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Abstract

This contribution is intended to be a self-contained and minimally tech-
nical exposition of the material in my 2015 dissertation, which was super-
vised by Markus Bläser. As its title suggests, the thesis investigates the
complexity of combinatorial counting problems in the frameworks of param-
eterized (and exponential-time) complexity. More precisely, the following
specific settings are explored:

• Counting perfect matchings in structurally “simple” graphs, for in-
stance, in graphs that exclude specific fixed minors

• Counting small subgraph patterns in large host graphs

• Exponential lower bounds on the running time needed to solve count-
ing problems, assuming popular conjectures such as the exponential-
time hypothesis

1 Introduction
Many problems in theoretical computer science ask about the existence of so-
lutions to a given instance of a problem. This includes, most prominently, the
problems in NP, such as the NP-complete Boolean satisfiability problem SAT.
However, in both practical and theoretical applications, it may be equally impor-
tant to find a solution, to list all solutions, or to count the solutions for a given
input–it is this last problem that we study in the dissertation. For instance, we can
extend SAT to a counting problem #SAT, which asks, given as input a Boolean for-
mula ϕ, to determine the number of assignments satisfying ϕ. This is obviously
more difficult than merely deciding satisfiability of ϕ, and by Toda’s theorem [41],
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an oracle for #SAT even gives us polynomial-time algorithms for problems we as-
sume to lie outside of NP, namely, the entire polynomial-time hierarchy.

However, counting problems also occur in scientific disciplines other than
computational complexity theory: For instance, in statistical physics, various
thermodynamic properties of systems can be expressed in terms of their parti-
tion functions, which are essentially weighted sums over the system’s state space
[32]. Since such spaces are typically of exponential size, brute-force summations
over all states are prohibited, so more efficient algorithms are required (and can
sometimes even be obtained [40, 31]). Furthermore, counting also occurs in prob-
abilistic inference [8], since asking for the number of satisfying assigments to a
formula ϕ is equivalent to asking for the probability that a random assignment
satisfies ϕ. In the areas of bioinformatics and network analysis, counting prob-
lems occur when one wants to prove that a specific pattern occurs with significant
frequency in a given network [27, 42].

The complexity of counting problems

For the vast majority of interesting counting problems, efficient algorithms are not
known, creating a need for a complexity theory of counting problems. This was
provided by Valiant in his classical paper [44], where he introduced the complex-
ity class #P that captures the counting versions of problems in NP. For instance,
#SAT is complete for #P under polynomial-time many-one reductions. More in-
terestingly however, Valiant identified natural #P-complete counting problems
whose corresponding decision version can be solved in polynomial time. For
instance, his paper contains a seminal proof that counting perfect matchings in a
bipartite graph is #P-complete (under polynomial-time Turing reductions), even
though the existence of a perfect matching in a given graph can be tested in poly-
nomial time [23].

Since this initial result, the complexity-theoretic study of counting problems
advanced to a classical sub-area of complexity theory, and the specific problem of
counting perfect matchings played an important role throughout this development.
We will abbreviate this problem by #PerfMatch in the following, and we also
consider a generalization to edge-weighted graphs: Here, the task is, given a graph
with edge-weights w : E(G)→ Q, to compute the value

#PerfMatch(G) =
∑

M

∏
e∈M

w(e), (1)

where M ranges over all perfect matchings of G [45]. This clearly generalizes the
problem #PerfMatch by setting all edge-weights to 1.

For instance, it was actually already shown before Valiant’s hardness result
that #PerfMatch (even with edge-weights) can be solved in polynomial time on



planar input graphs [40, 31, 32]. Building upon this, Valiant recently introduced
the notion of holographic algorithms [45], which allow us to reduce a variety of
other counting problems to this specific positive case. Furthermore, in combi-
natorics and algebraic complexity theory, the number of perfect matchings in a
bipartite graph with n + n vertices and bi-adjacency matrix A is known as the
permanent of A, which is defined as

perm(A) =
∑
π

n∏
i=1

A(i, π(i)),

where π ranges over all permutations of 1, . . . , n. The permanent is central to
algebraic complexity theory, where an algebraic variant of the “P vs. NP” question
asks to distinguish the complexity of the permanent from that of the deceivingly
similar looking determinant [1].

