, formally:

hv =
∑

s∈V\{v}
dsv<∞

1
dsv
.

• The betweenness centrality [6, 17] of a node v is defined as the sum over all
pairs of nodes (s, t) of the ratio between the number of shortest path from s
to t passing through v and all the shortest paths from s to t that is:

bv =
∑
s,t∈V

s,t;s,t,v
σst,0

σstv

σst
.

• The eccentricity of a node v is the maximum distance between v and any
other node, that is

ev = max
u∈V
{duv}.

Note that, in this case a node is central if its eccentricity is small.

• In a directed graph, the page-rank of a node v is the probability that a ran-
dom surfer walk that starts at a random node in a graph is at v at a given
point in time. A random surfer walk with parameter α, is a walk in the
graph defined as follows: start at a random node in G, given by a starting
probability distribution; with probability α, move to an edge chosen uni-
formly at random from those outgoing the current node; with probability
1−α, move directly to another node that might be not connected to the cur-
rent node. In this latter case, the next node node is chosen by according to
the starting probability distribution.

Formally, let us assume that G is a strongly connected directed graph. Let
M be a |V | × |V | matrix where each element muv is defined as muv = 1

|No
u |

if
(u, v) ∈ E and muv = 0 otherwise. For a given parameter α, the page-rank is
the eigenvector p̄ associated to the largest eigenvalue of the matrix

Q =
1 − α
|V |

1 + αM.

The page rank of a node v is the element pv in the position associated to v
in p̄.



2.2 Problem statement
Given a set S of edges not in E, we denote by G(S ) the graph augmented by adding
the edges in S to G, i.e. G(S ) = (V, E ∪ S ). For a parameter x of G, we denote
by x(S ) the same parameter in graph G(S ), e.g. the distance from s to t in G(S )
is denoted as dst(S ). The centrality index of a node v clearly depend on the graph
structure: if we augment a graph by adding a set of edges S incident to v, then the
centrality of v might change. Generally speaking, adding edges incident to some
node v can only increase the centrality of v. We are interested in finding a set S of
edges incident to a particular node v that maximizes such an increment. Therefore,
given a centrality index c, we define the following optimization problem.

Centrality Maximization (cm)
Given: A directed or undirected graph G = (V, E); a node v ∈ V; and an

integer k ∈ N
Solution: A set S of edges incident to v, S = {(u, v) | u ∈ V \ N i

v} (S =

{{u, v} | u ∈ V \ Nv}, if G is undirected), such that |S | ≤ k
Goal: Maximize cv(S )

We study the cm problem by using harmonic centrality, betweenness centrality,
eccentricity, and page-rank as indices, obtaining problems cm-h, cm-b, cm-e, cm-p.

2.3 Maximizing monotone submodular functions
Some of the algorithms reported in this paper, exploit the results of Nemhauser
et al. on the approximation of monotone submodular objective functions [29]. A
function z defined on subsets of a ground set N, z : 2N → R, is submodular if the
following inequality holds for any pair of sets S ⊆ T ⊆ N and for any element
e ∈ N \ T

z(S ∪ {e}) − z(S ) ≥ z(T ∪ {e}) − z(T ).

In other words, a submodular function exhibits decreasing marginal gains: the
marginal value of adding a new element to a set decreases as the set increases. Let
us consider the following optimization problem: given a finite set N, an integer k′,
and a real-valued function z defined on the set of subsets of N, find a set S ⊆ N
such that |S | ≤ k′ and z(S ) is maximum. If z is monotone and submodular, then the
following greedy algorithm exhibits an approximation of 1− 1

e [29]: start with the
empty set, and, for k′ iterations, add an element that gives the maximal marginal
gain, that is if S is a partial solution, choose the element j ∈ N \ S that maximizes
z(S ∪ { j}).

Theorem 1 ([29]). For a non-negative, monotone submodular function z, let S be
a set of size k obtained by selecting elements one at a time, each time choosing



Algorithm 1: Greedy algorithm for cm on directed graphs.
Input : A directed graph G = (V, E); a node v ∈ V; and an integer k ∈ N
Output: Set of edges S ⊆ {(u, v) | u ∈ V \ N i

v} such that |S | ≤ k
1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach u ∈ V \ N i

v(S ) do
4 Compute cv(S ∪ {(u, v)})

5 umax := arg max{cv(S ∪ {(u, v)}) | u ∈ V \ N i
v(S )};

6 S := S ∪ {(umax, v)};

7 return S ;

an element that provides the largest marginal increase in the value of z. Then S
provides a

(
1 − 1

e

)
-approximation.

