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On Some Recent Projection Switching
Lemmas for Small Depth Circuits

Srikanth Srinivasan ∗

Abstract

Switching Lemmas are an important technique for analyzing and proving
lower bounds for constant-depth Boolean circuits. Typically, in applying a
switching lemma, we restrict the circuit under consideration by setting a
few of the input variables to constants at random while leaving the other
variables unset. A Switching lemma guarantees, roughly, that any small
Boolean circuit simplifies considerably under such a restriction.

Recently, researchers have analyzed what happens to constant-depth cir-
cuits under random projections, where in addition to the above, we also
identify some variables with each other. This analysis has yielded strong
Projection Switching Lemmas, which have been used to prove some new re-
sults in Boolean circuit complexity, including the resolution of some long
standing open problems in the area. We review some of these projection
switching lemmas and their applications.

1 Introduction
Boolean Circuit complexity is a classical field of s tudy in Computational Com-
plexity Theory. A Boolean circuit is a combinatorial model of computation for 
computing a Boolean function f : {0, 1}n → {0, 1}. Starting with the input vari-
ables, the circuit computes f by successively applying some “simple”, predefined 
operations (such as ANDs, ORs etc.) until the function f has been computed.

Formally, a circuit over a basis of Boolean functions B (e.g. say the fam-
ily of AND and OR functions with any number of input variables) is a directed 
acyclic graph, whose leaves (i.e. sources) are labelled by the input variables —
say x1, . . . , xn — and such that each internal node, called a gate, is labelled by a 
function from B. On a given input, the value computed by each gate in the circuit 
can be defined inductively, with the leaves taking the values of the corresponding
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input variables, and an internal node labelled with a function g taking g(b1, . . . , bk) 
where b1, . . . , bk are the values computed by the gates that feed into g. In this way, 
each gate computes a Boolean function of the Boolean variables x1, . . . , xn. The 
function computed by a designated gate called the output gate is defined to be the 
function computed by the circuit.

As with any computational model, there are natural notions of efficiency as-
sociated with Boolean circuits. By the size of a circuit, we refer to the number 
of gates in the circuit. The depth of a Boolean circuit is the longest path from an 
input variable to the output gate.

The principal problem in Boolean circuit complexity is the Lower Bound prob-
lem, which is the problem of finding explicit functions that cannot be computed 
by small (say polynomial-sized) circuits. While it is easy to see that a randomly 
chosen Boolean function does not have circuits of subexponential size, finding 
explicit examples (say, for a sequence of functions that can be computed by a 
uniform NP algorithm) of such functions can be a very challenging problem.

Starting from the early 1980s, there has been a large body of work in the 
area (see [4] or e.g. [11] for a more recent account), with particular emphasis 
on constant-depth circuits with various kinds of gates performing simple Boolean 
operations such as AND, OR, Threshold and modular computations.

In this article, we consider only functions made up of AND, OR and NOT 
gates. One of the early successes in circuit complexity was the proof of lower 
bounds for constant-depth circuits over this basis. The results of Ajtai [1] and 
Furst, Saxe and Sipser [6] showed that constant-depth circuits over this basis of 
polynomial size cannot compute the Parity function on n variables; here, the Parity 
function is the function that computes the bitwise XOR of all its input variables. 
The results of [1, 6] were subsequently extended by Yao [17] and culminated in a 
near-optimal exponential lower bound due to Håstad [7].

The basic ideas behind these proofs are similar. The AND and OR functions 
can easily be forced to output 0 or 1 respectively by setting any single input vari-
able to 0 or 1 respectively. However, the Parity function does not have this prop-
erty: in fact, to force the XOR of n Boolean variables to a constant, all the vari-
ables must be set to constants. Motivated by this observation, the idea behind the 
lower bound is to show that any small constant-depth circuit C can be forced to 
a constant 0 or a constant 1 by a restriction that sets a strict subset of its input 
variables to constants, which implies that C does not compute the Parity function.

In general, it is not clear how to set the input variables in order to do this, since 
there may be competing constraints. For example, if there is an AND gate which 
takes an input the variable x1 we might want to set x1 to 0 while an OR gate which 
takes the same variable as input indicates that setting x1 to 1 might be a good idea. 
However, it turns out that setting a fraction of the input variables independently 
and uniformly at random satisfies all these constraints with high probability.



The key lemma that allows us to prove this is the Switching Lemma [7]. We
review this fundamental result in Section 3, but for now we note that it implies that
a random restriction of the above form simplifies any small constant-depth circuit
by reducing its depth by 1. Applying the lemma repeatedly allows us to reduce
the circuit to a constant by setting a strict subset of the input variables. This yields
a lower bound for the Parity function as noted above.

While the above technique is good for proving lower bounds for the Par-
ity function, we run into roadblocks when we try to prove analogous results
for other functions. For example, consider the case when we have a function
f : {0, 1}n → {0, 1} for which we want to prove a depth-d circuit lower bound,
but the function itself can be computed by constant-depth circuits of small size,
though of a depth larger than d. By the Switching Lemma, this function is not im-
mune to the above random restrictions to the same extent as the Parity function (in
fact, upon applying a random restriction, it turns into a constant with high proba-
bility) and hence, a different strategy is required to prove such a lower bound.

It turns out that this can be done, as shown by works of Sipser [15], Yao [17]
and Håstad [7]. Håstad proved a strong Depth-hierarchy theorem which says that
for every constant d, there is a function computed by a circuit C of polynomial
size and depth d that cannot be computed by circuits of depth d − 1 and subex-
ponential size. The idea behind the proof is to design a special family of random
restrictions where variables are not set uniformly at random but in a careful and
correlated fashion so that the function computed by C remains non-constant (and
in fact, retains quite a bit of its structure), while at the same time the depth of
any subexponential-sized depth-(d − 1) circuit reduces by 1. This requires a new
Switching Lemma tailored to the modified family of restrictions.

Recently, in a breakthrough work, Rossman, Servedio and Tan [14] proved
an average-case version of the Depth-hierarchy theorem (see Section 5 for more
details), thus solving a long-standing open problem in the area [7]. In this work,
Rossman et al. study a variant of the random restriction paradigm that they call
random projections and their effects on constant-depth circuits. Random projec-
tions extend restrictions in the following sense: while restrictions either leave
variables unset or set variables to constants 0 or 1, random projections also iden-
tify various subsets of variables (i.e. make them equal to each other). This allows
for further simplification of the circuit being analyzed and offsets the effect of the
correlations between the settings to different variables. Subsequent to the work
of Rossman et al. [14], random projections were used by Chen, Oliveira, Serve-
dio and Tan [5] to prove stronger lower bounds for constant-depth circuits test-
ing small-distance connectivity in graphs, and also by Pitassi, Rossman, Servedio
and Tan [13] for proving proof complexity lower bounds. The work of [14] was
strengthened to higher depths by Håstad [9].

An important technical tool in each of these results is a Projection Switching



Lemma which shows that small constant-depth circuits simplify under random
projections. We review two such Projection Switching lemmas due to Chen et
al. [5] and Rossman et al. [14] and give an application to circuit lower bounds due
to Chen et al. [5].