Classical strategies for coping with hardness

As it turned out that #PerfMatch and many other interesting counting problems are
#P-complete, relaxed versions were introduced to cope with their computational
hardness. Classical examples for such relaxations include:

• Restricted input classes: As mentioned, #PerfMatch is polynomial-time
solvable on planar graphs [40, 31, 32]. However, it remains #P-complete
on 3-regular graphs [20]. The related problem of counting all (not necessar-
ily perfect) matchings is #P-complete on planar 3-regular graphs [43].

• Approximate counting: On bipartite graphs, the problem #PerfMatch ad-
mits a fully polynomial randomized approximation scheme [30]. That is,
given an n-vertex bipartite graph and numbers ε, δ as input, we can output
a multiplicative (1± ε) approximation to #PerfMatch(G) with probability at
least 1 − δ in time polynomial in n, ε−1, δ−1.

• Counting modulo fixed numbers: The parity of #PerfMatch(G) is easily
computed if G is a bipartite graph with bi-adjacency matrix A. Namely,
since the permanent and the determinant of any matrix coincide modulo 2,
the parity of #PerfMatch(G) is that of det(A). This argument can be gen-
eralized to counting modulo 2t for fixed t ∈ N [44]. On the other hand,
#PerfMatch(G) modulo q is NP-hard to compute (under randomized reduc-
tions) when q is not a power of two [44].

In my dissertation, we study two of the most recent relaxations of counting
problems, namely, their parameterized complexity (introduced by Flum and Grohe



[25]) and their exponential-time complexity (introduced by Dell et al. [21]).1

1.1 Parameterized counting complexity
Parameterized counting complexity is dedicated to the study of parameterized
counting problems. These are pairs (#A, κ), where #A is a counting problem with
inputs {0, 1}∗, together with a parameterization κ : {0, 1}∗ → N such that, for
“typical” instances x, the parameter value κ(x) is much smaller than the input
length |x|. The concrete choice of a parameterization depends on the application,
but for graph problems, parameterizations can broadly be classified as follows:

• Structural parameters are intended to measure some notion of complexity
in the input graph, and a small parameter value means that the input enjoys a
simple structure that could be used algorithmically. Exemplary parameters
for a graph G include its maximum degree ∆(G), its crossing number cr(G),
or its genus γ(G).2

• For some counting problems, the input itself already contains a number
k ∈ N such that structures of size k are to be counted; in such cases, it
can make sense to parameterize by the solution size k. For instance, given
a graph G and k ∈ N, we can ask for the number of matchings in G with
exactly k edges, or the number of vertex covers with precisely k vertices.
When we parameterize these problems by k, this means intuitively that we
are interested in solutions that are much smaller than G. Such a perspective
makes sense, e.g., when small patterns are counted in huge databases.

If a suitable parameter κ was identified for a given #P-hard problem #A, we
now ask whether it can be used algorithmically. The answer to this question may
take one of the following forms [24]:

1. In the worst case, #A is already #P-complete for constant values of κ(x).
For instance, we mentioned earlier that #PerfMatch is #P-complete, even
for input graphs G of maximum degree ∆(G) ≤ 3.

2. The situation is more favorable if, for every k ∈ N, the problem #A can
be solved in polynomial time on inputs x with κ(x) ≤ k, or even better, if
we can find an algorithm for #A that runs in time O(|x| f (κ(x))), where f is

1 For decision problems, parameterized complexity was already introduced by Downey and
Fellows [22], and exponential-time complexity was introduced by Impagliazzo et al. [29, 28].

2Here, the crossing number of G is the minimum number of edge-crossings over all drawings
of G in the plane. The genus of G is the minimum genus of a surface on which G can be drawn
without crossings.



some computable function. In this case, we speak of an XP algorithm.
For example, such algorithms exist for counting matchings with k edges in
graphs with n vertices, since brute-force solves this problem in time nO(k).