In this paper, we exploit such results by showing that some centrality indices
c are monotone and submodular with respect to the possible set of edges incident
to a given node v. Hence, the greedy algorithm in Algorithm 1 provides a

(
1 − 1

e

)
-

approximation for cm.1 Algorithm 1 iterates k times and, at each iteration, it adds
to an initially empty solution S an edge (u, v) (or {u, v} in the case of undirected
graph) that, when added to G(S ), gives the largest marginal increase in the cen-
trality of v, that is c(S ∪ {(u, v)}) (c(S ∪ {{u, v}}), respectively) is maximum among
all the possible edges not in E ∪ S incident to v. This technique will be used for
harmonic centrality, betweenness centrality, and page-rank.

3 Centrality maximization

In this section we study the cm problem for harmonic centrality, betweenness cen-
trality, eccentricity, and page-rank. For each problem we will give both hardness
of approximation results and approximation algorithms. In order to highlight the
main ideas and techniques, we will give only proof sketches and references to the
complete proofs.

3.1 Harmonic centrality

We now report the results for the cm-h problem, more details on these results can
be found in [10]. We first show the hardness of approximation results for the

1Algorithm 1 can be easily modified to work in the case of undirected graphs.



undirected and directed graph cases and then give an approximation algorithm for
both cases.

To derive an approximation hardness result for the undirected case, we make
use of the Minimum Dominating Set (in short, mds) problem, which is defined as
follows: given an undirected graph G = (V, E), find a dominating set of minimum
cardinality, that is, a subset D of V such that V = D ∪

⋃
u∈D Nu. It is known that,

for any r with 0 < r < 1, it cannot exist a (r ln |V |)-approximation algorithm for
the mds problem, unless P = NP [14]. We now use this result in order to show
that the cm-h problem does not admit a polynomial-time approximation scheme.
To this aim, we design an algorithm A′ that, given an undirected graph G = (V, E)
and given the size k of the optimal dominating set of G, by using an approximation
algorithm A for the cm-h problem returns a dominating set of G whose approxi-
mation ratio is at most (r ln |V |). Clearly, we do not know the value of k, but we
know that this value must be at least 1 and at most |V |: hence, we run algorithm A′

for each possible value of k, and return the smallest dominating set found. Algo-
rithm A′ runs the approximation algorithm A for the cm-h problem multiple times.
Each time A finds k nodes u ∈ V which are the “new” neighbours of the node
whose centrality has to be increased: we then add these nodes to the dominating
set and create a smaller instance of the cm-h problem (which contain, among the
others, all the nodes in V not yet dominated). We continue until all nodes in V are
dominated.

Algorithm A′ is specified in Fig. 2, where k denotes a “guess” of the size of an
optimal solution for mds with input the graph G. In the following, ω denotes the
number of times the while loop is executed. Since, at each iteration of the loop,
we include in the dominating set at most k nodes, at the end of the execution of
algorithm A′ the set D includes at most k · ω nodes. Hence, if k is the correct
guess of the value of the optimal solution for the mds instance, then D is a ω-
approximate solution for the mds problem (as we have already noticed, we do not
know the correct value of k, but algorithm A′ can be executed for any possible
value of k, that is, for each k = 1, 2, . . . , |V |).

The first instruction of the while loop of algorithm A′ computes a transformed
graph G′ (to be used as part of the new instance for cm-h) starting from the current
graph G = (V, EV), which is the subgraph of the original graph induced by the
set {u1, . . . , un}, where n = |V |, of still not dominated nodes. This computation is
done as follows. We add a new node z and two new nodes xi and yi, for each i with
1 ≤ i ≤ n. Moreover, we add to EV the edges {z, yi}, {xi, yi}, and {xi, ui}, for each i
with 1 ≤ i ≤ n. As it is shown in the second line of the while loop, z is the node
whose harmonic centrality hz has to be increased by adding at most k edges: that
is, the cm-h instance is formed by G′, z, and k. We can assume that the solution S
computed at the second line of the while loop of algorithm A′ contains only edges
connecting z to nodes in V (see [10] for details).



Algorithm 2: The approximation algorithm A′ for the mds problem, given a
γ-approximation algorithm A for the cm-h problem and a “guess” k for the
optimal value of mds.

