
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
 juraj.hromkovic@inf.ethz.ch


Demystifying coding for schools— what are
we actually trying to teach?

Tim Bell
University of Canterbury, NZ
tim.bell@canterbury.ac.nz

Abstract

As computer science enters school curricula around the world, many
teachers are having to teach the topic of computer programming for the first
time. For those who have little experience in the area it can be daunting,
while those who are experienced programmers may be so familiar with the
subject that it is hard to see what is difficult about it! This article explores
the reality of what we need to be teaching in schools, and considers what the
essence of the topic is.

1 Introduction
The idea of teaching computer science at all levels of the school system is gradu-
ally being adopted around the world (see for example [10, 16]), with the subject
being introduced in the first year of school [6, 9].

Such changes are not usually driven by simply wanting to teach young children
to be programmers, but to address broader issues such as helping students to be
informed citizens in a digital world [8], and to reflect this, the subject usually has a
broader name such as “computational thinking” or “computing”. However, “cod-
ing” is becoming an important component in new curricula, and is a catchword for
those promoting the discipline [3]. For those new to programming (especially es-
tablished school teachers who have never programmed themselves), the prospect
of teaching “coding” can be daunting. For those who are experienced program-
mers, it can be tempting to impose their own experience (perhaps as a self-taught
programmer in their youth, or working at a professional level) onto the curricula
being developed for use in schools.

When teaching a subject the focus can easily end up on details (such as print
statement formats and while loop conditions), and these are indeed needed to
prescribe a plan for teaching, but we need to stay aware of the big picture — what

tim.bell@canterbury.ac.nz


are the key concepts that students should take away from having learned about
programming? What do we want them to remember a year later, or five years
later? These are things that may be obvious to those who are heavily involved in
computer science as a profession, but can be a great mystery to those from outside
our culture who are having to prepare to teach this new topic.

This article reflects on what we really want students to take away from pro-
gramming courses, and especially on what teachers will need to be aware of to
achieve this. Some of the ideas discussed are misconceptions that we have com-
monly encountered while helping teachers to deliver the new subject, and others
are ideas that may be so obvious to experienced computer scientists that we forget
to articulate them to people who are new to our culture.

2 Teaching Programming
This section considers a number of issues that come up when teaching program-
ming in schools, and looks at how they relate to the bigger picture of how pro-
gramming is used in practice.

Learning to program isn’t the same as learning to teach programming. Un-
derstanding the subject is clearly important, but to teach effectively there are
many ideas that can be brought to bear on teaching programming, which even the
most experienced programmer won’t necessarily know about. Some ideas about
teaching programming are well established, and others are the subject of great
debate [14] — one particularly hotly debated issue is whether we teach objects
first or later [1]. There are also various ideas about what is the best program-
ming language for learners [17]. There is evidence that students can learn better
working in pairs [18], and that it can be useful to use Parson’s problems [13] while
teaching programming. Ideas around teaching programming to young students are
still being developed, as it is relatively recent that this has been done at scale in
typical classrooms with typical teachers, rather than specialist clubs and outreach
programs.

There are many books on how to program, but relatively few books on how
to teach programming (although a few are now appearing e.g. [2, 11]). Because
programming at all levels in schools is a new phenomenon for most countries, we
are still at the early stages of research, and much of the knowledge about this is
coming through conferences and journals that aren’t where teachers would look
for guidance.

Programs are used everywhere. A variety of terms, such as “app”, “applica-
tion”, “code”, “solution”, “software” and “firmware”, are used to refer to pro-



grams in various contexts, and a lay person may not realise that these things are
all programs. Even simple-looking devices like a burglar alarm, WIFI router, or
ticket vending machine may not be recognised as being based on a program, let
alone devices like a smartphone or smart watch, which typically run many dozens
of programs. This can be overcome to some extent when teaching the basics of
programming by mentioning examples from everyday life when simple constructs
are taught; for example, “count = count +1” might be used in a fitness tracking
device to add one to the number of steps taken, or “if margin < 0” might be used
in a word processor to determine if a value is out of range. This will help students
to appreciate that what appears to be a meaningless exercise, possibly in an envi-
ronment that doesn’t look like anything used commercially, is actually the basis of
many different forms of “program” that people develop for everyday use. And to
make things even more interesting, a programming language itself is implemented
by a program!

Meaningful experiences can help to understand jargon. A key outcome of
learning programming and other computer science concepts early is that students
become familiar with technical terms in a meaningful context. The new topics
being introduced to schools come with a lot of jargon — words like “algorithm”,
“binary” and “coding” can make teachers genuinely fearful, and it’s important
to overcome this. Students may see these words as a lot of unnecessary jargon
to memorise, and may be put off by their teacher’s confusion with the terminol-
ogy. We have found that it’s effective to engage teachers new to the subject by
first using the idea (such as showing an algorithm to calculate the checksum in
a product barcode), and then labelling it (in this case distinguishing the “algo-
rithm” from a program that implements the algorithm, and of course introducing
the term “checksum”) so that the mysterious terminology appears after the con-
cept has been brought down to size.