3. In the ideal setting, we even obtain an algorithm for #A that admits a con-
stant c ∈ N such that for every fixed value of κ(x), the running time of the
algorithm is bounded by O(|x|c). Compared to the previous case, we can
hence even remove κ(x) from the exponent of |x|. This leads to the notion of
fixed-parameter tractability (FPT): A problem with parameterization κ is
FPT if it can be solved in time O( f (κ(x)) · |x|c), where c is a fixed constant
and f is any computable function. For instance, vertex-covers of size k can
be counted in time O(2k ·n) on n-vertex graphs [25], and #PerfMatch can be
solved3 in time O(4g · n3) on n-vertex graphs of genus g [26].

These definitions allow us to state some of the main goals of parameterized al-
gorithms and complexity theory: Given a parameterized problem (#A, κ), can we
find an FPT algorithm (or at least an XP algorithm)? If not, can we explain our
lack of progress as a consequence of widely-believed assumptions in complex-
ity theory? For instance, to rule out XP algorithms for parameterized counting
problems, it suffices to prove #P-hardness of the problem for a fixed parameter
value. This approach however fails to rule out FPT algorithms for problems that
already admit XP algorithms, since these are polynomial-time solvable for every
fixed parameter value.

To explain the absence of FPT algorithms, a complexity class #W[1] of pa-
rameterized counting problems (analogously to #P) was introduced, along with a
suitable hardness notion [25]. This class #W[1] can be defined as the set of all
parameterized problems that reduce, by means of parameterized reductions, to
counting k-cliques in a graph, parameterized by k. Here, a parameterized (Turing)
reduction from a parameterized problem (#A, κ) to another (#B, τ) is an algorithm
that solves #A on inputs x in time f (κ(x)) · |x|O(1) when given oracle access to #B.
However, all oracle queries y to #B must satisfy τ(y) ≤ g(κ(x)). In the above state-
ment, both f and g are arbitrary computable functions. We observe that the class
of FPT problems is closed under parameterized reductions.

Using parameterized reductions from counting k-cliques, Flum and Grohe
[25] showed that the problems of counting paths (or cycles) of length k are each
#W[1]-complete. Hence, under the reasonable and widely-believed assumption
that counting k-cliques admits no FPT algorithm, these problems do not admit
FPT algorithms. This is particularly interesting, since we can find a path (or cy-
cle) of length k in time 2O(k) · nO(1) [2].

3We assume here that an embedding into the surface is given along with the input.



1.2 Exponential-time complexity for counting problems

Once a parameterized problem was classified as FPT or #W[1]-hard, we know
whether to expect running times of type f (k) · nO(1) or n f (k). However, an even
more fine-grained analysis is often possible: Using the theory of exponential-time
complexity [29, 21], one can often pinpoint the optimal asymptotic growth of f
under reasonable complexity-theoretic assumptions.

In our applications, we use the exponential-time hypothesis ETH [29] and its
counting version #ETH [21], which postulate, roughly speaking, that SAT (and
#SAT) on formulas in 3-CNF with n variables cannot be solved in time 2o(n). Our
current understanding does not allow us to prove these hypotheses, as they clearly
imply the separation of P and NP (or #P). Nevertheless, a falsification of ETH
or #ETH would imply an unexpected breakthrough in the theory of satisfiability
algorithms. And, regardless of our belief in ETH or #ETH, it cannot be denied
that, for surprisingly many problems, these hypotheses imply lower bounds that
match the best known algorithms [34].

For instance, consider a counting problem #A with parameterization κ, and
assume there was a polynomial-time reduction from #SAT to #A that maps for-
mulas ϕ with n variables to instances x of #A with parameter κ(x) = O(n). Then
#ETH rules out algorithms with running time 2o(κ(x)) · |x|O(1) for the problem. This
allows us, e.g., to rule out algorithms with running time 2o(g) ·nO(1) for #PerfMatch
on graphs of genus g [18], thus complementing the previously mentioned upper
bound of O(4g ·n3). We can also use #ETH to derive lower bounds for #W[1]-hard
problems: For instance, it is known that #ETH rules out algorithms with running
time f (k) ·no(k) for the problem of counting k-cliques [9]. In particular, #ETH thus
implies that FPT and #W[1] do not coincide.