Input : an undirected graph G = (V, E) and an integer k
Output: a dominating set D

1 D := ∅;
2 while V , ∅ do
3 Compute graph G′ starting from G;
4 S := A(G′, z, k);
5 D′ := {u : {z, u} ∈ S }
6 D := D ∪ D′;
7 V := V \ (D′ ∪

⋃
u∈D′ Nu);

8 G := subgraph of G induced by V;

9 return D;

First of all, note that, since k is (a guess of) the measure of an optimal solu-
tion D∗ for mds with input G, we have that the measure h∗(G′, z, k) of an optimal
solution S ∗ for cm-h with input G′ satisfies the following inequality:

h∗(G′, z, k) ≥ k +
1
2

(n − k) +
3
2

n =
1
2

k + 2n.

This is due to the fact that, by connecting z to all the k nodes in D∗, in the worst
case we have that k nodes in G are at distance 1, n − k nodes in G are at distance
2 (since D∗ is a dominating set), the n nodes yi are at distance 1, and the n nodes
xi are at distance 2 from z.

Given the solution S computed by the approximation algorithm A for cm-h, let
a and b denote the number of nodes in G at distance 2 and 3, respectively, from
z in G′(S ). Since all nodes in G′ are at distance at most 3 from z, we have that
n = k + a + b (we can assume, without loss of generality, that n ≥ k): hence,
a = n − b − k. Since A is a γ-approximation algorithm for cm-h, we have that
hz(S ) ≥ γh∗(G′, z, k). That is, k+ 1

2a+ 1
3b+ 3

2n ≥ γ
(

1
2k + 2n

)
. From this inequality,

by doing some algebraic computation that use the fact that a = n−b−k and k ≤ n,
we obtain b ≤ 15n(1 − γ).

Assuming γ > 1 − 1
15e > 14

15 (which implies 15(1 − γ) < 1), then after one
iteration of the while loop of algorithm A′, the number of nodes in G decreases
by a factor 15(1 − γ). Hence, after ω − 1 iterations, the number n of nodes in the
graph G is at most a fraction [15(1−γ)]ω−1 of the number N of nodes in the original
graph. Since we can stop as soon as n < k, we need to find the maximum value of
ω such that k ≤ N[15(1 − γ)]ω−1. By solving this inequality and by recalling that



15(1 − γ) < 1, we obtain

ω − 1 ≤ log15(1−γ)
k
N
≤ log15(1−γ)

1
N

=
ln(N)

ln 1
15(1−γ)

.

One more iteration might be necessary to trivially deal with the remaining nodes,
which are less than k. Hence, the total number ω of iterations is at most ln(N)

ln 1
15(1−γ)

+1.

If γ > 1 − 1
15e , then the solution reported by algorithm A′ is an (r′ ln N + 1)-

approximate solution, where r′ = 1
ln 1

15(1−γ)
< 1. Clearly, for any r with 0 < r′ < r <

1, there exists a number N(r) sufficiently large, such that for any N > N(r), r′ ln N +

1 ≤ r ln N: hence, algorithm A′ would be an r ln N-approximation algorithm for
mds, and, because of the result of [14], P would be equal to NP. Thus, we have
that, if P , NP, then γ has to be not greater than 1− 1

15e . The next theorem follows.

Theorem 2 ([10]). The cm-h problem on undirected graphs cannot be approxi-
mated within a factor greater than 1 − 1

15e , unless P = NP.

We now focus on the directed case and show that also in this case the cm-h
problem cannot be approximated within a certain constant upper bound, unless
P = NP. We make use of the Maximum Set Coverage (in short, msc) problem,
which is defined as follows: given a set X, a collection F } of subsets of X, and an
integer k, find a sub-collection F ′ ⊆ F such that |F ′| ≤ k and s(F ′) = | ∪S j∈F ′ S j|

is maximized. It is known that the msc problem cannot be approximated within a
factor greater than 1 − 1

e , unless P = NP [16].
In this case we follow the scheme of L-reductions [35, Chapter 16]. In detail,

we will give a polynomial-time algorithm that transforms any instance Imsc of msc
into an instance Icm-h of cm-h and a polynomial-time algorithm that transforms
any solution S for Icm-h into a solution F ′ for Imsc such that the following two
conditions are satisfied for some constants a and b:

OPT (Icm-h) ≤ aOPT (Imsc) (1)
OPT (Imsc) − s(F ′) ≤ b (OPT (Icm-h) − hv(S )) . (2)

where OPT denotes the optimal value of an instance of an optimization problem.
If the above conditions are satisfied and there exists a α-approximation algorithm
for cm-h, then there exists a (1 − ab(1 − α))-approximation algorithm for msc [35,
Chapter 16]. Since msc is hard to approximate within a factor greater than 1 − 1

e ,
then 1−ab(1−α) < 1− 1

e , unless P = NP. This implies that, if P , NP, α < 1− 1
abe .