Organization. After some Preliminaries in Section 2, we review the proof of the
Håstad Switching lemma. In Section 4, we prove a Projection Switching Lemma
and use it to prove a strong constant-depth circuit lower bound for a family of
functions that have polynomial-sized but larger depth circuits [5]. In Section 5,
we state the average case depth hierarchy theorem of [14] and prove a weaker
version of their Projection Switching Lemma.

2 Preliminaries
Throughout, we deal with constant-depth circuits made up of AND, OR and NOT
gates. Unless otherwise mentioned, n will denote the number of input variables
and d the depth of the circuit. We do not count the NOT gates in analyzing the
depth of the circuit.

We will always assume that the NOT gates have only variable inputs, i.e. the
circuit can be seen as made up of AND and OR gates only with 2n inputs corre-
sponding to the positive literals x1, . . . , xn and negative literals ¬x1, . . . ,¬xn. It is
easy to check that any circuit can be transformed into this form without increasing
the depth and increasing the size only by a constant factor.

We recall some well-known special subclasses of constant-depth circuits that
will also be interesting.

• A formula is a circuit where the underlying Directed Acyclic graph is a
rooted, directed tree.

• A CNF formula is a depth-2 formula where the output is an AND gate and
its inputs are OR gates with literals feeding into them; the functions com-
puted by the OR gates are clauses. A k-CNF formula is a CNF where each
clause has at most k literals.

• We define DNF formulas and k-DNF formula in the same way, except that
the output gate is an OR and inputs to it are AND gates that compute terms.

• A Decision tree is a simple query model for computing Boolean functions.
The model is defined to be a rooted full binary tree where each internal
node is labelled by a Boolean variable, which is the variable queried at that
node, and each leaf is labelled by 0 or 1. The computation path follows a



root to leaf path in the following way: at a node querying a variable xi, the
computation proceeds to the left child if xi takes the value 0 and to the right
child otherwise. When the computation reaches a leaf, the value labelling
that leaf is the value output by the function. The height of a decision tree is
the longest root to leaf path in the tree.

Decision trees can be efficiently simulated by both DNFs and CNFs. More
precisely, a decision tree of height at most k can be computed by a k-CNF
with at most 2k clauses and also by a k-DNF with at most 2k terms.

We use D( f ) to denote the minimal depth of a decision tree computing the
function f .

The primary tools that we use to analyze constant-depth circuits are restric-
tions and projections.

A restriction on a set X of variables is a string ρ ∈ {0, 1, ∗}X (or equivalently a 
function ρ : X → {0, 1, ∗}). The meaning attached to a restriction is that variables 
x ∈ X such that ρ(x) ∈ {0, 1} are set to the constant ρ(x) whereas a variable x 
such that ρ(x) = ∗ is left as is. Given a Boolean function f : {0, 1}X → {0, 1}, 
a restriction ρ naturally defines a  r estriction o f f  t o a  B oolean f unction o f the 
variables X′ ⊆ X. We use the notation f � ρ to denote this function.

Given restrictions ρ1, . . . , ρs ∈ {0, 1, ∗}X, we use the notation ρ1 · · · ρs to denote 
the composed restriction ρ where a variable x is set to ∗ if it is set to ∗ by all the 
ρis and otherwise set to ρi(x) where i = min{ j | ρ j(x) , ∗}.

Given another set of variables Y , we define a  projection to be a  restriction ρ 
along with a function π : X → Y . Here, we restrict the variables according to ρ as 
above, but further, each variable x ∈ ρ−1(∗) is replaced by π(x) ∈ Y . This process 
transforms f : {0, 1}X → {0, 1} to a Boolean function over the variable set Y; we 
denote this function by Proj( f � ρ). (When we use this notation, Y and π will be 
clear from context.)

A random restriction or projection is simply a probability distribution over the 
space of restrictions or projections respectively.

Let R be a random restriction over the variables in X. For each ρ ∈ {0, 1, ∗}X, 
we define the weight of ρ, denoted wt(ρ), to be the probability that ρ is obtained on 
sampling a restriction according to the distribution R. Given a set B ⊆ {0, 1, ∗}X 

of restrictions, we define i ts weight wt(B) to be the sums of the weights of the 
restrictions in B. When this notation is used, distribution R will be clear from the 
context.



3 Håstad’s Switching Lemma
In this section, we review the proof of the classical Håstad Switching lemma [7]
since the statements and proofs of the projection switching lemmas build on this.
We will follow the Razborov-style encoding proof of this statement as expounded
by Beame [2] and its modification by Thapen [16].

Let X = {x1, . . . , xn} be a set of Boolean variables. For a parameter p ∈ [0, 1],
let R1(p) be the distribution of the restriction ρ output by the following sampling
algorithm: for each i ∈ [n], independently set ρ(xi) to be ∗ with probability p and
0 or 1 with probability (1 − p)/2 each.

Let us compute the weight of a restriction ρ ∈ {0, 1, ∗} under the above random
restriction. It can be checked that if a ρ ∈ {0, 1, ∗}X has exactly a many ∗s, then
we have

wt(ρ) = pa

(
1 − p

2

)n−a

. (1)

Lemma 1 (Håstad Switching Lemma). Assume p ≤ 1/10. Let F be a k-DNF over
the variables in X. Then for ρ sampled from R1(p), we have

Pr
ρ

[D(F � ρ) ≥ `] ≤ (10pk)`.

Remark 2. While we have stated the above lemma for k-DNFs, it is easy to see
that it holds for k-CNFs also. To see this, note that if F is a k-CNF, then its
negation ¬F can be represented as a k-DNF. By the above lemma, with high prob-
ability, ¬F � ρ has a decision tree of depth at most `. However, since the class of
functions with decision trees of depth at most ` is closed under complement, the
same statement holds for F as well.

Proof. The proof of the lemma actually analyzes the following simple decision
tree strategy for computing F � ρ. Fix some arbitrary ordering of the terms of F
and inside each term, fix any ordering of the literals appearing in the term.

T1(F, ρ):

1. Choose the first term T (according to the fixed ordering) that has not yet
been fixed to 0 by ρ, i.e. such that ρ has not yet falsified any literal appearing
in T . If there is no such term, output 0.

2. Let X′ ⊆ X be the set of unset variables (i.e. variables from ρ−1(∗)) appear-
ing in T . Query all the variables in X′.

3. If the term T is set to 1 by the assignment to the variables in X′, output 1.



4. Otherwise, let τ ∈ {0, 1, ∗}X be the restriction that sets the variables in X′

according to the answers to the queries. Replace ρ by ρτ and go back to
Step 1.

It is easy to check that for any F and ρ, T1(F, ρ) indeed computes the function
F � ρ. The crux of the argument is to show that with high probability, T1(F, ρ) is
a small depth decision tree. We would like to bound wt(B) where B is the set of
“bad” restrictions ρ such that depth(T1(F, ρ)) ≥ `.

To do this, we use the encoding style proof of Razborov [2, 16]. We will define
an encoding function E : B → {0, 1}X × A for a suitable finite “auxiliary” set A
with the following properties.