1.3 Organization of the dissertation

The remainder of this contribution follows the outline of my dissertation [14],
which is structured into one introductory part and three main parts, each of which
corresponds to an adjective in the title of the thesis.

In the introductory part of my dissertation, we first collect some basics from
complexity theory, graph theory, algebra and combinatorics. We also include an
introduction to the Holant framework, which will provide a clean language for
many of the subsequent arguments. Building upon this, the first main part ana-
lyzes the problem #PerfMatch under structural parameters. In the second main
part, we consider the problem of counting small subgraph patterns in large host
graphs. In the last part, we study conditional exponential lower bounds for count-
ing problems.



2 The Holant framework
One of the goals of the dissertation was to develop general tools for studying
the complexity of counting problems. To this end, we first extend the theory
of so-called Holant problems [45, 5, 7, 6]. These problems are defined on graphs
G = (V, E) whose vertices v ∈ V are labelled with signatures fv: If I(v) denotes the
set of edges incident with v, then fv is a function that maps assignments {0, 1}I(v)

to complex numbers. Given such a graph, the problem then lies in evaluting a
particular quantity Holant(G), which is a sum over all Boolean assignments x ∈
{0, 1}E to the edges of G. In this sum, each assignment x is weighted by the
product of evaluations fv(x|I(v)) over all v ∈ V . Here, x|I(v) denotes the restriction
of the assignment x to edges in I(v). Thus, we obtain

Holant(G) =
∑

x∈{0,1}E

∏
v∈V

fv(x|I(v)).

As an example, we can express #PerfMatch on unweighted graphs as a Holant
problem: Given a graph G, assign a signature fv : I(v) → {0, 1} to each vertex
v ∈ V that checks whether the assignment to I(v) has exactly one edge of value
1. In this case, fv is supposed to output 1, otherwise 0. We can easily see that the
non-zero terms in Holant(G) then correspond precisely to the perfect matchings in
G. Using more complex signatures, we can also express other problems as Holant
problems, including the problem #SAT.

In the thesis, we introduce two tools for Holant problems, which are used
throughout the main parts and also found applications in other projects [19, 18].
Firstly, we construct a uniform reduction from Holant problems with arbitrary
signatures to #PerfMatch. To this end, we replace the vertices of the graph G
in a Holant problem by gadgets that simulate their signatures. In particular, we
can show that such gadgets exist for all signatures, unless they are ruled out for
trivial reasons. The previous literature focused on the simulation of signatures by
planar gadgets [45, 4]; for many signatures however, such gadgets do not exist. In
joint work with Dániel [18], we later used this technique to show that #PerfMatch
cannot be solved in time 2o(k) · nO(1) on graphs of crossing number k or treewidth
k, unless #ETH fails.

Secondly, in joint work with Mingji Xia [19], we introduce linear combina-
tions of signatures as a technique for parameterized reductions between Holant
problems: If a graph G in a Holant problem contains a small number k of “diffi-
cult” signatures that can be expressed as linear combinations of c ∈ N “simple”
signatures, then we can express Holant(G) as a linear combination of ck values
Holant(G′), where each instance G′ contains only simple signatures. The resulting
running time of ck ·n is compatible with parameterized reductions. Apart from the
applications in the thesis, we used this technique to show that #PerfMatch modulo



2k is W[1]-hard to compute (under randomized reductions) [19], complementing
the known nO(k) time algorithm [44].

3 Counting perfect matchings in simple graphs

In the first main part of the dissertation, we study the problem of computing
#PerfMatch(G) on graphs G that exclude fixed minors H. This can be consid-
ered as a generalization of the polynomial-time solvable case of planar graphs
[40, 31, 32], since any planar graph excludes both K3,3 and K5 as minors.

Graph minors play a fundamental role in graph theory, where they led to the
celebrated Graph Minor Theorem [38]: Every graph class C that is closed under
taking minors can be expressed by a finite set F(C) of forbidden minors. That is,
any given graph G is contained in C if and only if G contains none of the graphs
in F(C) as a minor. This holds exemplarily for the class C of planar graphs, where
F(C) takes the form of {K3,3,K5}.

