
Abstract of an Award-winning PhD Thesis

Luca Aceto
ICE-TCS, School of Computer Science

Reykjavik University

Every year, the Italian Chapter of the EATCS gives an award for the Best
Italian PhD Thesis in Theoretical Computer Science. The award is presented at
the annual Italian Conference on Theoretical Computer Science (ICTCS), where
the award recipient delivers a presentation on her/his work.

This year’s award went to Ilario Bonacina for his thesis Space in weak propo-
sitional proof systems, which was supervised by Nicola Galesi at the University
of Rome “La Sapienza”. Ilario’s thesis contributes to a classic and deep topic in
theoretical computer science, and settles natural questions on the space complex-
ity of proofs using Resolution and the Polynomial Calculus that had been open for
about 15 years.

Ilario kindly agreed to contribute a summary of the work presented in his thesis
to this issue of the Bulletin of the EATCS. I trust that his survey will be of interest
to readers of the Bulletin, regardless of their main research interests. Enjoy it!



Abstract of PhD Thesis
Author: Ilario Bonacina
Title: Space in weak propositional proof systems

Language: English
Supervisor: Nicola Galesi
Institute: Sapienza University of Rome, Italy

Date: 14 December 2015

Abstract
This thesis was defended on December 14, 2015 at the Sapienza University of
Rome for a Ph.D. title in Computer Science under the supervision of Prof. Nicola
Galesi. It was awarded “Best Italian PhD Thesis in Theoretical Computer Sci-
ence, 2016”. The results presented in this thesis build on top of the following
publications [9, 12–16].

1 Preliminaries
Propositional proof complexity, that is the complexity of propositional proofs,
plays a role in the context of feasible proofs as important as the role of Boolean
circuits in the context of efficient computations. Although the original motiva-
tions to study the complexity of propositional proofs came from proof-theoretical
questions about first-order theories, it turns out that, essentially, the complexity
of propositional proofs deals with the following question: what can be proved by
a prover with bounded computational abilities? For instance if its computational
abilities are limited to small circuits from some circuit class. Hence, proposi-
tional proof complexity mirrors to non-uniform computational complexity and
indeed there is a very productive cross-fertilization of techniques between the two
fields. Our understanding of propositional proof systems is similar to the general
situation in complexity theory, in the sense that in both fields we can prove lower
bounds in very special cases and indeed there are many very basic and important
open problems, such as the very famous P vs NP. In propositional proof complex-
ity the situation is similar in the sense that we can prove super-polynomial lower
bounds on the length of proofs only for restricted proof systems. Indeed prov-
ing super-polynomial lower bounds on the length of proofs in every propositional
proof system is equivalent to showing that NP , coNP [21], which in turn is one
of the open and very important problems in computational complexity.



In this thesis we investigate space complexity in propositional proof systems,
so what is the space1 of a proof? Intuitively, the space required by a refutation is
the amount of information we need to keep simultaneously in memory as we work
through the proof and convince ourselves that the original propositional formula
is unsatisfiable. This model is inspired by the definition of space complexity for
Turing machines, where a machine is given a read-only input tape from which it
can download parts of the input to the working memory as needed. This model
is sometimes called in the literature blackboard model and the name comes from
the image of a teacher in front of a class of students. The goal of the teacher is
to show that a propositional formula is contradictory2 writing down clauses and
performing inferences on a blackboard. In this analogy students understand in-
ferences based on the rules of some particular proof system, for example (among
others) Frege; or Resolution, a well studied proof system that is at the core of
state-of-the-art algorithms to solve SAT instances (Res); or Polynomial Calculus
(PC), a proof system that uses polynomials to refute contradictions. As for length
of proofs, the study of space complexity for proof systems represents a great theo-
retical challenge and may also have practical consequences on techniques for SAT
solving and their implementation.

We completely answer questions on the space complexity for Resolution and
Polynomial Calculus raised for the first time in [2, 6] and since then reported many
times in the literature. The results we show can be summarized as follows.
Monomial space in Polynomial Calculus We introduce a combinatorial frame-
work to prove monomial space lower bounds. This framework belong to the class
of game theoretic methods and combinatorial characterizations that are widely
used in proof complexity to study complexity measures3. As an application we
then have asymptotically optimal lower bounds on the monomial space needed
to refute random k-CNF formulas (and the graph pigeonhole principle) or Tseitin
formulas in Polynomial Calculus. Those results were conjectured to be true and
posed as open problems in many works, [2, 6, 24] among others. The framework
is described on a very high level in Section 2.1 of this abstract, the results about
random k-CNFs in Section 3 and the ones about Tseitin formulas in Section 4.
Total space in Resolution We give another combinatorial framework to prove total
space lower bounds which results in a tight connection between the total space
measure and the width. Then, as corollaries, we have asymptotically optimal total

1The problem of the space taken by propositional proofs was posed for the first time by Armin
Haken during the workshop “Complexity Lower Bounds” held at Fields Institute in Toronto 1998.