For students, rather than memorising definitions of jargon like “debug”, “al-
gorithm”, and so on, teachers can use the terms to label the experiences and tools
that students are engaging with. If a student has regularly implemented even the
simplest programs, they will have had to track down errors in it (debug), and
by implementing even simple algorithms (like drawing a regular polygon in a
turtle-based language, which can be acted out away from the computer and then
implemented on a digital device) they can start to distinguish between concepts
like an algorithm and a program. If the teacher uses this terminology regularly
and appropriately when referring to something the student is doing, it will acquire
an authentic meaning for them. Once when using this approach a young student
asked “Why do you use such big words for such simple ideas?” Every discipline
has its jargon, and allowing teachers and students to engage with the ideas first



and then labelling them can help to have them seen as approachable concepts.

Programming is more about communicating with humans than with ma-
chines. Writing a computer program could be described as giving instructions to
a computer, but much of the discipline of programming is around communication
with humans via the computer, rather than the computer being the final recipient
of what is written. The programmer is communicating to two sets of people: the
users, and future programmers.

Almost every program involves human interaction, and the user experience is
notoriously poor in many digital systems. Introductory programming is an excel-
lent place to sensitise students to the importance of thinking about the user. Many
beginners overlook giving any instructions to the user (e.g. which keys to press
for a game, or what range of values is expected for an input), and the output can
be jarring or confusing (e.g. a rather blunt “You are wrong” in response to a quiz
answer, or an uninformative “Out of range, try again” for an input value).

The other important audience for a program is the next programmer who needs
to work on it. Trying to read someone else’s program helps a student to appreciate
comments that explain what is happening at just the right level of detail, variable
names that are unambiguous, and layout that follows conventions, so they can
focus on the content and not the form. The future programmer may even be the
original programmer, trying to make sense of what they wrote a year ago — or
perhaps even a day ago!

In both cases it can be useful for a student to swap their program with a neigh-
bour and see if they can figure out how to use it, or look at the code and work
out how it works. Blackwell [4] points out that “many skills of a professional
programmer are related to social context rather than the technical one”, and even
simple introductory programming environments can help students develop skills
for this social context.

Programming integrates well with other subjects. Rather than teaching pro-
gramming in isolation, it can be integrated with other areas of the curriculum [12],
and this is particularly natural at primary school where the same teacher may be
teaching the different subjects. For example, at a junior level students might learn
about odd and even numbers, and writing a program to print the odd numbers
forces them to articulate the meaning. At a more senior level, students might
learn a definition of prime numbers, and again articulate it as a program that
demonstrates their understanding. Turtle-graphics languages such as Scratch or
Logo also naturally use mathematical concepts like positive and negative num-
bers, coordinates, angles, and other concepts from geometry.

Many other subjects can also be integrated: literacy becomes important if the



program is telling a story or providing an understandable textual interface, music
can be represented through programming, and physical fitness can be involved in
acting out coordinate based instructions. These examples just scrape the surface
of many examples of integrated learning that we have observed.

Programming is a skill that demands practice. This is related to the pedagogy
of programming: some students (and teachers) have a model of learning a subject
that there are some facts to learn, and once you know them you are competent
in the subject. This view relates to working at a low level of Bloom’s taxonomy,
but programming is a very creative activity, where the programmer is generally
operating at a high level of the taxonomy. This misconception can be reflected
in wanting to learn programming by reading a book, or perhaps attending a short
course, and hoping that from then on one is able to program.

A better model is to think of programming more like fitness training or learn-
ing a foreign language; regular exercises are far more important that trying to
learn it in a hurry and hoping to know it some time later. Robins [15] introduces
a “Learning Edge Momentum” model, which highlights that in programming it
is particularly important to understand the basic concepts, as later concepts will
make no sense if one basic concept is missing (for example, objects won’t make
sense if the concept of type isn’t understood, or for loops will be confusing if the
role of a variable isn’t clear).

To support teachers new to programming, we encourage them to do small
regular exercises to keep up their “fitness level”; this also applies to students, as it
is much better to do a little regularly with programming, rather than, say, a short
segment of a course where they write one large program. Of course, working on
such rudiments needs to be balanced with more motivational large projects, but
large projects alone can be frustrating if students don’t have the skills to draw on.

