RerorT ON BCTCS 2017

The 33nd British Colloquium for Theoretical Computer Science
26-28 April 2017, St Andrews University

Markus Pfeiffer

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides an envi-
ronment for PhD students to gain experience in presenting their work in a wider
context, and to benefit from contact with established researchers.

BCTCS 2017 was hosted by the School of Computer Science at the University
of St Andrews, and held from 26" to 28" April, 2017. The event attracted over
30 participants, and featured an interesting and wide-ranging programme of six
invited talks and 13 contributed talks. Abstracts for all of the talks from BCTCS
2017 are provided below.

We are grateful to the Heilbronn Institute for Mathematical Research who
provided funding for 6 PhD students (including 3 female students) and funding
for invited speakers’ expenses. We are also thankful to the London Mathemati-
cal Society for their annual sponsorship of the LMS keynote speaker in Discrete
Mathematics — Prof Laszl6 Babai (University of Chicago).

Talks covered a range of topics in theoretical computer science, with par-
ticipation from across the United Kingdom. The opening talk by Felix Fischer
(University of Glasgow), presenting his research on position auctions in which
self-interested parties bid for a commodity (usually advertisement space on the
internet), and are not honest about their intentions.

The morning also featured a dedicated meet-and-greet session where partici-
pants were encouraged to meet and talk to people they did not know yet.

Jessica Enright (University of Stirling) opened the next session showing us
about her endeavours to build a maze for the flash game mouse maze in which the
mouse takes a maximal amount of moves to escape the maze, which turns out to
be a very difficult combinatoric problem, and Kitty Meeks (University of Glas-
gow) showed off her work on computational complexity; knowing that a problem
is decidable, but hard (for instance NP complete) begs the question how many
(small) solutions there are.

In the afternoon session Perdita Stevens (University of Edinburgh) told us
about the important connection between the practice of software engineering and
the theory of bisimulations.

The evening was then dedicated to the LMS Keynote speaker in Discrete
Mathematics, Prof Laszl6 Babai (University of Chicago), who talked about the



group theoretic aspects of his recent breakthrough result on the complexity of the
Graph Isomorphism problem. His lecture was well publicised and attracted an
audience of about 100 people from St Andrews, Edinburgh and Glasgow.

Thursday was opened by Edwin Brady (University of St Andrews) speaking
about his work encoding state and state machines in the dependently typed pro-
gramming language Idris — a language he developed himself to connect the the-
oretical advances in type theory with practical software engineering. His PhD
student Matu Tejidk, who as part of his PhD project improved erasure of runtime-
irrelevant proofs from Idris programs gave even more insight into this exciting
topic.

The second session of the day consisted of Dylan McDermott, Georgina Lungu,
and James Hoey, all PhD students, and the afternoon session featured a very enter-
taining talk by Conor McBride from the University of Strathclyde, who explained
to us what Syntax really is. The afternoon was then dedicated to an additional talk
by Laszl6 Babai about combinatorial aspects of this Graph Isomorphism result.

The conference dinner took place on Thursday evening, and was a great suc-
cess.

Friday was opened by Mehrnoosh Sadrzadeh who explained how Monoids,
Vectors, and Tensors play a role in her research on modeling natural language,
and the conference concluded with further talks given by PhD students.

As a satellite event, L4szl6 Babai agreed to teach St Andrews undergraduates
in Mathematics and Computer Science about permutation groups and the graph
isomorphism problem. This event took place on Saturday after the BCTCS and
was met with great enthusiasm by the students. Particularly the Computer Science
students were very fascinated about how interesting Mathematics and Theoretical
Computer Science can be.

It was noted by participants how enjoyable the event was, and that there was a
good proportion of female speakers and participants.

BCTCS 2018 will be hosted by Royal Holloway University of London. Re-
searchers and PhD students wishing to contribute talks concerning any aspect of
Theoretical Computer Science are cordially invited to do so. Further details are
available from the BCTCS website at www.bctcs.ac.uk.

Invited Talks at BCTCS 2017

Laszl6 Babai (University of Chicago)

LMS Keynote Lecture in Discrete Maths

Graph Isomorphism

In the first of two lectures, we discuss the group theoretic aspects at the core of

recent progress on the Graph Isomorphism problem: a lemma (the “Unaffected
Stabilizers Lemma”) and its algorithmic application (the “Local Certificates algo-



rithm”). The latter produces a canonical structure, breaking the symmetry that has
been the bottleneck for Luks’ classic (1980) Divide-and-Conquer strategy.

In the second of the two lectures, we begin with further details of the group
theory involved in the Graph Isomorphism algorithm, followed by a discussion
of the combinatorial techniques. Classical (binary) and higher (k-ary) coherent
configurations will be the central objects of the discussion.