2In this abstract and the thesis proofs will be always refutations of contradictions. So we use
the two terms interchangeably.

3Some examples are the Pudlák games characterizing the size of Resolution proofs [35] or the
families of assignments characterizing Resolution width [3], where the width of a proof is the
number of literals in the largest clause appearing in it.



lower bounds in Resolution for Tseitin formulas over d-regular expander graphs,
completely answering open problem from [2, Open question 2] for Resolution
and we prove asymptotically optimal total space lower bound in Resolution for
random k-CNF formulas, completely answering an open problems from [2, 6,
25] among others. Moreover it follows an optimal separation of Resolution and
semantic Resolution from the point of view of the total space measure, completely
answering [2, Open question 4] for Resolution. The framework is described more
in details in Section 2.2 of this abstract, the results for random k-CNFs in Section
3 and the ones for Tseitin formulas in Section 4.
Size and width in Resolution Together with the main results about space this
thesis contains also a detour on size, cf. Section 5 of this abstract. Indeed, using
the game theoretic characterization of width and size in Resolution, we are able
to prove that the Strong Exponential Time Hypothesis (SETH) is consistent with
a sub-system of Resolution, that is no algorithm with track formalizable in such
system is able to refute SETH.

In this abstract, the numbering of theorems, corollaries, lemmas and proposi-
tions refer to their numbering in the thesis.

1.1 Resolution
Resolution (Res) [11, 38] is a sound and complete propositional proof system
manipulating unsatisfiable CNF formulas. A formula is Conjunctive Normal Form
(CNF) is a conjunction (∧) of clauses, where each clause is a disjunction (∨) of
literals and each literal is either a variable x j or a negation of a variable ¬xi. If
each clause has at most k literals then it is a k-CNF formula. A Res refutation of a
CNF formula ϕ is a sequence of clauses ending with the empty clause ⊥ and such
that each clause is either a clause from ϕ or can be inferred from previous clauses
by the following inference rule:

C ∨ x D ∨ ¬x (Res rule),C ∨ D

where C,D denote clauses and x is a variable that we say is resolved. A CNF
formula ϕ is unsatisfiable if and only if the empty clause, ⊥, can be inferred from
ϕ using the Res rule.

To understand the complexity of Resolution proofs various hardness measures
were defined and investigated. Historically, the first and most studied is the size:
the number of clauses in a Resolution refutation π is its size, size(π). The width
of a Resolution proof π, width(π), is the number of literals in the biggest clause
appearing in π.

Given any unsatisfiable k-CNF formula ϕ in n variables, if there exists a Reso-
lution refutation π of ϕ such that size(π) 6 S then there exists a Resolution proof



π′ of ϕ such that
width(π′) 6

√
n · O(log S ) + k, (1)

so if for every Resolution proof π of ϕ, width(π) > ω(
√

n log n) and ϕ has nO(1)

clauses then immediately we have that ϕ must require Resolution refutations of
super-polynomial size. This is known as the “size-width tradeoff” [8] and it is
optimal up to logarithmic factors [17]. Equation (1) is the standard tool to prove
exponential size lower bounds, but in some cases it is not enough. In this thesis
we prove some results on Resolution size stronger than the size lower bound we
could get by the technique presented above.

Nowadays Resolution is mostly studied due to its importance in applied con-
texts due to a connection to the CDCL solvers, which are at the core of modern
SAT-solvers [33]. In particular, lower bounds on Resolution size and Resolution
space (cf. Section 2) imply lower bounds on the running time and the memory
consumption of CDCL solvers.