Technology changes quickly, but the basics don’t. A concern that teachers
often raise is that the computing is changing so fast that they are worried that
even if they learn to teach the subject, their knowledge will go out of date quickly.
While it’s true that technology keeps changing, the basic ideas around computer
science and programming don’t change so rapidly. Since teaching is more about
laying foundations, focussing on the basics is appropriate.

For example, a new introductory language might become popular, but chances
are it has very similar ingredients to ones that already exists. In principle, any
language that is Turing-complete is sufficient to fully control any conventional
computing device, and so from an educational point of view we don’t need to be
concerned that learning to program in one language will be of no use for learn-
ing to program a new one in the future. In fact, the key is that we are teaching



programming, not a particular language. A cue for students is to call the subject
programming, not Python, or Java, or Scratch.

The Böhm-Jacopini theorem [5] underpins the idea that teaching programming
should cover three basic constructs: sequence, selection and iteration. In princi-
ple, these are the only control structures needed to program any computing device.
In addition to these control structures, a language needs input, output and storage
(variables) to give sufficient scope to program anything that is computable. An
important consequence of this observation is that “toy” languages like Scratch are
actually just as capable as the most advanced languages, or at least, they capture
the key logic needed to make things happen on a computational device, and the
differences between languages highlight features that make programming more
convenient for particular applications, rather than some fundamental new capabil-
ity. Also, not all introductory programming systems are Turing-complete — for
example, the popular “Beebot” and “ScratchJr” teaching tools focus on sequence,
but this can be seem as an important stepping stone that is aimed at an appropriate
cognitive level for young students.

Blackwell [4] reflected on what programming is from a cognitive point of
view. As well as highlighting the boundaries of programming (for example, writ-
ing HTML or setting a microwave oven isn’t programming because the system
isn’t Turing-complete), Blackwell notes that programming involves more than
just writing code; the programmer must identify requirements, derive a specifi-
cation, design how it will work, code the commands, and debug it to be sure that
it will function as intended. He highlights that programming reflects a loss of di-
rect manipulation: the programmer must anticipate what will happen in advance
(e.g. all combinations of user input), and account for these before the program is
run. These skills can be exercised in the simplest of programming systems, and
in this light, “coding” is a relatively small part of the whole process of writing a
successful program.

Along with this is the need for persistence; writing a program is easy, but
debugging it is the real challenge, and persistent work is required to make sure
the program works properly, rather than making do with something that is almost
correct [7].

Teaching core concepts well is better than covering every possible technique.
When designing computing courses, we need to be careful to focus on quality
rather than quantity. There are endless programming languages, environments
(mobile, web, desktop, server) and toolkits that could be taught, but the goal
should be to provide students with a good grounding, and inspire them to learn
more, rather than overwhelm them with so many topics that it has the effect of
putting them off the subject. The same applies to teachers: if a teacher is pres-



sured to deliver a curriculum that beyond what they have had the professional
development for, the students may end up getting a poor experience of learning to
program, and may go away with the impression that programming is difficult and
confusing.

Computer science is much more than programming. While this article has
focussed on programming, it’s important that computing courses take a much
broader view of the discipline. Programming enables us to make things happen,
but there is a lot to know before we can write effective and efficient programs,
which is informed by the field of computer science. There are intriguing ideas in
algorithm design — some algorithms are staggeringly more efficient than others
for solving the same problem, while other problems have no known programmable
solution that will work in a reasonable amount of time. Programs operate on data,
and how that data is represented has an effect on how effectively it can be pro-
cessed. Computers need to communicate with each other, and the programs that
do this need to follow appropriate protocols to make sure that works well. When
computers communicate with humans, the way the operate needs to be informed
by a basic understanding of how humans think and perceive. And beyond the ba-
sics there are so many more questions: can we imitate human intelligence? Can
we simulate processes from the physical world? Or can we create new virtual
worlds? Are there things we could implement, but shouldn’t?

These are all questions that the discipline of computer science is concerned
with, and students can engage with these ideas even before they write programs
e.g. using non-computer based activities such as “CS Unplugged” (csunplugged.
org). In fact, it is valuable that they have such experiences because for some stu-
dents this will provide the motivation to learn to program; while some may enjoy
programming for its own sake, others will be more motivated if they can see how
it can be applied, and that there are tools and concepts beyond programming that
are exciting and relevant to our human world.

The epigram that “computer science is no more about computers than astron-
omy is about telescopes” captures this idea when applied to programming; it’s
a tool that is normally used to make things happen in a digital world, but it is a
means, not the end in itself. Computer science courses often start (and sometimes
end!) with programming, and this can give an inaccurate message to students of
what the discipline is about. By keeping students aware of the bigger picture, we
are more likely to capture their interest and give them a balanced view of what
matters.

csunplugged.org
csunplugged.org


3 Conclusion
We are at an exciting point in education, where many countries are adding a whole
new subject to their curriculum that hasn’t been taught before. Empowering teach-
ers to deliver this with enthusiasm is important, and the ideas shared above are
intended to help us think about approaching this change in a way that neither un-
derplays how significant the change is, but also doesn’t make it so overwhelming
that the value of the change is lost because schools are unable to deliver it effec-
tively.