Given an instance Imsc = (X,F , k) of msc, we define an instance Icm = (G, v, k),
where G = (V, E), V = {v} ∪ {vxi | xi ∈ X} ∪ {vS j | S j ∈ F }, and E = {(vxi , vS j) | xi ∈

S j}.



Without loss of generality, we can assume that any solution S of cm-h contains
only edges (vS j , v) for some S j ∈ F (see [10] for details). Given a solution S of
cm-h, let F ′ be the solution of msc such that S j ∈ F

′ if and only if (vS j , v) ∈ S .
We now show that hv(S ) = 1

2 s(F ′) + k. To this aim, let us note that the distance
from a vertex vxi to v is equal to 2 if an edge (xS j , v) such that xi ∈ S j belongs to
S , and it is ∞ otherwise. Similarly, the distance from a vertex vS j to v is equal to
1 if (xS j , v) ∈ S , and it is∞ otherwise. Moreover, the set of elements xi of X such
that dvxi v

(S ) < ∞ is equal to {xi | xi ∈ S j ∧ (vS jvu) ∈ S } =
⋃

S j∈F ′
S j. Therefore,

hv(S ) =
∑

u∈V\{v}
duv(S )<∞

1
duv(S )

=
∑
xi∈X

dvxi v(S )<∞

1
dvxi v

(S )
+

∑
S j∈F

dvS j
v(S )<∞

1
dvS j v

(S )

=
1
2
|{xi ∈ X | dvxi v

(S ) < ∞}| + |{S j ∈ F | dvS j v
(S ) < ∞}|

=
1
2

∣∣∣∣∣∣∣∣
⋃

S j∈F ′

S j

∣∣∣∣∣∣∣∣ + |{S j | (vS j , v) ∈ S }| =
1
2

s(F ′) + k.

It follows that Conditions (1) and (2) are satisfied for a = 3
2 and b = 2. In-

deed, OPT (Icm-h) = 1
2OPT (Imsc) + k ≤ 3

2OPT (Imsc), where the inequality is due
to the fact that OPT (Imsc) ≥ k, since otherwise the greedy algorithm would find
an optimal solution for Imsc. Moreover, OPT (Imsc) − s(F ′) = 2 (OPT (Icm-h) − k) −
2 (hv(S ) − k) = 2 (OPT (Icm-h) − hv(S )). The next theorem follows by plugging the
values of a and b into α < 1 − 1

abe .

Theorem 3 ([10]). The cm-h problem on directed graphs cannot be approximated
within a factor greater than 1 − 1

3e , unless P = NP.

In the following we show that hu is monotone and submodular in the case of
undirected graphs, the proof can be easily adapted to the case in which the graphs
are directed. To simplify the notation, we assume that 1

∞
= 0. To show that hv

is monotone increasing, it is enough to observe that, for each solution S to cm-h,
for each edge {u, v} < E ∪ S , and for each node x ∈ V \ {v}, dvx(S ∪ {{u, v}}) ≤
dvx(S ) (since adding an edge cannot increase the distance between two nodes) and,
therefore, 1

dvx(S∪{{u,v}}) ≥
1

dvx(S ) .
To prove that hv is submodular, we show that, for each pair S and T of solu-

tions for cm-h such that S ⊆ T , and for each edge {u, v} < T ∪ E,

hv(S ∪ {{u, v}}) − hv(S ) ≥ hv(T ∪ {{u, v}}) − cu(T ).

To this aim, we prove that each term of hu is submodular, that is, for each vertex
x ∈ V \ {v},

1
dvx(S ∪ {{u, v}})

−
1

dvx(S )
≥

1
dvx(T ∪ {{u, v}})

−
1

dvx(T )
. (3)



Let us consider the shortest paths from v to x in G(T ∪ {{u, v}}), and let us distin-
guish the following two cases.

1. The first edge of a shortest path from v to x in G(T ∪ {{u, v}}) is {u, v} or
belongs to S ∪ E. In this case, such a path is a shortest path also in G(S ∪
{{u, v}}), as it cannot contain edges in T \S (since these edges are all incident
to v). Then, dvx(S ∪ {{u, v}}) = dvx(T ∪ {{u, v}}) and 1

dvx(S∪{{u,v}}) = 1
dvx(T∪{{u,v}}) .