Graph minors are quite relevant to the problem of counting perfect matchings,
since almost all known polynomial-time algorithms for #PerfMatch on restricted
graph classes in fact apply to classes that exclude at least one fixed minor. This
holds for the class of planar graphs, and for subsequent algorithms on K3,3-free
graphs [33], graphs of bounded genus [26], K5-free graphs [39], and graphs of
bounded treewidth [46].4 In an attempt to connect these individual dots, we asked
ourselves how #PerfMatch behaves on graph classes excluding an arbitrary fixed
minor H, when parameterized by the size of H.

To answer this question, we use the Graph Structure Theorem [37], which
describes the structure of graphs excluding fixed minors H. It asserts that, for any
fixed graph H, there is a constant k = k(H) such that the H-free graphs can be
obtained as clique-sums from graphs that are k-almost-embeddable in a surface of
genus k. Here, a clique-sum of graphs A and B is executed by choosing equal-sized
cliques in A and B, then taking the disjoint union of A and B while identifying the
chosen cliques, and finally deleting an arbitrary set of edges from the resulting
clique in the union. Furthermore, a graph F is k-almost-embeddable in a surface
S if we can delete k so-called apex vertices from F such that the resulting graph
can be embedded in S without crossings, with the exception of k vortices, namely,
k faces into which certain “thin” non-planar graphs may be embedded.

4An exceptional tractable class is, e.g., the class K of complete graphs. This class clearly
excludes no fixed minor, but the number of perfect matchings in complete graphs can be computed
by a closed formula. This fact is actually subsumed by a more general result that #PerfMatch can
be computed in polynomial time on graph classes of bounded clique-width [35]. We consider this
result as an exception, since it does not apply to the edge-weighted case of #PerfMatch, whereas
the other algorithms in our list do.



As mentioned before, #PerfMatch is FPT on graphs that can be embedded on a
surface of genus k [26]. To understand the case of #PerfMatch on general H-minor
free grpahs, we hence need to understand the influence of apex vertices, vortices
and clique-sums on the complexity of this problem. In joint work with Mingji Xia,
we show that #PerfMatch already becomes #W[1]-hard on planar graphs with k
apex vertices. This is the first application of the technique of linear combinations
of signatures mentioned in Section 2.

Theorem 1 ([19]). The following problem is #W[1]-hard: Given a graph G and
a vertex set A ⊆ V(G) such that G − A is planar, determine #PerfMatch(G), pa-
rameterized by |A|. Furthermore, this problem admits no no(k/ log k) time algorithm
unless #ETH fails.

Theorem 1 implies that #PerfMatch is #W[1]-hard on graphs excluding a fixed
minor H, when parameterized by the size of H, since planar graphs with a fixed
number of apex vertices exclude fixed minors. By a further non-trivial reduction,
we can strengthen Theorem 1 to obtain the #W[1]-hardness of the related problem
of counting matchings with exactly k unmatched vertices in planar graphs [15].

Despite these negative results, we can obtain FPT algorithms for restricted
classes of excluded minors. In particular, we identify one such class in the thesis,
namely, the class of minors that can be drawn in the plane with at most one cross-
ing. This class includes the graphs K3,3 and K5, and hence, this result generalizes
some of the algorithms mentioned in the beginning of this section.

Theorem 2 ([12]). If H is a graph that can be drawn in the plane with at most
one crossing, then the problem #PerfMatch can be solved in time O( f (H) · n4) on
graphs that exclude H as a minor. Here, f is a computable function.

The dissertation does not answer the question whether #PerfMatch can actu-
ally be solved in time n f (H) on graphs excluding arbitrary fixed minors H. Recent
unpublished work by the author however suggests a negative answer.

4 Counting small subgraphs
In the second main part of the thesis, we count small subgraph patterns H on
k vertices, such as paths or cycles of size k, in general host graphs G with n
vertices. That is, given graphs H and G, we wish to count all subgraphs of G that
are isomorphic to H, parameterized by k. This has vast applications in network
analysis, see [36].