1.2 Polynomial Calculus

In Polynomial Calculus, PC, [2, 20] an unsatisfiable CNF formula ϕ in the vari-
ables x1, . . . , xn is shown to be unsatisfiable first translating it into a set of multilin-
ear monomials tr(ϕ) such that ϕ is unsatisfiable if and only if 1 is in the ideal gen-
erated by tr(ϕ) (1 ∈ ideal(tr(ϕ))) in the ring of polynomials F[x1, . . . , xn, x̄1, . . . x̄n]
where the x̄i variables are new variables and F is a field4. Then, to show that
1 ∈ ideal(tr(ϕ)) we use the following inference rules starting from the monomials
in tr(ϕ)

p q
αp + βq

α, β ∈ F,
p

qp
q ∈ F[x1, . . . , xn, x̄1, . . . x̄n],

x2
i − xi

,
xi + x̄i − 1

.

These rules model the fact that ideals are closed under linear combinations and
multiplications of generic polynomials. Moreover, they force the semantic mean-
ing of the variables to be just Boolean variables and such that x̄i = 1 − xi. In PC
the polynomials are expressed in their expanded form as a sum of monomials, and
the size of a PC proof π, size(π), is measured as the total number of monomials
appearing in it5. As in Resolution, there are unsatisfiable formulas requiring ex-
ponentially long PC proofs and there exists a “size-degree tradeoff” [20], where
the degree of a PC proof π, degree(π), is the maximum degree of a polynomial
appearing in π. Given a k-CNF formula ϕ, if there exists a PC proof of ϕ such that

4For sake of clarity we avoid here the details of the translation tr(ϕ).
5There are also algebraic proof systems that allow manipulations on polynomials in implicit

forms and this results in stronger, not so well understood, proof systems [18, 19, 28–30, 34, 37].



size(π) 6 S then there exists a PC proof π′ of ϕ such that

degree(π′) 6
√

n · O(log S ) + k. (2)

Hence, if for every PC proof π of ϕ we have that degree(π) > ω(
√

n log n) and
ϕ has nO(1) clauses then ϕ cannot have polynomial size PC proofs. Moreover, if
char F , 2 then some Fourier-like transformation can be used to reduce degree
lower bounds to Resolution [7]. More general techniques to prove degree lower
bounds, working also if char F = 2, were introduced in [1] and generalized in [26,
32]. It is interesting to notice the similarity between equation (2) and equation
(1). Indeed, lot of results on the complexity of Resolution proofs are qualitatively
similar to results on the complexity of PC proofs. As for Resolution, the size-
degree relationship is essentially optimal [27] and most of the super-polynomial
or exponential size lower bounds for PC proofs are obtained through degree lower
bounds.

Our motivation to study algebraic proof systems is that they are not at all as
well understood as Resolution and this lack of knowledge from the theoretical
point of view might be one of the reasons for not having efficient SAT solvers
properly exploiting the potential of algebraic manipulations. Moreover, the study
of algebraic proof systems could shed light on major open problems in propo-
sitional proof complexity such as proving super-polynomial size lower bounds
for AC0[p]-Frege a Frege system where only bounded-depth formulas over the
Boolean connectives and a MODp connective are allowed [19, 20].

2 Space
The formal definition goes as follows [2, 23]: A Resolution refutation π of a CNF
formula ϕ is a sequence of memory configurations π = (M0, . . . ,M`) where each
Mi is a set of clauses, M0 = ∅, ⊥ ∈ M` and for each i > 1, Mi is obtained from
Mi−1 applying one of the following rules

(Axiom Download) Mi = Mi−1 ∪ {C}, where C is a clause in ϕ;

(Erasure) Mi ⊆ Mi−1;

(Inference) Mi = Mi−1 ∪ {C} where C is the result of the Resolution inference
rule applied with premises inMi−1.

Clearly this definition can be adapted to other proof systems, for instance for PC
we will just have as memory configurations sets of polynomials and as inference
rules the ones from PC.



As Alekhnovich et al. [2] pointed out, the very first question, when starting
the investigation of space, is how to measure the memory content/blackboard size
at any given moment in time for a specified propositional proof system. Recall-
ing Krajíček [31], the most customary measures for the size complexity of propo-
sitional proofs are the bit size and the number of lines. Among the two the bit size
is the most important and can be defined analogously also for space complexity.
In the case of space we measure the total number of literals in memory, the total
space, a measure logarithmically related to the bit-size of the memory. Given a
Resolution proof π we denote with TSpace(π) the maximum number of literals
appearing in a memory configuration in π.