Moreover, dvx(S ) ≥ dvx(T ) (since S ⊆ T ) and, therefore, − 1
dvx(S ) ≥ −

1
dvx(T ) .

2. The first edge of all shortest paths from v to x in G(T ∪ {{u, v}}) belongs to
T \ S . In this case, dvx(T ) = dvx(T ∪ {{u, v}}) and, therefore, 1

dvx(T∪{{u,v}}) −
1

dvx(T ) = 0. As 1
dvx(S ) is monotone increasing, then 1

dvx(S∪{{u,v}}) −
1

dvx(S ) ≥ 0.

In both cases, we have that the inequality (3) is satisfied and, hence, the next
theorem follows.

Theorem 4 ([10]). In both directed and undirected graphs, for each vertex u,
function hu is monotone and submodular with respect to any feasible solution for
cm-h.

Theorems 1 and 4 imply the next corollary.

Corollary 5. The cm-h problem is approximable within a factor 1 − 1
e in both

directed and undirected graphs.

3.2 Betweenness centrality
We now show that problem cm-b is hard to be approximated within a certain con-
stant upper bound, that in the case of directed graphs the objective function is
monotone and submodular, and that there are instances of the undirected case for
which the greedy algorithm exhibits an arbitrarily small approximation ratio. We
omit proof sketches for the first two results as the arguments are similar to those
of Theorems 3 and 4, respectively. Full proofs of the results stated in this section
can be found in [9, 12].

We observe that the next result for undirected graphs has been proven only for
the case in which edges are weighted [12].

Theorem 6 ([9, 12]). The cm-b problem on both directed and undirected graphs
cannot be approximated within a factor greater than 1 − 1

2e , unless P = NP.

Theorem 7 ([9]). In directed graphs, for each vertex v, function bv is monotone
and submodular with respect to any feasible solution for cm-b.



Corollary 8. In directed graphs, the cm-b problem is approximable within a factor
1 − 1

e .

We now prove that, differently from the directed case and from the case of
harmonic centrality, the approximation ratio of a greedy solution for cm-b in the
case of undirected graphs does not have a constant lower bound. To this aim, let
us consider the following instance of cm-b.

• Graph G = (V, E).

• V = {v, t, a, b, c, a′, b′, c′} ∪ A ∪ B ∪ C, where A = {ai}
y
i=1, B = {bi}

x
i=1,

C = {ci}
y
i=1, and y = x − 2, for some x > 2;

• E = {{v, t}, {a, b}, {b, c}, {a, a′}, {b, b′}, {c, c′}, {a′, t}, {b′, t}, {c′, t}} ∪ {{ai, a} |
ai ∈ A} ∪ {{bi, b} | bi ∈ B} ∪ {{ci, c} | ci ∈ C};

• k = 2.

The initial value of bv is zero. The greedy algorithm first chooses edge {b, v} and
then edge {ai, v}, for some ai ∈ A (or equivalently {ci, v}, for some ci ∈ A). The
value of bv({b, v}, {ai, v}) is 2x + 3. In fact, the following pairs have shortest paths
passing through v in G({b, v}, {ai, v}): nodes in B∪ {b} and t (x + 1 shortest paths),
ai and t (1 shortest path), ai and nodes in B∪ {b} ( x+1

2 shortest paths), ai and nodes
in C∪{c} ( y+1

2 shortest paths), and ai and c′ (1 shortest path). An optimal solution,
instead, is made of edges {a, v} and {c, v} where bv({{a, v}, {c, v}}) = x2+3x−2

2 , where
the quadratic term comes from the fact that there are (y+1)2 paths passing through
v between nodes in A∪{a} and nodes in C∪{c}. Therefore, the approximation ratio
of the greedy algorithm tends to be arbitrarily small as x increases. We observe
that the bad approximation ratio of the greedy algorithm is due to the fact that it
does not consider the shortest paths that pass through v by using both edges. The
next proposition follows.

Proposition 9 ([12]). In undirected graphs, the greedy algorithm exhibits an un-
bounded approximation ratio.

3.3 Eccentricity
We now report the results on the cm-e problem, more details can be found in [13,
32]. Note that in this case a node is considered central if its eccentricity is small,
therefore the cm-e problem is a minimization problem, that is we want to find the
set of edges S that, when added to G, minimizes the value of ev(S ), for some given
node v. We first show that, unless P = NP, the problem cannot be approximated



within a certain constant lower bound, we then give an algorithm that guarantees a
constant approximation ratio and an algorithm that guarantees an arbitrarily small
approximation ratio if an higher number of edges is allowed.

