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1 Introduction
Computer science and economics have engaged in a productive conversation over
the past 15 years, resulting in a new field called algorithmic game theory or alter-
natively economics and computation. Many problems central to modern computer
science, ranging from resource allocation in large networks to online advertising,
fundamentally involve interactions between multiple self-interested parties. Eco-
nomics and game theory offer a host of useful models and definitions to reason
about such problems. The flow of ideas also travels in the other direction, as recent
research in computer science complements the traditional economic literature in
several ways. For example, computer science offers a focus on and a language to
discuss computational complexity; has popularized the widespread use of approx-
imation bounds to reason about models where exact solutions are unrealistic or
unknowable; and proposes several alternatives to Bayesian or average-case anal-
ysis that encourage robust solutions to economic design problems. The standard
reference in the field [3] is aimed at researchers rather than students and autodi-
dacts, and it predates the many important results that have appeared over the past
ten years.

My book Twenty Lectures on Algorithmic Game Theory [5] grew out of my
lecture notes for a course that I taught at Stanford five times between 2004 and
2013.1 The course aims to give students a quick and accessible introduction to
many of the most important concepts in the field, with representative models and
results chosen to illustrate broader themes. This book has the same goal, and I
have stayed close to the structure and spirit of my classroom lectures. I assume
no background in game theory or economics, nor can the book substitute for a
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traditional book on these subjects. My book is far from encyclopedic, but fortu-
nately there are excellent existing books and books in preparation on many of the
omitted topics [1, 2, 3, 4, 6].

2 Brief Overview
After the introductory lecture, the book is loosely organized into three parts. Lec-
tures 2–10 cover several aspects of “mechanism design”—the science of rule-
making. These lectures cover the Vickrey auction and the VCG mechanism,
algorithmic mechanism design, Myerson’s theory of revenue-maximizing auc-
tions, and case studies in online advertising, wireless spectrum auctions, and kid-
ney exchange. Lectures 11–15 outline the theory of the “price of anarchy”—
approximation guarantees for equilibria of games found “in the wild,” such as
large networks with competing users. Specific topics include selfish routing, net-
work cost-sharing games and the price of stability, potential games, and smooth-
ness arguments. Finally, Lectures 16–20 describe positive and negative results for
the computation of equilibria, both by distributed learning algorithms and by com-
putationally efficient centralized algorithms. These lectures discuss best-response
dynamics, no-regret algorithms, and PLS- and PPAD-completeness.

3 Top 10 List
The following “top 10 list” provides additional details about the book’s contents.

1. The second-price single-item auction (Lecture 2). Our first example of an
“ideal” auction, which is dominant-strategy incentive compatible (DSIC),
welfare maximizing, and computationally efficient. Single-item auctions
already show how small design changes, such as a first-price vs. a second-
price payment rule, can have major ramifications for participant behavior.

2. Myerson’s lemma (Lectures 3–5). For single-parameter problems, DSIC
mechanism design reduces to monotone allocation rule design. Applica-
tions include ideal sponsored search auctions, polynomial-time approxi-
mately optimal knapsack auctions, and the reduction of expected revenue
maximization with respect to a valuation distribution to expected virtual
welfare maximization.

3. The Bulow-Klemperer theorem (Lecture 6). In a single-item auction, adding
an extra bidder is as good as knowing the underlying distribution and run-
ning an optimal auction. This result, along with the prophet inequality, is



an important clue that simple and prior-independent auctions can be almost
as good as optimal ones.

4. The VCG mechanism (Lecture 7–8). Charging participants their external-
ities yields a DSIC welfare-maximizing mechanism, even in very general
settings. The VCG mechanism is impractical in many real-world applica-
tions, including wireless spectrum auctions, which motivates simpler and
indirect auction formats like simultaneous ascending auctions.

5. Mechanism design without money (Lectures 9–10). Many of the most ele-
gant and widely deployed mechanisms do not use payments. Examples in-
clude the Top Trading Cycle mechanism, mechanisms for kidney exchange,
and the Gale-Shapley stable matching mechanism.

6. Selfish routing (Lectures 11–12). Worst-case selfish routing networks are
always simple, with Pigou-like networks maximizing the price of anarchy
(POA). The POA of selfish routing is therefore large only when network
cost functions are highly nonlinear, corroborating empirical evidence that
network over-provisioning leads to good network performance.

7. Robust POA Bounds (Lecture 14). All of the proofs of POA bounds in these
lectures are “smoothness arguments.” As such, they apply to relatively per-
missive and tractable equilibrium concepts like correlated and coarse corre-
lated equilibria.

8. Potential games (Lectures 13 and 16). In many classes of games, including
routing, location, and network cost-sharing games, players are inadvertently
striving to optimize a potential function. Every potential game has at least
one pure Nash equilibrium and best-response dynamics always converges.
Potential functions are also useful for proving POA-type bounds.

9. No-regret algorithms (Lectures 17–18). No-regret algorithms exist, includ-
ing simple ones with optimal regret bounds, like the multiplicative weights
algorithm. If each agent of a repeatedly played game uses a no-regret or
no-swap-regret algorithm to choose her mixed strategies, then the time-
averaged history of joint play converges to the sets of coarse correlated equi-
libria or correlated equilibria, respectively. These two equilibrium concepts
are computationally tractable, as are mixed Nash equilibria in two-player
zero-sum games.

10. Complexity of equilibrium computation (Lectures 19–20). The problem of
computing a Nash equilibrium appears computationally intractable in gen-
eral. PLS-completeness and PPAD-completeness are analogs of NP-



completeness tailored to provide evidence of intractability for pure and
mixed equilibrium computation problems, respectively.
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