• Decodability: The map E is 1-1. Or equivalently, given E(ρ) = (E1(ρ),E2(ρ)) ∈
{0, 1, ∗}X ×A for any ρ ∈ B, we can recover the restriction ρ.

• Weight increase: For each ρ ∈ B, we have wt(E1(ρ)) ≥ wt(ρ) · Γ for some
Γ ≥ 1.

If we have an encoding E as above, we can bound wt(B) as follows.

wt(B) =
∑
ρ∈B

wt(ρ) ≤
∑
ρ∈B

wt(E1(ρ))
Γ

=
1
Γ

∑
ρ∈B

wt(E1(ρ))

≤
∑

ρ′∈{0,1,∗}X

wt(ρ′)
Γ
· |A| =

|A|

Γ
·

∑
ρ′∈{0,1,∗}X

wt(ρ′) =
|A|

Γ
(2)

where for the first inequality we have used the Weight increase property of E 1 and 
for the second inequality we have used the fact that E is 1-1 and hence for each 
ρ′ ∈ {0, 1, ∗}X, the number of ρ such that E1(ρ) = ρ′ is bounded by |A|.

We are now ready to define the Encoding function E and show that it has the 
desired properties. We will take the set A to be [k]` × {0, 1}` × {0, 1}`.

Fix any ρ ∈ B, i.e. such that depth(T1(F, ρ)) ≥ `. We identify each path in 
T1(F, ρ) by the tuple of Boolean answers obtained for the queries along the path. 
Let π′ ∈ {0, 1}t for t ≥ ` be the lexicographically first path of length at least `  in 
T1(F, ρ) and let π ∈ {0, 1}` be the answers to the first ` queries along the path.

During the course of first `  q ueries, a ssume t hat t he t erms c onsidered by 
T1(F, ρ) are T1, . . . , Ts (in order) and let X1, . . . , Xs be the variables queried in 
these terms. Note that the sets X1, . . . , Xs are pairwise disjoint.

Let τ1, . . . , τs ∈ {0, 1, ∗}X be the restrictions that set the variables in X1, . . . , Xs 
according to π (i.e. according the answers to the queries made by T1(F, ρ)). We 
define the restrictions σ1, . . . , σ s ∈  {0, 1, ∗ }X where σ i sets the variables in X i in 
the unique way so that the term Ti is not forced to 0 by σi (note that σi might force 
T j to 0, which will not be relevant to us).



We set E1(ρ) = ρσ1 · · ·σs. At this point, we can calculate the amount of
weight increase. Since E1(ρ) has exactly ` fewer ∗s than ρ, by (1), we have

wt(E1(ρ))
wt(ρ)

=

(
1 − p

2p

)`
. (3)

We now need to specify the auxiliary data E2(ρ), which is designed in a way
that allows us to decode ρ from E(ρ), i.e. to find the additional variables that
are set by E1(ρ) and “unset” them. To do this, we make the following important
observations:

• Say s > 1. The term T1 is the first term that is set to 1 in F � E1(ρ).

• More generally, for i < s, if we define the restriction ρ(i) = ρτ1 · · · τi−1σi · · ·σs,
then Ti is the first term that is set to 1 in F � ρ(i).

• The term Ts is the first term not set to 0 by ρ(s). 1

By the above observation, given the restriction E1(ρ) = ρ(1), we can recover the
term T1. In this term, the set of variables X1 can then be specified by specifying
for each variable x ∈ X1, a j(x) ∈ [k] that gives the relative position of x among
the variables in T1. This allows us to undo the settings to the variables in X1.

Motivated by this, we set E2(ρ) = (j,b, π) where

• j = ( j(xi1), . . . , j(xi`)) ∈ [k]` where xi1 , . . . , xi` are the variables queried
along the path π (in that order) and j(xir ) ∈ [k] is the index of the variable
xir in the corresponding term (Ti if xir ∈ Xi).

• b = (b(xi1), . . . , b(xi`)) ∈ {0, 1}
` that tells us for each r ∈ [`] if xir is the last

variable queried in the corresponding term (term Ti if xir ∈ Xi).

• π ∈ {0, 1}s that allows us to recover τ1, . . . , τs.

To decode ρ from (E1(ρ), E2(ρ)), we proceed as above. We start with ρ(1) = 
E1(ρ) and obtain term T1. Having done so, we can find X 1 using the auxiliary data 
and also the restriction τ1 (the bit vector b tells us exactly how many variables are 
in X1 and hence how many entries of j and π are relevant for X1). Now, we can 
change the settings to the variables in X1 in accordance with τ1 to construct the 
restriction ρ(2). We continue in the same fashion until all the sets X1, . . . , Xs are 
found. Setting all the variables in these sets to ∗, we can recover ρ. This concludes 
the description and analysis of the decoding procedure.

1The reason for the slight difference in the case of Ts is because we clipped the long path π′ to 
have length exactly s.



Since we have an encoding E satisfying the decoding property, we can use (2)
and (3) to bound the weight of B as follows.

wt(B) ≤
|A|

Γ
=

(4k)`

(1 − p/2p)`
≤

(
8pk

1 − p

)`
≤ (10pk)`

where for the final inequality we have used p ≤ 1/10. This concludes the proof of
the Håstad Switching Lemma. �

4 A blockwise Projection Switching Lemma
In this section, we describe a recent Projection Switching Lemma of Chen et al. [5]
that was used to prove lower bounds for small-depth circuits testing small-distance
connectivity in undirected graphs. We will also show an application of this lemma
from [5] to prove depth-d superpolynomial-size circuit lower bounds for a func-
tion that has a polynomial-sized circuit of depth 2d.

While the statement of the Projection Switching lemma in [5] is quite specific
to the setting of small-distance connectivity, the proof is more general. Here, we
give a slightly more general statement that follows using the same techniques.

Assume that we have a set X of n variables that is partitioned into m sets
X1, . . . , Xm of size n/m each. We refer to the X1, . . . , Xm as blocks. Let Y =

{y1, . . . , ym} be a fresh set of variables. Let p ∈ [0, 1] be a parameter.
We denote by R2(p) the distribution over {0, 1, ∗}X output by the following

sampling process.

1. For each i ∈ [m], we choose a uniformly random assignment ai ∈ S where
S is some fixed multiset of Boolean assignments from {0, 1}n/m.

2. For each i ∈ [m], with probability p, we set all the variables in Xi to ∗,
and with probability 1 − p, we set all the variables in Xi according to the
assignment ai. We say that Xi is a ∗-block of ρ if all the variables in Xi are
set to ∗.

Note that the above restrictions are quite different from the restrictions R1(p) 
defined in Section 3 since the assignments to distinct variables in the same block 
are highly correlated. This kind of correlation is necessary to ensure that the 
hard function for which we are trying to prove lower bounds does not simplify 
drastically after the restriction.

It is easy to come up with scenarios where restrictions of the above form do 
not yield good Switching lemmas. Nevertheless, as we show below, there are in-
teresting situations where it is possible to use prove a switching lemma for random 
projections that utilize these restrictions.