A simple brute-force approach guarantees a running time of nO(k) for this prob-
lem, which may however already be prohibitive for small values of k. Further-
more, as mentioned in Section 1.2, we do not expect no(k) time algorithms for



k-vertex subgraphs such as cliques under #ETH. We are hence interested in iden-
tifying additional properties on H that can be exploited to render the subgraph
counting problem FPT. To this end, we introduce the following problem #Sub(H)
for fixed recursively enumerable graph classes H : Given graphs G and H ∈ H ,
count subgraphs of G that are isomorphic to H, parameterized by |V(H)|. Our goal
is to determine, for each classH , whether #Sub(H) is FPT or #W[1]-hard.

For instance, if H is the class of cycles or the class of paths, then the #W[1]-
completeness of #Sub(H) was already proven by Flum and Grohe [25], despite
the decision versions of these problems being FPT. The same authors also con-
jectured that #Sub(M) is #W[1]-complete for the class M of matchings. This
corresponds to counting matchings with k edges in graphs, and can thus be con-
sidered as a parameterized version of #PerfMatch.

In joint work with Markus Bläser [3], we first showed that a weighted version
of this problem is #W[1]-hard. The weights in this version are defined analogously
as in #PerfMatch. Building upon this, the #W[1]-completeness of the unweighted
version was shown later [11]. This first proof was however mostly superseded by
a simplified proof that resulted from joint work with Dániel Marx [17], and which
exploits linear combinations of signatures. We additionally obtain an almost-tight
lower bound for this problem under #ETH:

Theorem 3 ([17]). The problem #Sub(M) ist #W[1]-complete: Given a graph
G and k ∈ N, it is thus #W[1]-complete to count matchings with k edges in G.
Furthermore, an no(k/ log k) time algorithm for this problem would refute #ETH.

This constitutes a useful reduction source to prove #W[1]-hardness of other
counting problems. In particular, it allows us to classify the problems #Sub(H),
since #Sub(M) represents the minimal hard case in this setting: It is known that
#Sub(H) can even be solved in time nO(1) if the graphs inH only contain match-
ings of constant size [47]. This applies, e.g., to the class S of stars, or generally to
classes with constant-sized vertex covers. On the other hand, ifH is a graph class
whose graphs contain arbitrarily large matchings, then we show in joint work with
Dániel Marx that #Sub(M) can be reduced to #Sub(H). This yields:

Theorem 4 ([17]). LetH be a recursively enumerable class of graphs. If there is
a constant c ∈ N such that no graph inH contains a matching with c edges, then
#Sub(H) can be solved in time O(nd), where d depends on c. On the other hand,
ifH contains arbitrarily large matchings, then #Sub(H) is #W[1]-complete.

It should be mentioned that this theorem actually shows for each class H
whether #Sub(H) is polynomial-time solvable or #W[1]-complete. Assuming
that FPT and #W[1] do not coincide, we thus obtain an exact classification of the



problems #Sub(H) that can be solved in polynomial time. Indeed, such a classi-
fication would not be possible by merely assuming that P and #P do not coincide,
since there exist #P-intermediate cases for #Sub(H) [10].

5 Conditional lower bounds for counting problems
In the last part of the thesis, we investigate whether classical counting problems
can be solved in sub-exponential time, i.e., in time 2o(n) on graphs with n vertices.
Throughout this part, we assume the exponential-time hypothesis #ETH from Sec-
tion 1.2. Furthermore, in this setting as well, the problem #PerfMatch does not
fail to be a useful reduction source for other hardness results, so we focus on lower
bounds for this particular problem.

Building upon the work from [21], proving tight lower bounds for #PerfMatch
essentially boils down to finding a “resourceful” way of simulating the edge-
weight −1 in the weighted version of #PerfMatch. That is, we define a problem
#PerfMatch−1,0,1 of counting weighted perfect matchings as in (1), but only on
graphs with edge-weights −1 and 1. To avoid confusion, we will henceforth de-
note #PerfMatch on unweighted graphs by #PerfMatch0,1. It was shown [21] that
an algorithm with running time 2o(n) for #PerfMatch−1,0,1 on graphs with n vertices
and O(n) edges would refute #ETH.