The line complexity is not an adequate space measure as long as the language
of the proof system is strong enough to handle unbounded fan-in ∧ gates: in this
case just O(1) memory cells are sufficient as one of them can contain a big-∧ of all
the formulas derived in previous steps. For Resolution, that is not closed under ∧,
the lines are just clauses and the clause space makes prefect sense. Indeed Esteban
and Torán [23] proposed the study of such measure: given a Resolution proof π,
the clause space6, CSpace(π), is the maximum number of clauses appearing in a
memory configuration in π. For every contradictory CNF formula in n variables ϕ
there exists a Resolution refutation π of ϕ such that CSpace(π) 6 n+1 and hence,
clearly, also TSpace(π) 6 n(n + 1) [23].

An analogue of clause space makes sense also for stronger proof systems,
such as Polynomial Calculus, where we consider the number of distinct monomi-
als appearing in memory configuration, and analogously as before we define the
monomial space of a PC refutation π, MSpace(π). Since the Resolution inference
rule can be simulated efficiently in PC, from the point of view of space, for every
unsatisfiable CNF formula ϕ in n variables, there exists a PC refutation π of ϕ
such that MSpace(π) 6 O(n) and TSpace(π) 6 O(n2). Total space in PC is not
yet well understood and the only total space lower bound for PC are the ones by
Alekhnovich et al. [2] where this measure was originally introduced.

The second interesting property of space is that this measure is actually non-
trivial for not too strong proof systems, indeed Alekhnovich et al. [2, Theorem
6.3] showed that any tautology in n variables has a proof in Frege with “formula
space” O(1) and total space linear in the number of variables. This fact justifies the
study of space for “weak” proof systems where actually super-linear lower bounds
on space could be achieved, although total space in Frege is still a meaningful
complexity measure.

6As already noticed by [23], the clause space in Resolution is connected also to the pebbling
game on the DAGs associated to Resolution derivations but we do not exploit this analogy.



2.1 Monomial space
We consider families of assignments, r-BG families, consisting of many partial
truth assignments with a combinatorial structure we called flippable products. For
such families we can define a notion of rank that turns out to be roughly the log-
arithm of the number of assignments in the family. The formal definition of r-BG
families, too technical to be presented here, is one of the main innovations of this
thesis, since it reduces space lower bounds in algebraic proof systems to a com-
binatorial property on families of Boolean assignments. The r-BG families re-
sembly other combinatorial definitions used to prove lower bounds in Resolution:
the definition of k-dynamical satisfiability[22]; the winning strategies characteriz-
ing width in Resolution[3]. An r-BG family of assignments for tr(ϕ) is a family
of collections of partial assignments such that each collection has rank at most
r, none of the collections falsify the polynomials in tr(ϕ) and they satisfy some
additional combinatorial properties.

Theorem 3.6 (informal7). Given an unsatisfiable CNF formula ϕ. If there ex-
ists a non-empty r-BG family of partial assignments for tr(ϕ) then for every PC
refutation π of ϕ, MSpace(π) > r

4 .

All the monomial space lower bounds obtained using this theorem are not
dependent on the characteristic of the ground field F used in PC. This result gen-
eralizes the techniques used in [2, 24] and indeed the main technical difficulty to
prove Theorem 3.6 is to prove a generalization of [2, Lemma 4.14], the Local-
ity Lemma. As corollaries of Theorem 3.6, we are able to re-obtain all the lower
bounds on monomial space known from [2, 24] and to prove the first monomial
space lower bound for random k-CNF formulas, for k > 3, cf. Section 3. More-
over, Filmus et al. [25] applied (a preliminary version of) Theorem 3.6 to Tseitin
formulas over random 4-regular graphs, cf. Section 4.

2.2 Total space in Resolution
The main result here is a general technique to prove total space lower bounds in
Resolution, cf. Theorem 2.5, and, as an application, the fact that in Resolution
‘total space is lower bounded by the square of width’, cf. Corollary 2.11. Then,
as corollaries, we immediately have total space lower bounds for various families
of CNF formulas of interest. We postpone the discussion of the results on random
k-CNF formulas to Section 3 and the results on Tseitin formulas to Section 4.

Our main theorem for total space in Resolution, Theorem 2.5, and Theorem
3.6 on monomial space have similar statements. Here, to get total space lower

7The result proven is actually stronger since it holds for semantic PC, but for simplicity we
state it here just for PC.



bounds we use r-BK families of partial truth assignments introduced in [10] to
characterize the asymmetric width in Resolution, a complexity measure similar to
the width8. An r-BK family for ϕ is a collection of partial assignments not falsify-
ing ϕ and such that some combinatorial extension property holds for assignments
of domain bounded by r.