Let S2 be the family of restrictions that can appear when we sample a restric-
tion ρ ∼ R2(p); equivalently, S2 is the set of restrictions ρ ∈ {0, 1, ∗}X such that
the restriction of ρ to each Xi is either all ∗s or an assignment from S . Note that if
ρ ∈ S2 has exactly a many ∗-blocks, then

wt(ρ) =
pa(1 − p)m−a

|S |m−a . (4)

To be able to prove a Projection Switching Lemma, we will need the distribu-
tion R2(p) to satisfy some additional properties.

Let k ∈ N and γ ≥ 1 be parameters. We say that the distribution R2(p) as
defined above is (k, γ)-feasible if the following conditions are satisfied.

• Fix any Xi and any subset X′i ⊆ Xi of size at most k. Then for each b ∈ {0, 1},
there is an assignment α ∈ S that sets all the variables in X′i to b.

• p|S | ≤ 1/γ.

Projections. Finally, we will project the variables by setting, for each ∗-block
Xi of ρ, all the variables in Xi to the fresh variable yi ∈ Y . We will use crucially
the simplifications in this step to prove the switching lemma.

With the above notation in place, we state the Projection Switching lemma.
As before we state the Switching lemma only for k-DNFs, but it also holds for
k-CNFs as in Remark 2.

Lemma 3. Fix a parameter p ≤ 1/2. LetR2(p) as defined above be (k, γ)-feasible.
Let F be a k-DNF. Then we have for ρ ∼ R2(p)

Pr
ρ

[D(Proj(F � ρ)) ≥ `] ≤
(
10k
γ

)`
.

Before we prove Lemma 3, let us see a couple of examples that motivate why
we might want to consider the above projections.

Example 1. 1. Consider the setting where k = 2 and |Xi| = t ≥ 2. Let S =

{0t, 1t}. Define F to be the following k-DNF

F =

m∨
i=1

x′i ∧ ¬x′′i

where x′i , x
′′
i ∈ Xi are distinct variables.

For a random restriction ρ ∼ R2(p) as defined above, each term of F is
set to 0 with probability 1 − p and left unchanged with probability p (note



that there is no assignment in S that can set any term to 1). Thus, with good
probability, F � ρ is a k-DNF with ` ≈ pm many disjoint terms. In this case,
it is easy to check that D(F � ρ) ≥ ` (which is large if p and m are chosen
suitably). This tells us that we cannot hope to upper bound the probability
that D(F � ρ) is large.

On the other hand, the function Proj(F � ρ) is the identically zero function
since each term collapses to 0 upon applying the projection. Hence, we
have D(Proj(F � ρ)) = 0 with probability 1.

This illustrates why projections are crucial to proving Lemma 3.

2. Consider the case when X1, . . . , Xm all have size k and let S = {0, 1}k \ {1k}.
Let F be the k-DNF

F =

m∨
i=1

∧
x∈Xi

x.

Applying a random restriction ρ ∼ R2(p) leaves F with ` ≈ pm of its terms
with good probability (this is because, as in the previous example, the as-
signments from S cannot set any term of F to 1). Upon applying a projec-
tion, we see that even the simpler Proj(F � ρ) is an OR of size `, and hence
D(Proj(F � ρ)) ≥ `. Thus, we cannot hope to prove a Projection Switching
lemma in this setting. The problem here is that the set S does not contain
the all 1s assignment and hence the restriction is not (k, γ)-feasible.

We now turn to the proof of Lemma 3 which, modulo minor modifications, is
exactly as in [5].

Proof. The proof of Lemma 3 follows the basic outline of the proof of Lemma 1
above. We will define a decision tree strategy for computing Proj(F � ρ) and
upper bound that the probability that this strategy fails to produce a decision tree
of small depth. To do this, we will define an encoding function on the set of bad
restrictions (those for which the decision tree has large depth) that satisfies both
the decoding and weight increase properties from the proof of Lemma 1.

We now define a simple decision tree for computing Proj(F � ρ). Assume that
all the terms of F have been ordered and so have the variables inside each term.

T2(F, ρ):

1. Consider the first term T in F that is not yet set to 0 and such that T can be
set to 1 by further setting some ∗-blocks in ρ using assignments from S .

Consider a term T ′ has not been set to 0 by the current restriction ρ but at the
same time cannot be set to 1 using assignments from S . We claim that this
must be because there is a ∗-block Xi and variables x′, x′′ ∈ Xi such that the



literals x′ and ¬x′′ both appear in the term T . This is because if all the (at
most k) literals in T ′ from the same ∗-block Xi have the same sign, then the
(k, γ)-feasibility of the space R2(p) guarantees that there is an assignment in
S that satisfies all these literals. Pasting together these different assignments
for each block Xi with variables in T ′, we can construct a satisfying assign-
ment for T ′ using assignments in S only. Thus, any currently non-zero term
T ′ that cannot be set to 1 using assignments from S must contain two vari-
ables x′, x′′ from the same ∗-block with different signs. Upon applying the
projection, such a term T ′ will be set to 0 and it is hence not relevant to
computing Proj(F � ρ).

This justifies the following: if there is no term T of the above form, then
output 0.

2. For each block Xi such that some unset x ∈ Xi appears in T (note that Xi is
necessarily a ∗-block of ρ since otherwise all the variables of Xi are set to
constants), query the variable yi.

3. Let τ ∈ {0, 1, ∗}X be the restriction that sets, for each yi queried in the pre-
vious step, all the variables x ∈ Xi to the value obtained on querying yi. Let
ρ′ = ρτ. If this satisfies the term T , then output 1. Otherwise, replace ρ with
ρ′ and go back to Step 1.

It is easy to see that T2(F, ρ) indeed computes the function Proj(F, ρ). Let B
be the set of restrictions ρ ∈ S2 such that depth(T2(F, ρ)) ≥ `. We need to bound
wt(B).

As in Lemma 1, we define an encoding function E : B → S2 × A where
A = [k]` × {0, 1}` × {0, 1}`. Our encoding function will be decodable as before:
for any ρ ∈ B, we will be able to recover ρ from E(ρ) = (E1(ρ),E2(ρ)). Further,
E(ρ) will satisfy a weight increase property. Putting these two facts together, we
bound wt(B) exactly as in the proof of Lemma 1.

Fix a ρ ∈ B. Let π′ ∈ {0, 1}t (t ≥ `) be the answers received along the lexi-
cographically first path of length at least ` in T2(Proj(F � ρ)). We denote by π
the initial segment of π′ of length exactly `. Let T1, . . . ,Ts be the terms encoun-
tered by the decision tree along this computational path and let Y1, . . . ,Ys be the
sets of variables (from Y) queried while scanning terms T1, . . . ,Ts respectively. 2

Recall that after a variable y j ∈ Yi is queried, all the variables in the block X j are
set to constants and hence the variable y j cannot be queried again. Thus, the sets
Y1, . . . ,Ys are pairwise disjoint.

2Note that the set Ys need not contain all the variables queried during the scan of term Ts along 
the path π′, but rather only those that appear along the clipped path π.



For each i ∈ [s], let πi ∈ {0, 1}|Yi | be the values of the variables in Yi as seen
along the path π. Let τi be the restriction applied to the variables in

⋃
y j∈Yi

X j in
Step 3 of T2(F, ρ) after scanning term Ti.