To proceed, it is essential to remove the edge-weight −1 from #PerfMatch−1,0,1,
as it would otherwise be very unclear how to handle this negative weight in reduc-
tions to other target problems. A classical solution for such weight removal is
based on polynomial interpolation [43]: Given an n-vertex graph G with edge-
weights −1 and 1, we can define a graph Gx by replacing each occurrence of −1
with the indeterminate x. The quantity p := #PerfMatch(Gx) is then a polyno-
mial of degree at most n

2 in x, and we have p(−1) = #PerfMatch(G) by definition.
Hence, if we know the values p(1), . . . , p( n

2 + 1), we can use polynomial interpo-
lation to obtain the coefficients of p and thus evaluate p(−1).

For positive integer values of t however, the evaluation of p(t) can be reduced
to #PerfMatch0,1: An edge uv ∈ E(G) of weight t ∈ N in a graph G is easily sim-
ulated by placing t parallel edges of weight 1 between u and v, then subdividing
each of these edges twice. A graph with n vertices, m edges, and edge-weights
from {1, . . . , b} is thus transformed to an unweighted graph on O(n + bm) ver-
tices and edges. Using this with the interpolation argument above, we obtain a
polynomial-time Turing reduction from #PerfMatch−1,0,1 to #PerfMatch0,1 which
transforms n-vertex graphs G with edge-weights ±1 to unweighted simple graphs
with O(n2) vertices. This quadratic blowup however prevents us from proving a
tight lower bound under #ETH: To obtain an algorithm with running time 2o(n) for
#PerfMatch−1,0,1, and thus refute #ETH, we would need to solve #PerfMatch0,1 in



time 2o(
√

n). One could try to find more resourceful ways of simulating positive
weights t ∈ N, and indeed gadgets on O(log t) vertices exist [21], thus ruling out
2o(n/ log n) time algorithms for #PerfMatch0,1. This is however still not tight, and we
can see that any gadgets simulating edges of weight t ∈ N must have size ω(1),
thus apparently rendering interpolation futile for proving tight lower bounds.

In the dissertation, we solve this problem in two ways: Firstly, we introduce
“block interpolation”, a general approach to make polynomial interpolation com-
patible with tight lower bounds under #ETH. This technique relies on the insight
that interpolation arguments as above, which are built around polynomials in a
single indeterminate x, can often be carried out on polynomials in indeterminates
x1, . . . , xt, each of which occurs with some maximum degree d. Such polynomials
can be interpolated from their evaluations on a grid {1, . . . , d + 1}t, which requires
only d + 1 distinct values to be substituted into each individual indeterminate.
By trading off t with d, we obtain reductions that run in sub-exponential time,
but only create linear-sized reduction images. This general approach allows us to
prove lower bounds for the following problems:

Theorem 5 ([13]). Unless #ETH fails, the problems of counting matchings, per-
fect matchings, independent sets, and vertex covers cannot be solved in time 2o(n)

on n-vertex graphs.

Our second solution for weight removal applies only to the specific problem
#PerfMatch, but has other benefits: For any graph G with edge-weights ±1, we
show how to construct unweighted graphs G1 and G2 such that #PerfMatch(G) is
the difference of #PerfMatch(G1) and #PerfMatch(G2).

Theorem 6 ([16]). If G is a graph with n vertices, m edges, and edge-weights −1
and 1, then we can construct unweighted graphs G1 and G2 on O(n + m) vertices
and edges such that #PerfMatch(G) = #PerfMatch(G1) − #PerfMatch(G2).

This immediately transfers the known lower bound for #PerfMatch−1,0,1 to one
for #PerfMatch0,1. However, it also gives us insights into the structural complexity
of counting perfect matchings, as it allows us to prove that the following “equality
testing” version #PerfMatch= of #PerfMatch is complete for the class C=P: Given
two unweighted graphs, this problem asks to decide whether they have the same
number of perfect matchings. Here, C=P can be defined as the class of problems
that are polynomial-time many-one reducible to deciding whether two Boolean
formulas ϕ1, ϕ2 have the same number of satisfying assignments. Furthermore,
bridging quantitative lower bounds and structural complexity, our proof shows
that ETH rules out a 2o(n) time algorithm for #PerfMatch=.
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