References
[1] Owen Astrachan, Kim Bruce, Elliot Koffman, Michael Kölling, and Stuart Reges.

Resolved: objects early has failed. ACM SIGCSE Bulletin, 37(1):451–452, 2005.

[2] Phil Bagge. How to Teach Primary Programming Using Scratch. The University of
Buckingham Press, 2015.

[3] Tim Bell. Surprising Computer Science. In Andrej Brodnik and Jan Vahrenhold, ed-
itors, 8th International Conference on Informatics in Schools: Situation, Evolution,
and Perspective, pages 1–11. Springer, 2015.

[4] A Blackwell. What is programming. In 14th workshop of the Psychology of Pro-
gramming Interest Group, pages 204–218, 2002.

[5] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and lan-
guages with only two formation rules. Communications of the ACM, 9(5):366–371,
may 1966.

[6] Neil C C Brown, Sue Sentance, Tom Crick, and Simon Humphreys. Restart: The
Resurgence of Computer Science in UK Schools. Trans. Comput. Educ., 14(2):9:1–
9:22, jun 2014.

[7] Quintin Cutts, Emily Cutts, Stephen Draper, Patrick O’Donnell, and Peter Saf-
frey. Manipulating mindset to positively influence introductory programming perfor-
mance. In Proceedings of the 41st ACM technical symposium on Computer science
education, pages 431–435. ACM, 2010.

[8] Caitlin Duncan, Tim Bell, and Steve Tanimoto. Should your 8-year-old learn cod-
ing? In Proceedings of the 9th Workshop in Primary and Secondary Computing
Education - WiPSCE ’14, pages 60–69, New York, New York, USA, nov 2014.
ACM Press.

[9] Katrina Falkner, Rebecca Vivian, and Nickolas Falkner. The Australian Digital
Technologies Curriculum: Challenge and Opportunity. Proceedings of the Sixteenth
Australasian Computing Education Conference (ACE2014), pages 3–12, 2014.



[10] Walter Gander, Antoine Petit, Gérard Berry, Barbara Demo, Jan Vahrenhold, An-
drew McGettrick, Roger Boyle, Avi Mendelson, Chris Stephenson, Carlo Ghezzi,
and Others. Informatics education: Europe cannot afford to miss the boat. http:
//europe.acm.org/iereport/ie.html, 2013.

[11] Mark Guzdial. Learner-Centered Design of Computing Education: Research on
Computing for Everyone. Synthesis Lectures on Human-Centered Informatics,
8(6):1–165, nov 2015.

[12] Irene Lee, Fred Martin, and Katie Apone. Integrating Computational Thinking
Across the K–8 Curriculum. ACM Inroads, 5(4):64–71, dec 2014.

[13] Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun and effective
learning tool for first programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52, pages 157–163. Australian Com-
puter Society, Inc., 2006.

[14] Jody Paul. “What First?” Addressing the Critical Initial Weeks of CS-1. In Pro-
ceedings. Frontiers in Education. 36th Annual Conference, pages 1–5. IEEE, 2006.

[15] Anthony Robins. Learning edge momentum: A new account of outcomes in CS1.
Computer Science Education, 20:37–71, 2010.

[16] Josh Tenenberg and Robert McCartney. Editorial: Computing Education in (K-12)
Schools from a Cross-National Perspective. Trans. Comput. Educ., 14(2):6:1–6:3,
jun 2014.

[17] David Weintrop and Uri Wilensky. To block or not to block, that is the question:
students’ perceptions of blocks-based programming. In Proceedings of the 14th In-
ternational Conference on Interaction Design and Children, pages 199–208. ACM,
2015.

[18] Linda Werner and Jill Denning. Pair programming in middle school: What does it
look like? Journal of Research on Technology in Education, 42(1):29–49, 2009.

http://europe.acm.org/iereport/ie.html
http://europe.acm.org/iereport/ie.html

	BEATCS_119___Education_Column__NEW_
	Why Everyone Should Learn to Program
	Computer Language as a Medium
	Reason 1: Programming to Earn
	Reason 2: Programming to Think
	Reason 3: Programming to Learn
	Mendelsohn et al.'s Interpretation
	Miller's Interpretation
	Resnick's Interpretation
	Wenger's Interpretation
	Guzdial's Interpretation

	Programming to Learn What?
	Do Not Neglect Learning to Program
	Conclusions

	Demystifying-coding
	Introduction
	Teaching Programming
	Conclusion