The encoding E is defined as follows.

• E1(ρ): For each i ∈ [s−1], before the term Ti is scanned by the decision tree
T2(F, ρ), the restriction ρτ1 · · · τi−1 has already been applied to the variables.
Let σi denote any restriction that sets, for each y j ∈ Yi, all the variables in
the block X j using an assignment α j ∈ S so that the restriction ρτ1 · · · τi−1σi

sets the term Ti to 1 (there is such a σi because this is exactly how the term
Ti is chosen in Step 1 of the description of T2(F, ρ)).

For the case when i = s, we choose σs in exactly the same way except that
we cannot ensure thatσs sets Ts to 1 since there may be unset variables in Ts

even after all the ∗-blocks corresponding to the variables in Ys are assigned.
Instead, we can choose σs so that ρτ1 · · · τs−1σs does not set the term Ts to
0.

We define E1(ρ) = ρσ1 · · ·σs.

• E2(ρ): This is almost exactly the same as in Lemma 1. For each variable
yr ∈ Yi, we fix a j(yr) ∈ [k] that indexes the first variable from the block Xr

that appears in the term Ti; we also fix a b(yr) ∈ {0, 1} that tells us if yr was
the last variable queried while scanning the term Ti or not.

Let yi1 , . . . , yi` be the variables read by the T2(F, ρ) along the path π in
that order. The auxiliary data E2(ρ) is defined to be (j, b, π) where j =

( j(yi1), . . . , j(yi`)) and b = (b(yi1), . . . , b(yi`)).

We need to show that E(ρ) has both the decodability and the weight increase
properties. Then, we will be done using (2).

We first describe how to recover ρ given access to E(ρ). The decoding proce-
dure inductively finds Y1, . . . ,Ys and τ1, . . . , τs as follows.

• Assume we already have Y1, . . . ,Yi−1 and τ1, . . . , τi−1. By setting the vari-
ables in the blocks corresponding to y ∈

⋃
j<i Y j according to the restriction

τ1 · · · τi−1 and the remaining variables as per E1(ρ), we obtain the restriction
ρ(i) = ρτ1 · · · τi−1σi · · ·σs.

• We apply the restriction ρ(i) to F and find the first term T that is either set to
1 or that can be set to 1 by setting some ∗-blocks using assignments from S
(the latter condition is useful when i = s). This is the term Ti.

• Using the auxiliary data and Ti, we can recover both πi and Yi (exactly as in
Lemma 1), and hence τi.



By the end of this procedure, we have the sets Y1, . . . ,Ys. The restriction E1(ρ)
is obtained by setting the corresponding ∗-blocks in ρ to assignments in S . Hence,
to recover ρ, we simply change these blocks back to ∗-blocks. We have thus shown
that the encoding E is decodable.

We now show that wt(E1(ρ)) is considerably larger than wt(ρ). Since E1(ρ)
has |

⋃
i∈[s] Yi| = ` fewer ∗-blocks than ρ, we see from (4) that

wt(E1(ρ))
wt(ρ)

=

(
1 − p
p|S |

)`
≥ (γ(1 − p))`

where the last inequality uses the fact that the random restriction R2(p) is (k, γ)-
feasible and hence p|S | ≤ 1/γ. Thus, we have as in (2) that

wt(B) ≤ |A| ·
(

1
γ(1 − p)

)`
= (4k)` ·

(
1

γ(1 − p)

)`
≤

(
10k
γ

)`
.

�

4.1 Using the Projection Switching Lemma for lower bounds
In this section, we give an application of Lemma 3 from [5]. We will show that
there exist functions that have polynomial (and indeed linear) sized formulas of
depth 2d but do not have subexponential-sized depth-d circuits. While this is
slightly weaker than the Depth-hierarchy theorem of Håstad [7] that was men-
tioned in the Introduction, the functions used here imply strong lower bounds for
the problem of testing small-distance connectivity in a graph, strengthening an
earlier result of Beame, Impagliazzo and Pitassi [3]. We refer the reader to [5] for
further details regarding this.

We now define formally the functions for which we will prove lower bounds.
Let w, u be growing integer parameters with u ≤ w1/4. Define the function SkewSipserd
as follows inductively as follows. For d = 1, the function SkewSipser1 is defined
on a set of n1 := u2 variables {xi, j | i ∈ [u], j ∈ [u]} as follows:

SkewSipser1(x1,1, . . . , xu,u) =
∧
i∈[u]

∨
j∈[u]

xi, j.

For d ≥ 2, we define SkewSipserd on nd := nd−1 ·wu variables by partitioning the
input set X of nd variables into w · u sets Xi, j (i ∈ [u], j ∈ [w]) of size nd−1 each.
We then define

SkewSipserd(X) =
∧
i∈[u]

∨
j∈[w]

SkewSipserd−1(Xi, j).



Note that the function SkewSipserd can be computed by a depth-(2d) formula
of size O(nd) where nd = wd−1 ·ud+1. However, we will see that any depth-d circuit
for SkewSipserd must have large size.

Theorem 4. Let d be a constant. Let C be any depth-d circuit computing SkewSipserd.
Then, C must have size wΩ(u).

Proof. We will prove the theorem by applying Lemma 3 for a suitably chosen
random projection so that the following happens.

• The circuit simplifies: Given any circuit C of size s ≤ wΩ(u), the projection
causes the depth of C to drop by 1 with high probability. This will be
a simple application of the projection switching lemma and the fact that
decision trees of height k can be written as both k-DNFs and k-CNFs.

• SkewSipserd retains structure: At the same time, however, we also ensure
that with high probability, the function SkewSipserd does not simplify too
much. In fact, we will ensure that even after the projection, the function
SkewSipserd “contains” a copy of SkewSipserd−1. This will allow us to
induct.

Let k = u − 1.
We actually prove the following stronger statement. Let C be any circuit com-

puting SkewSipserd of depth d + 1 where all the gates at depth d (i.e. just above
the variables) have fan-in at most k. Then C contains at least wΩ(u) gates of depth
at most d − 1.

Note that the above generalizes the statement we want to prove, since we can
always convert a depth-d circuit with no bound on its fan-in to a depth-(d + 1)
circuit with bottom fan-in 1 by introducing dummy AND and OR gates of fan-in
1 just above the variables. This modification does not change the number of gates
at depth at most d − 1.

The proof is by induction on the depth d. The base case is d = 1, which is
trivial since the function SkewSipser1 cannot be expressed as k-CNF or a k-DNF
(the proof of this is left to the reader).

Now, consider the case when d ≥ 2. Define m = nd/u2 and n = nd. Let
F1, . . . , Fm be the m copies of SkewSipser1 at depth 2d − 2 in the formula for
SkewSipserd, and let X1, . . . , Xm respectively be the sets of variables that appear
in these formulas. The sets X1, . . . , Xm all have the same size u2 and partition the
set X. We can further partition each Xi into Xi, j ( j ∈ [u]) so that for each i ∈ [s]
we have

Fi =
∧
j∈[u]

∨
x∈Xi, j

x.