Theorem 2.5 (informal). Given an unsatisfiable CNF formula ϕ, if there exists a
non-empty r-BK family of assignments for ϕ then any Res refutation of ϕ must
pass through a memory configuration of at least r/2 clauses each at least of r/2
many literals. Hence, in particular any Res refutation of ϕ require total space
r2/4.

Corollary 2.11 (informal). Let ϕ be an unsatisfiable k-CNF formula, if there exists
a Res refutation π of ϕ such that TSpace(π) 6 T then there exists a Res refutation
π′ of ϕ such that width(π′) 6 O(

√
T ) + k.

There are many of such CNF formulas ϕ with the properties above, for exam-
ple random k-CNFs (see next Section). Moreover it follows an optimal separation
between Resolution and a semantic version of it from the point of view of the total
space measure. In the thesis there are also some lower bounds on total space for
semantic Resolution and for a bounded version of it.

3 Random k-CNFs
Let k a positive integer and ∆ a positive real number, an (n, k,∆)-random CNF
formula ϕ is a k-CNF formula with n variables and ∆n clauses picked uniformly
at random from the set of all CNF formulas in the variables {x1, . . . , xn} which
consist of exactly ∆n clauses, each clause containing exactly k literals and no
variable appears twice in a clause. For large enough ∆ (depending on k), with
high probability, an (n, k,∆)-random CNF formula is unsatisfiable and there exists
a constant γ > 0 such that for each Res refutation π of ϕ, width(π) > γn [8].

Theorem 4.36 (informal). Let k > 3 and ∆ > 1. If ϕ is a (n, k,∆)-random
CNF, then for large n, with high probability, (1) for every Res refutation π of ϕ,
TSpace(π) > Ω(n2); and (2) for every PC refutation π of ϕ, MSpace(π) > Ω(n).

The total space lower bound completely answers an open problem on the total
space complexity in Resolution of random k-CNF formulas from [2, 6, 25] among
others. It follows immediately by Corollary 2.11 and it also shows an optimal
separation between semantic Resolution and Resolution from the point of view of
total space and thus completely answers [2, Open question 4] for Resolution.

8This characterization is similar to the characterization of width in [3].



The lower bound on monomial space was conjectured to be true and posed as
an open problem in many works, for instance [2, 6, 24]. The proof of this result
use Theorem 3.6 and essentially consists in constructing an Ω(n)-BG family of
partial assignments for ϕ9. This technical construction relies on some combina-
torial games over bipartite graphs, the Cover Games, and to some variations of
Hall’s theorem to objects similar to matchings, V-matchings and VW-matchings.

4 Tseitin formulas
Tseitin formulas, Tseitin(G, σ), are essentially Boolean encodings of the fact that
the total degree of any graph is an even number10. Tseitin formulas are one of
the standard tools used in proof complexity to prove lower bounds and trade-offs,
for example they have used to prove the very first super-polynomial lower bound
for Resolution Tseitin [39], result improved then to an exponential lower bound
in [40]; they have been investigated regarding the width [8], clause space [23]
and regarding size-space trade-offs in both Res and PC [4]. Notice that Tseitin
formulas have polynomial size refutations in PC over F2, essentially mimicking
Gaussian elimination. In [8] it is proved that for every Resolution refutation π of
Tseitin(G, σ),

width(π ` ⊥) > e(G), (3)

where e(G) is the connectivity expansion of G = (V, E): for any set E′ of at most
e(G) edges it holds that G′ = (V, E \ E′) has a (unique) connected component of
size strictly larger than |V |/2. If e(G) = Ω(|V |), which happens for example for
random d-regular graphs (w.h.p.), then from equation (3) and (1) it follows an
exponential lower bound on the size of Resolution refutations of Tseitin formulas.
Then as an application of Corollary 2.11 we answer the open problem from [2,
Open question 2] concerning total space lower bounds for Tseitin formulas in
Resolution.

Theorem 4.7 (informal). Let G = (V, E) be a connected d-regular graph and σ
an odd-weight function over V, then for every Resolution proof π of Tseitin(G, σ)

TSpace(π) > Ω((e(G) − d)2).

9An analogue result holds also for the matching principle over a graph G, G-PHP, where G is
an expander bipartite graph with left degree at least 3, cf. Theorem 4.38.

10Formally the Tseitin formulas are defined as follows. Let G = (V, E) be a finite connected
graph of degree at most d over n vertices and σ : V → {0, 1} be such that

∑
v∈V σ(v) ≡ 1 (mod 2).