To derive an approximation hardness result for the undirected case, we make
use of the Set Cover (in short, sc) problem, which is defined as follows: given a set
X, a collection F } of subsets of X, and an integer B, find a sub-collection F ′ ⊆ F
such that ∪S j∈F ′S j = X and |F ′| ≤ B. It is known that the set cover problem is
NP-hard [18].

Given an instance (X,F ) of sc, we compute a graph G = (V, E), where V =

{v, v′} ∪ {vxi | xi ∈ X} ∪ {vS j | S j ∈ F } and E = {{v, v′}} ∪ {{v′, vS j} | S j ∈ F } ∪

{{vxi , vS j} | xi ∈ S j}. Initially, the eccentricity of v is equal to 3. We prove that
there exists a feasible solution for an instance Isc = (X,F ) of sc if and only if
there exists a solution S for the instance Icm-e = (G, v, k), where k = B, of cm-e
such that ev(S ) = 2.

If Isc admits a feasible solution F ′, then let us consider the solution S =

{{v, vS j} | S j ∈ F
′} to Icm-e. Since |F ′| ≤ B, then |S | ≤ k. Moreover, ∪S j∈F ′S j = X

and then all the nodes vxi are at distance 2 to v. Therefore, ev(S ) = 2.
Let us now assume that Icm-e admits a solution S such that ev(S ) = 2, without

loss of generality, we can assume that S contains only edges {v, vS j} for some
S j ∈ F (see [13] for details). Let F ′ be the solution of sc such that S j ∈ F

′ if and
only if {v, vS j} ∈ S . Since ev(s) = 2 , the distance between v and all the nodes vxi

is at most 2 and then for each vxi there exists an edge {v, vS j} ∈ S such that xi ∈ S j.
This implies that ∪S j∈F ′S j = X. Moreover, since |S | ≤ k, then |F ′| ≤ B.

Let us assume that there exists an approximation algorithm A for cm-e that
guarantees an approximation factor α < 3

2 and let S be the solution obtained by
applying algorithm A to Icm-e derived from Isc. We have that ev(S ) < 3

2OPT . This
implies that, if (X,F ) admits a feasible solution, then ev(S ) < 3

2 · 2 = 3, that is
ev(S ) = 2; otherwise, if (X,F ) does not admit a feasible solution, then ev(S ) = 3.
Therefore, we can determine whether an instance of sc is feasible or not by means
of algorithm A. The next theorem follows.

Theorem 10 ([13]). The cm-e problem on undirected graphs cannot be approxi-
mated within a factor smaller than 3

2 , unless P = NP.

In what follows we describe the algorithm given in [32] to solve the cm-e
problem in undirected graphs. The algorithm is based on a former solution to the
problem of minimizing the diameter of a graph by adding a limited number of
edges [3].

The algorithm is reported in Algorithm 3 and works as follows: first node v
is inserted into a set U, then, a for loop of k iteration is run. At each iteration
i = 1, 2, . . . , k, a node ui that maximizes the minimum distance in G between ui



Algorithm 3: Approximation algorithm for cm-e.
Input : An undirected graph G = (V, E); a node v ∈ V; and an integer

k ∈ N
Output: Set of edges S ⊆ {{u, v} | u ∈ V \ Nv} such that |S | ≤ k

1 S := ∅;
2 U := {v};
3 for i = 1, 2, . . . , k do
4 ui := arg maxu∈V minu j∈U duu j;
5 U := U ∪ {ui};
6 S := S ∪ {{ui, v}};

7 return S ;

and a vertex in U is selected and inserted into U. The solution S returned is made
of edges that connect nodes ui in U \ {v} to v, S = {{ui, v} | ui ∈ U \ {v}}.

To analyze the algorithm, we need some further notation. Let IS (G) be the
size of a maximum independent set of graph G = (V, E), that is the size of a
maximum subset of nodes V ′ ⊆ V such that no two nodes in V ′ are joined by
an edge in E. Given a subset of nodes U ⊆ V , the radius of U is defined as
rU = minx∈V maxu∈U dxu. Given a graph G and an integer d ≥ 0, Gd = (V, Ed) is
the graph with the same nodes as G and an edge (x, y) if the distance in G between
x and y is at most d.