For j ∈ [u] and b ∈ {0, 1}, let α j,b ∈ {0, 1}u
2

be the assignment that sets all
the variables in Xi, j to b and all the variables in Xi, j′ ( j , j′) to 1 − b. Define
S = {α j,b | j ∈ [u], b ∈ {0, 1}} to be the set of all such assignments. We have
|S | = 2u. The set S of assignments is chosen to satisfy the following properties:

• No assignment in S sets any Fi to 1.

• Every set of at most k variables in Fi can be simultaneously set to 0 or to 1
by some assignment in S .

• |S | is not too large.

Let C be any circuit of depth-(d + 1) and bottom fan-in at most k computing
SkewSipserd. Let F′1, . . . , F

′
t be the depth-2 subcircuits of C, which are either

k-CNFs or k-DNFs.
We apply the projection switching lemma (Lemma 3) with the following fam-

ily of random projections. We will use the family of restrictions R2(p) with the
blocks being X1, . . . , Xm, S being the assignments to these blocks as defined above
and p = 1

w2/3 . After the restriction is applied, the ∗-blocks are projected down to
a fresh set Y = {y1, . . . , ym} of variables. It can be checked that R2(p) is (k, γ)-
feasible for k as above and γ = w1/3 for w large enough.

Let ρ ∼ R2(p). We analyze Proj(F � ρ) for F ∈ {F′1, . . . , F
′
t , F1, . . . , Fm}.

• Each F ∈ {F′1, . . . , F
′
t } is a k-CNF or a k-DNF. By Lemma 3, we see that

Pr
ρ

[D(Proj(F � ρ)) ≥ u] ≤ (10u/γ)u ≤ w−u/20

for large enough w. If the number of depth-2 subcircuits t ≥ wu/20/10, then
we have our lower bound. Otherwise, by a union bound we see that with
probability at least 9/10, each F′i satisfies D(Proj(F � ρ)) ≤ u − 1 = k. If
this is the case, each F′′i = Proj(F′i � ρ) can be written as both a k-CNF or a
k-DNF. Choosing the CNF or DNF representation for each F′′i appropriately
and merging with the gates that it feeds into, we can reduce the depth of the
projected circuit Proj(C � ρ) to d while keeping the bottom fan-in bounded
by k.

Note that this last step might increase the number of gates in the circuit
overall, but does not change the number of gates at depths d − 2 or less. So
the induction hypothesis for depth d is now applicable.

• Now consider Fi for some i ∈ [t]. Each Xi is a ∗-block with probability p,
in which case the entire formula Fi collapses to a fresh variable yi, and with
probability 1 − p all the variables in Fi are set according to an assignment



in S , which causes the formula Fi to collapse to 0 (note that no assignment
in S sets Fi to 1).

Let G be any OR-gate at depth 2d − 3 in SkewSipserd. The OR gate has
w many inputs, each of which collapses to a distinct variable from Y with
probability p and to 0 with probability 1− p. Thus the function Proj(G � ρ)
is an OR of expected fan-in pw = w1/3. By a standard Chernoff bound,
the probability that the Proj(G � ρ) has fan-in less than u (which in turn is
smaller than w1/3/2 for large enough w) is exp(−Ω(w1/3)). Taking a union
bound over all the OR-gates at depth 2d−3 (there are wO(d) of them), we see
that with probability at least 9/10, each OR-gate has fan-in at least u after
the projection.

By the above reasoning, with probability at least 8/10 over the choice of the
random projection, we have both that the depth of C′ = Proj(C � ρ) can be effi-
ciently reduced to d, and that SkewSipser′d := Proj(SkewSipserd � ρ) becomes a
depth 2d − 2 formula over the variables Y where each OR gate at depth 2d − 3 has
fan-in at least u.

The latter formula is almost the formula SkewSipserd−1 with the only differ-
ence being that the gates at depth 2d − 3 in SkewSipserd−1 have fan-in exactly
u. However, this can be easily fixed by setting some of the variables in Y to 0 to
ensure that each gate at depth 2d − 3 in SkewSipser′d has fan-in exactly u.

We can now apply the induction hypothesis to show that C′ has at least wΩ(u)

many gates at depth d − 2 or less. This implies the same lower bound for C and
hence completes the induction. �

5 A Projection Switching lemma for average-case
hardness

In this section, we present a variant of the Projection Switching lemma due to
Rossman et al. [14], which was used to prove an average-case Depth Hierarchy
theorem for small-depth circuits. We begin by describing the statement of the
result of [14].

Let f : {0, 1}n → {0, 1} be a Boolean function and C a class of circuits over n
Boolean variables. We say that f is ε-correlated with C if for any C ∈ C and a
uniformly random input x ∈ {0, 1}n we have

Pr
x

[ f (x) = C(x)] ≤
1
2

+ ε.

Note that any Boolean function f agrees with either the constant 0 or the constant 
1 function on at least half its inputs; so, the property of being ε-correlated (for



some small ε) with C ensures that no circuit C ∈ C can achieve much better agree-
ment with f than the trivial agreement achieved by one of the constant functions.
For ε = o(1) for example, this is a strong notion of average-case hardness for
Boolean functions.

Using the classical Switching Lemma (Lemma 1), Håstad [7] showed that
the Parity function is o(1)-correlated with the class of constant-depth circuits of
subexponential size (more refined versions of this statement were proved recently
by Impagliazzo, Matthews and Paturi [10] and Håstad [8]). However, the fol-
lowing question remained open for a long time: do there exist functions that
have constant-depth d circuits of polynomial-size and are o(1)-correlated with
any depth-(d − 1) circuits of polynomial size?

This question was recently resolved positively by Rossman, Servedio and
Tan [14] using the technique of random projections. They were, in fact, able

to resolve the question for depths d ≤
ε
√

log n
log log n for some absolute constant ε > 0.

More recently, Håstad [9] strengthened this theorem to give such a result for all
depths up to Ω( log n

log log n ). We state this theorem below.

Theorem 5. The following holds for some absolute constant δ > 0. Let n be a
growing parameter and assume 2 ≤ d ≤ δ log n

log log n . There is an explicit Boolean
function fd that is computed by depth-d formulas of linear size such that fd is 
n−Ω(1/d)-correlated with any circuit of depth at most d − 1 and size at most 2n1/5(d−1) 

.

We do not attempt to prove this theorem here. However, we outline some 
ideas of the proof in order to motivate the projection switching lemma proved in 
the next section.

The functions fd in Theorem 5 are similar to the SkewSipser functions from 
Theorem 4, with the difference being that the fan-ins of all the gates are chosen 
carefully to ensure that on a uniformly random input, the output of the function fd 
is a near-uniformly random bit.

At a very high level, the proof of Theorem 5 proceeds along similar lines to 
Theorem 4. As in the proof of Theorem 4, we cannot apply the standard Switching 
Lemma (Lemma 1) since those random restrictions also collapse the function fd 
to constant with high probability. Instead, we would like to set some of the input 
variables in a correlated way to preserve the structure of fd. At the same time, 
however, we would like to ensure that the input bits are set independently at ran-
dom (since we are measuring correlation under the uniform distribution). These 
two requirements, the need for correlation on the one hand and independence on 
the other, are seemingly at odds with each other. However, it turns out that there 
is a way of reconciling them with the use of random projections. The basic idea 
is illustrated by the following observation of O’Donnell and Wimmer [12].