Edwin Brady (University of St Andrews)
State Machines All The Way Down

A useful pattern in dependently typed programming is to define a state transition
system, for example the states and operations in a network protocol, as an indexed
monad. We index each operation by its input and output states, thus guaranteeing
that operations satisfy pre- and post-conditions by typechecking. However, what
if we want to write a program using several systems at once? What if we want to
define a high-level state transition system, such as a network application protocol,
in terms of lower level states, such as network sockets and mutable variables?

In this talk, I present an architecture for dependently typed applications based
on a hierarchy of state transition systems implemented in a generic data type ST.
This is based on a monad indexed by contexts of resources, allowing us to reason
about multiple state transition systems in the type of a function. Using ST, we
show: how to implement a state transition system as a dependent type with type
level guarantees on its operations; how to account for operations which could
fail; how to combine state transition systems into a larger system; and how to
implement larger systems as a hierarchy of state transition systems. I illustrate the
system with a high level network application protocol, implemented in terms of
POSIX network sockets.

Felix Fischer (Glasgow University)
Truthful Outcomes from Non-Truthful Position Auctions

The area of mechanism design is concerned with the development of algorithms
that produce good outcomes given inputs from self-interested individuals. One of
the stars of mechanism design theory is the Vickrey-Clarke-Groves (VCG) mech-
anism, which makes it optimal for each individual to truthfully reveal its input. In
the real world, however, the VCG mechanism is used with surprising rarity and the
mechanisms we actually find are non-truthful. An example of this phenomenon
are position auctions used by internet search engines like Google and Bing to al-
locate space for advertisements displayed next to genuine search results. Here
only non-truthful mechanisms have ever been used, and what in theory looks like
a beginner’s mistake was a huge success in practice. An obvious advantage of
the non-truthful mechanisms is that they use simpler payments, and it has been
known for some time why this simplicity does not lead to chaos when participants



decide strategically how to bid. We will see that the simplicity of payments also
comes with a greater robustness to uncertainty on the part of the search engines
regarding the relative values of positions. This talk is based on joint work with
Paul Diitting (LSE) and David C. Parkes (Harvard).

Conor McBride (Strathclyde University)
Syntax: What’s it like?

When we write programs or prove theorems about a programming language, the
first thing we often do is write down a datatype for its syntax. But a syntax is
not just any old datatype: there are usually notions of “scope” and “sort” which
impose structure on terms and drive the implementations of operations such as
substitution. In this talk, I adapt the technology of datatype-generic programming
to the specific needs of types for syntax, showing how types and operations can
be generated from a first class notion of grammar. Why keep a dog and bark
yourself?

Mehrnooah Sadrzadeh (Queen Mary University of London)
Monoids, Vectors, and Tensors for Natural Language

Formalising different aspects of natural language has kept computational linguis-
tics, logicians, and mathematicians busy for decades. On the syntactic side, we
have: Chomsky and generative grammars from the 1950’s; Ajdukiewicz and Bar-
Hillel and functional grammars from the 1930’s; and Lambek and residuated
monoids from the 1950’s (to name a few). On the semantic side, we have the
seminal work of Montague on lambda calculus and higher order logics. Recently,
distributional semantics based on Firth and Harris’ insights has become a success-
ful method of representing meanings of words. This method takes advantage of
vectors and linear algebra to reason about the information encoded in large quanti-
ties of data available in the form of text and corpora of documents. I present work
with my colleagues on extending distributional semantics from words to phrases
and sentence. In order to realise this passage, we use a notion of grammatical com-
positionality formalised by Lambek and employed in other categorial grammars
such as the CCG. Our model relies on the notion of tensors and operations from
multilinear algebra. I present the theory behind the model and its applications to
natural language tasks such as phrase and sentence similarity, paraphrasing, clas-
sification, and entailment. In many cases the predications of the tensor models
better those of simple vector addition and multiplication.

Perdita Stevens (Edinburgh University)
Bisimulations, Bidirectionality and the Future of Software Engineering

A bidirectional transformation is a means of maintaining consistency between two
or more data sources. In model driven development, the data sources are models:



abstract, usually graphical, representations of some aspects of a system. Model
driven development has so far been successful in some contexts, but not others;
a difficulty that remains is how to make it sufficiently agile, while retaining the
advantages it presents where it works. The vision of future software engineering
that I plan to put before you involves groups of people who are experts in some-
thing but not necessarily software developers, each working with their own model,
and using bidirectional transformations to manage consistency between them. I
explain (something about) why that would be a good thing, what needs to happen
for the vision to become reality, and what bisimulations have to do with it.