Let S ∗ be an optimal solution for the instance of cm-e and let OPT denote
ev(S ∗). The diameter of G(S ∗) is at most 2OPT and therefore IS ((G(S ∗))2OPT ) =

1. The next lemma implies that IS ((G(S ∗))2OPT ) ≥ IS (G2OPT ) − |S ∗|.

Lemma 11 ([3]). Let G be a graph and let d ≥ 0. For each e ∈ V × V \ E,
IS ((G({e}))d) ≥ IS (Gd) − 1.

It follows that IS (G2OPT ) ≤ k + 1. Let u0 = v. We partition the set of nodes
V into k + 1 clusters U0,U1, . . . ,Uk as follows: for each i = 0, 1, . . . , k, a node u
belongs to Ui if duui ≤ duu j , for each j = 0, 1, . . . , k, ties are arbitrarily broken in
order to form a partition. Sets U0,U1, . . . ,Uk are called the clusters induced by
Algorithm 3. The next lemma implies that, for each i = 0, 1, . . . , k, rUi ≤ 2OPT .

Lemma 12 ([3]). Let G be a graph, let d ≥ 0, and let U0,U1, . . . ,Uk be the
clusters induced by Algorithm 3 on G. If IS (Gd) ≤ k + 1, then for each i =

0, 1, . . . , k, rUi ≤ d.

Clearly |S | ≤ k and the distance between each node u ∈ V and v in G(S ) is
at most 2OPT + 1 to v, therefore, ev(S ) ≤ 2OPT + 1. The approximation factor
guaranteed by Algorithm 3 is then 2 + 1

OPT .



Theorem 13 ([32]). In undirected graphs, the cm-e problem is approximable
within a factor 2 + 1

OPT , where OPT is the value of an optimal solution.

The next theorem shows that if we allow a number of added edges that is
higher than k, then we can obtain a solution that is at most 1 + ε far from the
optimal solution of the case in which only k additional edges are allowed.

Theorem 14 ([13]). For any ε > 0, there exists a polynomial-time algorithm that
adds O(k log |V |) edges to reduce the eccentricity of v to at most 1 + ε times the
optimum eccentricity for the case in which k additional edges are allowed.

3.4 Page-rank
We first show that the cm-p problem does not admit a polynomial-time approxima-
tion scheme, and then we show that a variant of the greedy algorithm guarantees a
constant approximation ratio. More details on these results can be found in [1, 31].

The next theorem states that there exist no polynomial-time approximation
scheme for the cm-p problem, unless P = NP. The proof is quite technical and
hence it is omitted here, see [31] for details.

Theorem 15 ([31]). The cm-p problem does not admit an FPTAS, unless P = NP.

Let I denote the |V | × |V | identity matrix and let us consider matrix the matrix
Z = (I − αM)−1. Then, the entry zuv of Z is the expected number of visits to node
v for a random surfer walk starting at node u [1]. The value gv =

pv
zvv

is the overall
reachability of node v from all the other nodes, that is the probability that node v
is reached by a random surfer walk that starts at some node u, for all u ∈ V [31].
Let us consider a variant of the cm-p problem where the function to maximize is
gv and let us denote such problem as cm-g. The next theorem implies that problem
cm-g can be approximated by the greedy algorithm with an approximation factor
of 1 − 1

e .

Theorem 16 ([31]). In directed graphs, for each vertex v, function gv is monotone
and submodular with respect to any feasible solution for cm-g.

Let S be the solution of the greedy algorithm for problem cm-g and let OPT =
pOPT

v

zOPT
vv

denote the value of an optimal solution for cm-g. The previous theorem im-
plies that

pv(S )
zvv(S )

≥

(
1 −

1
e

)
pOPT

v

zOPT
vv

.

Finally, the next theorem follows by the observation that, for any solution S ′,
zvv(S ′) ≤

∑∞
i=0 α

2i = 1
1−α2 and zvv(S ′) ≥ 1 [31].

Theorem 17 ([31]). In directed graphs, the cm-p problem is approximable within
a factor

(
1 − α2

) (
1 − 1

e

)
.



Centrality Graph Inapproximability Approximation

index type Upper/Lower bound algorithms

Harmonic
Undir. 1 − 1

15e 1 − 1
e

Dir. 1 − 1
3e 1 − 1

e

Betweenness
Undir. 1 − 1

2e OPEN

Dir. 1 − 1
2e 1 − 1

e

Eccentricity
Undir. 3

2

2 + 1
OPT

1 + ε, with O(k log |V |) edges

Dir. OPEN OPEN

Page-rank
Undir. OPEN OPEN

Dir. NO FPTAS
(
1 − α2

) (
1 − 1

e

)
Table 1: Summary of results.