The O’Donnell-Wimmer trick. Let p ∈ [0, 1] be a parameter and suppose we
want to generate an input from the product distribution µp over {0, 1}w where each
bit is set to 1 independently with probability 1 − p.3 It can be checked that the
following sampling process generates a random α ∈ {0, 1}w with distribution µp.

• Sample a random element α′ ∈ {∗, 1}w \ {1w} by setting each entry of α′ to
be independently 1 with probability 1− p subject to the constraint that there
is at least one ∗ in α′. I.e., we sample a sequence α(1), α(2), . . . , from {∗, 1}p

where each entry of α(i) is independently set to 1 with probability 1 − p and
∗ otherwise. We then pick the first α( j) that is not 1w and call it α′.

• Choose z to be 1 with probability p′ = (1− p)w and 0 with probability 1− p′.
Let α ∈ {0, 1}w be the string obtained from α′ by replacing all the ∗-locations
by z.

(Note that the first step of the above process is essentially a random projection 
to a single variable.)

Interestingly, while each step of the above process sets the variables in a cor-
related fashion, the composition of the two steps results in an uncorrelated dis-
tribution across the w coordinates. This allows to view the process of sampling 
an input from, say, the uniform distribution in a series of steps where the input 
variables are set in a correlated way.

The proofs of [14, 9] are based on designing a sequence of carefully cho-
sen correlated random projection steps, similar to but more involved than the 
O’Donnell-Wimmer trick above, such that each step preserves the structure of 
the hard function fd and moreover, the projections compose to yield the uniform 
distribution over all the inputs.

To prove the lower bound, we also need to show that each random projection 
step helps simplify a sub-exponential sized circuit of smaller depth. For this, we 
need a projection switching lemma for this family of random projections. We 
describe such a projection switching lemma in the next section.

5.1 The Projection Switching lemma of [14]
We describe a simple version of a random projection due to Rossman et al. [14] 
and prove a projection switching lemma for this random projection. While the ran-
dom projections used to prove the average-case depth hierarchy theorems in [14] 
are much more sophisticated, most of the additional technicality is introduced to 
preserve the structure of the hard functions; the proof of the Switching lemma is 
not very different from what is presented here.

3While we are interested in correlation over the uniform distribution, analogous questions for 
biased product distributions naturally appear at intermediate stages of the proof.



Let p, q, λ ∈ [0, 1] and w ∈ N be parameters. Define

p′ = (1 − p)w and γ = min
{

1 − λ − q
q

,
λ(1 − p′)

p′q

}
.

Let X be a set of n variables partitioned into m parts X1, . . . , Xm, each of size
w. We will call the sets X1, . . . , Xm blocks. Let Y = {y1, . . . , ym} be a set of fresh
variables.

We first define a local random restriction that only acts on a single block.
This restriction is a probability distribution R′3(p, q, λ) over {0, 1, ∗}w defined as
follows:

• Choose a restriction ξ′ from {∗, 1}w \{1w} such that each entry is set indepen-
dently to 1 with probability p and ∗ otherwise, subject to the constraint that
there is at least one ∗ (exactly as in the O’Donnell-Wimmer trick above).

• Choose a z ∈ {0, 1, ∗} such that z = 1 with probability λ, ∗ with probability
q and 0 with probability 1 − λ − q.

• Output ξ ∈ {0, 1, ∗}w obtained by replacing all the ∗s in ξ′ with z.

In informal terms, the above process can be visualized as first applying the
O’Donnell-Wimmer trick to project the w random bits to a single random bit and
applying a random restriction to this bit.

Note that the process of sampling a local restriction never produces a restric-
tion containing both 0s and ∗s. For z ∈ {0, ∗}, we say that ξ is of type z, denoted
type(ξ) = z, if ξ ∈ {1, z}∗ \ {1w}. If ξ = 1w, we define type(ξ) = 1.

We define the weight wt′(ξ) of a local random restriction to be the probability
that it is output under the distribution R′3(p, q, λ). Note that

wt′(ξ) =


pw−a(1−p)aq

1−p′ if type(ξ) = ∗ and ξ has a 1s,
pw−a(1−p)a(1−λ−q)

1−p′ if type(ξ) = 0 and ξ has a 1s,
λ if type(ξ) = 1.

(5)

3

To sample a random restriction from R3(p, q, λ) over the set of variables X, 
we sample a ξi ∈ {0, 1, ∗}Xi according to the distribution R′ (p, q, λ) and output 
ρ = ξ1 · · · ξm (where we think of each local∏ restriction ξi as leaving variables 
outside Xi unset). Clearly, we have wt(ρ) = i∈[m] wt′(ξi).

For ρ sampled from R3(p, q, λ) as above and i ∈ [m], we say that Xi is a z-block 
of ρ if type(ξi) = z.

Finally, for every Xi that is a ∗-block of ρ, we identify all the unset variables 
in Xi with the variable yi. This yields the random projection that we will analyze.

We will prove the following Projection Switching lemma due to Rossman et 
al. [14].



Lemma 6. Assume p ≤ 1/2. Say F is a k-DNF and ρ ∼ R3(p, q, λ). Then,

Pr
ρ

[D(Proj(F � ρ)) ≥ `] ≤
(
4ke2pk

γ

)`
.

Proof. We start by defining the decision tree for Proj(F � ρ) whose depth we will
analyze.

T3(F, ρ):

1. Consider the first term T in F that is not yet set to 0 by ρ. If there is no such
term, output 0.

2. For each block Xi of ρ such that some unset x ∈ Xi appears in T (note that
Xi is necessarily a ∗-block of ρ since otherwise all the variables of Xi are set
to constants), query the variable yi.

3. Let τ ∈ {0, 1, ∗}X be the restriction that sets, for each yi queried in the previ-
ous step, all the variables x ∈ Xi ∩ ρ

−1(∗) to the value obtained on querying
yi. Let ρ′ = ρτ. If this restriction satisfies the term T then output 1. Other-
wise, replace ρ with ρ′ and go back to Step 1.

Let B be the set of restrictions ρ ∈ {0, 1, ∗}X such that depth(T3(F, ρ)) ≥ `. We
need to bound wt(B).

As in Lemmas 1 and 3, we define an encoding function E : B → S2 × A that
is both decodable and satisfies a suitable weight increase property. We will use
A = [k]` × {0, 1}` × {0, 1}` × {0, 1}`k.

Fix a ρ ∈ B. Let π′ ∈ {0, 1}t (t ≥ `) be the answers received along the
lexicographically first path of length at least ` in T3(Proj(F � ρ)). We denote
by π the initial segment of π′ of length exactly `. Let T1, . . . ,Ts be the terms
encountered by the decision tree along the path π and let Y1, . . . ,Ys be the sets of
variables queried while scanning terms T1, . . . ,Ts respectively. Note that the sets
Y1, . . . ,Ys are pairwise disjoint.

For each i ∈ [s], let πi ∈ {0, 1}|Yi | be the values obtained for the variables in Yi

along the path π. Define X′i =
⋃

y j∈Yi
X j∩ρ

−1(∗) and let τi be the restriction applied
to the variables in X′i in Step 3 of T3(F, ρ) after scanning the term Ti.