Contributed Talks at BCTCS 2017

Obad Abdullah Alhumaidan (Newcastle University)
Modelling Multi-Valued Networks using Rewriting Logic

In this talk we give an overview of recent work on modelling Multi-Valued Net-
works (MVNs) using Rewriting Logic (RL). We define a formal translation of
asynchronous and synchronous MVNs into RL and model the MVN behaviour
using RL. Correctness proofs were done for these translations based on showing
they are sound and complete, and we worked with a range of case studies (e.g.
Tryptophan biosynthesis genetic network) to illustrate our translation. Maude’s
model checking capabilities for Linear Temporal Logic (LTL) was used to anal-
yse an MVN model, and performance testing was carried out using a scalable test
model.

Tom Bourne (University of St Andrews)
Subwords and Stars

In the field of formal language theory, the generalised star-height problem asks
whether or not there exists an algorithm to determine the minimum nesting depth
of stars required in order to represent a given regular language by a regular expres-
sion. In this setup, we consider complement as a basic operator. In particular, it
is not yet known whether there exist languages of generalised star-height greater
than one. We consider the generalised star-height of the languages in which a
fixed word occurs as a contiguous subword an exact number of times and of the
languages in which a fixed word occurs as a contiguous subword modulo a fixed
number, and see that in each case it is at most one.

Jessica Enright (University of Stirling)
Building a better mouse maze
Mouse Maze is a Flash game about Squeaky, a mouse who has to navigate a subset

of the grid graph using a simple deterministic rule, which naturally generalises to
a game on arbitrary graphs with some interesting chaotic-looking dynamics. We



present efforts to generate graphs which effectively trap Squeaky in the maze for
long periods of time, and some theoretical results bounding how long he can be
trapped. We show that Squeaky can always escape the graph in finite time, but
Squeaky can be trapped forever if he cannot count properly.

Peter Fulla (University of Oxford)
The complexity of Boolean surjective VCSPs

Boolean-valued constraint satisfaction problems (VCSPs) are discrete optimiza-
tion problems with the goal of finding an assignment of Boolean (0/1) labels to
variables that minimizes the objective function given as a sum of constant-arity
constraints. In the surjective setting, an assignment is additionally required to
use each label at least once. For example, the minimum cut problem falls within
this framework. We give a complexity classification of Boolean surjective VCSPs
parameterized by the set of available constraints.

Chris Hickey (University of Warwick)
Annotated Streaming Protocols for Data Analysis

As the popularity of outsourced computations increases, concerns about accuracy
and trust between the client and the cloud computing service become ever more
relevant. Our work aims to provide faster and more practical methods to verify
the analysis of large data sets, where the client’s memory costs are independent
of the size of the data set. We do this by using annotated data streaming methods,
in which the cloud computing service provides a short proof alongside the results
which can be used to confirm the correctness of the computation. We supply
an optimally efficient protocol for verifying matrix multiplication, and use this
to provide protocols for ordinary least squares (OLS) and principal component
analysis (PCA).

James Hoey (University of Leicester)
Reversing Simple Imperative Programs

We propose an approach for reversing simple imperative programs. Inspired by
the Reverse C Compiler of Perumalla, we produce both an augmented version and
a corresponding inverted version of the original program. Augmentation involves
saving necessary information in an auxiliary data store, and maintaining segrega-
tion between this reversal information and the program state, whilst never altering
the data store in any other way than that of the original program. Inversion uses
this information to revert the final program state to the state as it was before ex-
ecution. At the same time, the final auxiliary store is reversed to its initial state,
as the reversal information is removed as it is used. We prove that augmentation
and inversion work as intended, and illustrate our approach with several examples.
Potential applications include PDES and debugging.



Chris Jefferson (University of St Andrews)
Canonical Images of Sets in Permutation Groups

Many combinatorial and group theoretic problems are equivalent to finding, given
a group G which acts on a set S and two members X and Y of S, if there is a
member of G which maps X to Y. If we make S equal to the set of all graphs, and
G the group which permutes the vertices of the graphs, then this is equivalent to the
graph isomorphism problem. In this talk I consider a similar problem: considering
S to contain sets instead of graphs, but allowing G to be any group. When solving
this problem in practice, we often use a “Canonicalizing Function” which maps
elements of S to a representative in their orbit under G; if we can map from X to Y,
both X and Y will have the same canonical image. When we have many elements
of S to consider, using a canonicalising function can greatly improve performance.
I demonstrate a family of new algorithms for finding canonical images. These
algorithms make use of the orbit structure of the group to efficiently reduce the
amount of search which must be performed to find a canonical image.

Georgina Elena Lungu (Royal Holloway)
Coercive Subtyping in Signatures

It has been shown that adding subtyping to type theories with canonical objects,
such as Martin-Lof’s type theory and Luo’s UTT, requires a different understand-
ing than the one employed by programming languages in the form of subsumptive
subtyping. I present a type system with coercive subtyping entries in signatures
which can be used to embed a subsumptive subtyping system, giving a way to rea-
son about it in type theories with canonical objects. At the same time the system
can itself be embedded in the previously developed coercive subtyping system,
hence bridging between the practical notion of subsumptive subtyping and the
theoretical coercive subtyping.