Consider now the set of Boolean variables X = {xe : e ∈ E} and for each v ∈ V let PARITYv,σ be
the CNF formula expressing the following parity:

∑
e3v xe ≡ σ(v) (mod 2). The Tseitin formula,

Tseitin(G, σ), is then
∧

v∈V PARITYv,σ.



In particular if G is a 3-regular expander graph over n vertices then every Reso-
lution refutation π is such that TSpace(π) = Θ(n2).

Regarding the monomial space in Polynomial Calculus the picture is more
complex. We do not know non-trivial monomial space lower bound for Tseitin for-
mulas over 3-regular expander graphs. Yet we have some monomial space lower
bounds for some Tseitin formulas. In particular the following results showed by
Filmus et al. [25] relying on a preliminary version of Theorem 3.6:
• If G = (V, E) is a d-regular graph with edges with multiplicity 2, then for

every PC refutation π of Tseitin(G, σ), MSpace(π) > Ω(e(G) − d).
• If G = (V, E) is a random d-regular graph on n vertices, where d > 4, then

w.h.p. for each PC refutation of Tseitin(G, σ), MSpace(π) > Ω(
√

n).

5 Strong size lower bounds
Given a k-CNF formula in n variables ϕ, we call a Resolution size lower bound
strong11 if for every Resolution refutation π of ϕ,

size(π) > 2(1−εk)n,

where limk→∞ εk = 0. Similarly a width lower bound is strong12 if for every
Resolution refutation π of ϕ width(π) > (1 − εk)n, where limk→∞ εk = 0.

We show a strong size lower bound for a sub-system of Resolution where at
most a fraction of δ variables can be resolved multiple times along any path in
a refutation DAG of an unsatisfiable CNF formula. We called δ-regular Resolu-
tion such system in between unconstrained Resolution and regular Resolution, a
variation of Resolution where are allowed as valid only the Resolution refutations
that have a DAG structure where along any path no variable is resolved twice.
Similarly we can define tree-like Resolution, a variation of Resolution where are
allowed as valid only the Resolution refutation that have a tree-like structure. Be-
fore our result strong size lower bounds were known for tree-like Resolution [36]
and for regular Resolution [5]. Our results both improve and simplify the strong
size lower bound from Beck and Impagliazzo [5] and improve the asymptotic of
the εk for tree-like and regular Resolution. More precisely we prove the following.

11Proving a strong exponential size lower bound for Resolution will mean that no SAT-solver
purely based on Conflict Driven Clause Learning will be able to refute the Strong Exponential
Time Hypothesis, due to the fact that such solvers are polynomially simulated by Resolution.

12It is always the case that strong width lower bounds in Resolution imply strong size lower
bound in tree-like Resolution, due to the size-width tradeoff for tree-like Resolution [8]. This is
not the case for general Resolution, since the best known general tradeoff between width and size,
equation (1), has some constant loss.



Corollary 5.8 (informal). For any large enough n and k ∈ N there exists an unsat-
isfiable k-CNF formula ψ in n variables such that for every δ-regular Resolution
refutation π of ψ size(π) > 2(1−εk)n, where both εk and δ are Õ(k−1/4).

The first ingredient to prove this result is a strong width lower bound.

Theorem 5.6 (informal). For any large n and k, there exist an unsatisfiable k-
CNF formula ϕ on n variables such that for every Resolution refutation π of ϕ
width(π) > (1 − ζk)n, where ζk = Õ(k−1/3).

Notice that the best possible would be ζk = O(k−1) since for every unsatisfiable
k-CNF formula on n variables there exists a tree-like Resolution of size at most
2
(

1−Ω(k−1)
)

n, cf. Theorem 5.2.
The second ingredient to prove Corollary 5.8 is an hardness amplification

result, Theorem 5.5, proved using characterizations of Resolution size [35] and
width [3] as games. Given a CNF formula ϕ in n variables, the `-xorification of
ϕ, ϕ[⊕`], is a formula over `n new Boolean variables obtained by replacing each
occurrence of xi in ϕ with y1

i ⊕ · · · ⊕ y`i where y j
i are fresh new variables.

Theorem 5.5 (informal). Let ϕ an unsatisfiable CNF formula in n variables and
let W, δ and ` be parameters. If for every Resolution refutation π of ϕ, width(π) >
W, then for every δ-regular Resolution refutation π′ of ϕ[⊕`],

size(π′) > 2(1−ε)W`,

where ε = 1
`

log
(

e3`n
W

)
+ δn

W log
(

e3`
δ

)
.
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