4 Summary of results and open problems
In this paper we summarized some recent results on the cm problem which consist
in finding a limited amount of edges to be added incident to a given node v in
a graph in such a way that the centrality of v is maximized. In particular, we
used harmonic centrality, betweenness centrality, eccentricity and page-rank as
centrality indices. The results outlined in this paper are reported in Table 1. It
is worth to note that for all the problems, except for cm-e, the approximation
algorithm used is basically the same greedy algorithm.

In the following we list some research directions that deserve further investi-
gation.

• First of all, it would be worth to close open cases pointed out in Table 1
and to close the gaps between approximation and inapproximability results.
Moreover, it would be interesting to study the cm problem with other cen-
trality indices. Note that not always the greedy algorithm given in this paper
exhibits a bounded approximation ratio, see the case of cm-b for undirected
graphs, and hence new algorithms could be required.

• A centrality index c induces a ranking of the nodes which is the placement
of a node v according to c and it is denoted as rc

v. It has been experimentally
observed that increasing the centrality of a given node v has the consequence
of increasing the ranking of v [9, 10, 12]. Therefore, maximizing the cen-



trality of v like in the cm problem decreases a lot rc
v. However, it could be

worth to directly study the problem of optimizing the position of v in the
ranking, that is find a set S of edges incident to v that minimizes rc

v(S ) or
maximizes the possible increment in the ranking of v, rc

v − rc
v(S ).

• The notion of centrality index of a node can be extended to a set of nodes
in the graph. The aim is to capture the centrality of a particular class of
individuals within a large community (e.g. a specific department inside a
large company). Informally, given a centrality index c and a subset of nodes
U ⊆ V , the group centrality index c on U is the centrality of a “virtual”
node u that collapses all the nodes in U. Relevant group centrality indices
are degree, closeness, betweenness, and flow betweenness [15]. It could be
interesting to extend the cm problem to group centrality indices, i.e. max-
imizing the group centrality of a given group of individuals in a network
by adding a limited amount of edges incident to one or more nodes in the
group.

• It is not difficult to figure out scenarios in which two or more nodes try to
increase their centrality by adding new edges. In such a scenario the best
strategy that each node should adopt might be different from the greedy one.
It would then be interesting to study this scenario from a game theoretic
perspective.

• In the field of complex networks, different models of information diffu-
sion have been introduced in the literature in order to model the dynamics
that regulate the diffusion of information in a network. Important examples
are the Linear Threshold Model [21, 23, 33] and the Independent Cascade
Model [19, 20, 23, 24]. In such models, we can distinguish between active,
or infected, nodes which spread the information and inactive ones. At the
beginning of the process a small percentage of nodes of the graph is set to
active in order to let the information diffusion process start. Recursively,
currently infected nodes can infect their neighbours with some probability.
After a certain number of such cycles, a large number of nodes might be-
come infected in the network. The influence maximization problem consists
in finding a set A of k nodes such that if we initiate the spreading of infor-
mation by activating the nodes in A, the number of nodes that is active at
the end of the process is maximum. Nodes in A are called seeds. A possi-
ble extension of the work in this paper is to determine a limited number of
edges to be added incident to the seeds in order to maximize the eventual
number of active nodes. Preliminary results for the case of the independent
cascade model have been presented in [11].



• Assuming that k = o(|E|), the time complexity of the greedy algorithm is
O(k|V | fc(|V |, |E|)), where fc(|V |, |E|) is the time complexity of computing c
for a node v in graph G = (V, E ∪ S ) for some solution S such that |S | ≤ k.
In many cases, fc(|V |, |E|) is at least linear in |E| and therefore, the time
complexity of the greedy algorithm is at least quadratic. When graphs are
huge, with billions of nodes and edges, the greedy algorithm requires to
much time. However, we do not actually need to recompute the centrality
of a node for each possible added edge and at each iteration but we can ex-
ploit the so-called dynamic algorithms for centrality measures that compute
cv(S ∪ {e}) starting from cv(S ) in a smaller computational time compared
to fv(|V |, |E ∪ S ∪ {e}|). This approach has been adopted for the case of
harmonic centrality [10].

• In many applications one wants to minimize the centrality of a given node
rather then maximize it. Examples are applications in which one wants to
reduce the traffic flow in nodes of a road or a communication networks or
reduce the spread of disease in epidemic and social networks. In general
this can be done by deleting edges from the graph. Therefore it would be
interesting to study the “dual” problem of cm in which we want to minimize
the centrality of a given node by deleting edges incident to that node.
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