Dylan McDermott (University of Cambridge)

Effects for Lazy Languages

Effect systems augment types with information about the behaviour of programs.
They have been used for many purposes, such as optimizing programs, determin-
ing resource usage, and finding bugs. So far, however, work on effect systems
has largely concentrated on call-by-value languages. We consider the problem
of designing an effect system for a lazy language. This is more challenging be-
cause it depends on the ability to locate the first use of each variable. Coeffect
systems, which track contextual requirements of programs, provide a method of
doing this. We describe how to track variable usage in a type system for a call-by-
need lambda calculus using coeffects. We then add effects to the resulting system,
allowing work that has been done on effect systems for call-by-value languages



to be applied to lazy languages. We also show that classical strictness analysis
appears as a special case of our lazy effect system.

Kitty Meeks (University of Glasgow)
Approximately enumerating small witnesses

Although much of the theory of computational complexity focusses on decision
problems (“Does this problem have at least one solution?”’), in many applications
we actually need to know how many such solutions there are, or indeed to find
all solutions. Of course, the problems of counting and enumerating all solutions
are at least as hard as the corresponding decision problem, and in many cases (up
to standard complexity theoretic assumptions) these versions of the problem are
provably harder than the decision version. The difficulty of counting solutions ex-
actly has led to extensive research into the feasibility of approximate counting, but
as yet there is no accepted definition of a corresponding notion of “approximate
enumeration”. In this talk I propose a definition of approximate enumeration, and
show how recent work on the enumeration of small witnesses using a determin-
istic decision oracle (presented at IPEC 2016) can be adapted to enumerate small
witnesses approximately when only a randomised decision procedure is available.

Tobias Rosenberger (Swansea University)
Formal semantics for UML State Machines

UML diagrams are widely used for specifying the desired structure and behaviour
of software. However, it is not entirely clear what such a specification means.
UML still has no formal semantics and the informal semantics are not precise
enough to be formalised in a straightforward way.

One approach for solving this problem is based on the theory of institutions, a
formalisation of the notion of a logic. The idea is to define an institution for each
UML diagram type, thereby increasing modularity and reducing the complexity
of each individual logic. Institutions come with a notion of semantics-preserving
translations both between different signatures of one logic and between differ-
ent logics. This allows for heterogeneous reasoning and tool support (theorem
provers, model checkers, code generation, etc.).

We present a modal logic for classes of UML state machines which allows
us to control the presence or absence of transitions. With this approach we fix
a violation of the preservation of semantics under translation between signatures
which appears in previous attempts at institutionalising UML state machines.

Sarah Sigley (University of Leeds)

The Relative Proof Complexity of Modal Resolution Systems

Proof complexity measures how efficiently theorems can be proved in a given
proof system. We compare the strength of two proof systems via polynomial



simulations; given two proof systems P and Q, we say P polynomially simulates
Q if, given any Q proof, we can efficiently construct a corresponding P proof.
Whilst proof complexity has traditionally focused on proof systems for proposi-
tional logic, recent work has been carried out regarding the proof complexity of
non-classical logics, including modal logics. A motivation for studying the proof
complexity of modal logics is that they are suited to a wide variety of applications
throughout computer science.

Over the past 30 years, various resolution calculi have been proposed for
modal logics, however no work has been carried out regarding the complexity
of these calculi. I give an overview of two modal resolution calculi, proposed in
1989 and 2007 respectively. I then discuss the relative complexity of these cal-
culi, outlining a proof that they both polynomially simulate one another and so
are polynomially equivalent, despite being technically rather different. To con-
clude I discuss whether certain lower bound proving techinques for propositional
resolution might also be applied to modal resolution systems.

Matuas Tejis¢ak (University of St Andrews)

Adding Erasure to Dependently Typed Programming

In dependently typed languages, we often express algorithms in ways amenable
to reasoning; e.g., we program with views, and add indices to type families. Our
programs compute with more data — views, proofs, indices — and thus may end up
asymptotically slower (e.g. exponential vs. linear). Experience indicates that this
problem is important for practical programming with dependent types.

In this talk, I show a dependently typed calculus that has erasure built into its
type system, along with inductive type families and pattern matching. The native
erasure support allows us to infer erasure annotations from a program, check con-
sistency of these annotations, and erase everything marked as runtime-irrelevant
before execution, thus recovering the intended run-time behaviour. On the side,
we get features like dependent erasure and forms of erasure polymorphism.

Using erasure allows us to write dependently typed programs using the de-
vices we normally use to obtain correctness guarantees, but without the burden of
time and memory complexity pessimisation caused by runtime-irrelevant struc-
tures present in the executed program.