The encoding E is defined as follows.

• E1(ρ): For each i ∈ [s−1], before the term Ti is scanned by the decision tree
T2(F, ρ), the restriction ρτ1 · · · τi−1 has already been applied to the variables.
Letσi denote the restriction that sets all the variables in the set X′i as follows:

– Each x ∈ X′i that appears positively in Ti is set to 1,



– All other x ∈ X′i are set to 0 (i.e. variables that either appear negatively
in Ti or don’t appear at all in Ti are set to 0).4

We define E1(ρ) = ρσ1 · · ·σs.

• E2(ρ): For each variable yr ∈ Yi, we fix a j(yr) ∈ [k] that indexes the first
variable from the block Xr that appears in the term Ti, and we also fix a
b(yr) ∈ {0, 1} that tells us if yr was the last variable read while scanning the
term Ti or not.

Finally, for each i ∈ [s], we let ηi ∈ {0, 1}k be the bit string such that ηi( j) = 1
if and only if the jth variable in the term Ti is left unset by ρ but set to 1 by
E1(ρ). We define η = η1 · · · ηs · 0k(`−s) ∈ {0, 1}`k.

Let yi1 , . . . , yi` (in that order) be the variables read by T2(F, ρ) along the path
π. The auxiliary data is defined to be

E2(ρ) = (j,b, π, η)

where j = ( j(yi1), . . . , j(yi`)) and b = (b(yi1), . . . , b(yi`)).

We now see how to recover ρ given access to E(ρ). The decoding procedure
will recover for each i ∈ [s] the following.

• the sets Y1, . . . ,Ys,

• for each y j ∈
⋃

i∈[s] Yi, the set X j ∩ ρ
−1(∗),

• the restrictions τ1, . . . , τs.

This is done as follows.

• Assume we already have Y1, . . . ,Yi−1, τ1, . . . , τi−1, and for each y j ∈ Y1 ∪

· · · Yi−1, we have the set X j ∩ ρ
−1(∗). By setting the variables in

⋃
j<i X j ∩

ρ−1(∗) according to the restriction τ1 · · · τi−1 and other variables according
to E1(ρ), we obtain the restriction ρ(i) = ρτ1 · · · τi−1σi · · ·σs.

• We apply the restriction ρ(i) to F and find the first term T that is not set to 0.
This is the term Ti.

• From Ti and the auxiliary data in j,b, and π, we obtain the set Yi and πi.
This is exactly as in Lemma 1.

For each y j ∈ Yi, we can recover X j∩ρ
−1(∗) as follows. Since some variable

of X j was unset in F � ρ, X j must be a ∗-block of ρ. Hence, it follows ρ(x)
4It is crucial here that all the variables in Xi

′ (including the ones that don’t appear in Ti) are set 
to constants to ensure that the weight increase property holds)



is either ∗ or 1 for each x ∈ X j. Thus, we see that any variable from X j that
is set to 0 in ρ(i) must lie in ρ−1(∗). It only remains to find the variables of
X j ∩ ρ

−1(∗) that are set to 1 by ρ(i). These variables can be obtained from ηi.
Hence, we have X j ∩ ρ

−1(∗).

Finally, having found X j ∩ ρ
−1(∗) for each y j ∈ Yi, we can set τi to be the

restriction that sets all the variables in
⋃

y j∈Yi
(X j ∩ ρ

−1(∗)) according to the
values seen along πi.

By the end of this procedure, we have the sets Y1, . . . ,Ys and further for each
y j ∈

⋃
i Yi the set X j ∩ ρ

−1(∗) of variables from the block X j that were unset in ρ
but have been set to constants in E1(ρ). To recover ρ from E1(ρ), we simply unset
(i.e. change to ∗) all these variables. This concludes the proof of the fact that E is
decodable.

We now bound wt(B). The argument here will be a little more indirect than in
Lemmas 1 and 3. For any string α over the alphabet {0, 1, ∗}, we use |α| to denote
the number of 1s in α. Observe that for any ρ ∈ B, we have |E1(ρ)| = |ρ| + |η|
where η is the last component of E2(ρ) as defined above. As η ∈ {0, 1}`k, we have

|ρ| ≤ |E1(ρ)| ≤ |ρ| + `k.

For c ∈ {0, . . . , `k}, we define Bc = {ρ | |E1(ρ)| − |ρ| = c}. The encoding
function E restricts to a function Ec : Bc → {0, 1, ∗}X ×Ac where

Ac = [k]` × {0, 1}` × {0, 1}` × {η ∈ {0, 1}`k | |η| = c}.

We claim the following weight increase property of Ec for each c ∈ {0, . . . , `k}.

Claim 7. For each ρ ∈ Bc, we have

wt(E1(ρ))
wt(ρ)

≥ γ` ·

(
1 − p

p

)c

.

Assuming the above claim for now, we finish bounding wt(B) as follows. By
(2) applied to each Ec, we get that for c ∈ {0, . . . , `k}

wt(Bc) ≤ |Ac| ·
1
γ`

(
p

1 − p

)c

=

(
4k
γ

)`
·

(
`k
c

)
·

(
p

1 − p

)c

.



Since B is the disjoint union of B0, . . . ,B`k we get

wt(B) =

`k∑
c=0

wt(Bc)

≤

(
4k
γ

)`
·

`k∑
c=0

(
`k
c

)
·

(
p

1 − p

)c

=

(
4k
γ

)`
·

(
1 +

p
1 − p

)`k
≤

(
4k
γ

)`
· ep`k/1−p ≤

(
4k
γ

)`
· e2p`k

=

(
4ke2pk

γ

)`
.

This yields the statement of the lemma modulo the proof of Claim 7, which ap-
pears below.

Proof of Claim 7. Fix any restriction ρ ∈ Bc. We can write ρ = ξ1 · · · ξm for local
restrictions ξi on block Xi and similarly, we have E1(ρ) = ξ′1 · · · ξ

′
m. Let J ⊆ [m]

index the first ` variables in Y that are read along the lexicographically first path
of length at least ` in T2(F, ρ).

By the definition of E1(ρ), ξ j , ξ
′
j if and only if j ∈ J. Thus we have

wt(E1(ρ))
wt(ρ)

=
∏
j∈[m]

wt′(ξ′j)

wt′(ξ j)
=

∏
j∈J

wt′(ξ′j)

wt′(ξ j)
.

(Recall that wt′(ξ) denotes the weight of a local restriction ξ.)
It thus suffices to prove that for each j ∈ J, we have

wt′(ξ′j)

wt′(ξ j)
≥ γ ·

(
1 − p

p

)c j

(6)

where c j = |ξ′j| − |ξ j|.
This can be argued from (5) and the definition of γ, as follows.
We know that type(ξ j) = ∗ whereas type(ξ′j) is either 0 or 1 since all the

variables in X j are set to constants by E1(ρ). In the case that type(ξ′j) = 1, we have
|ξ′j| = w, which implies that |ξ j| = w − c j. Substituting in (5), we see that

wt′(ξ′j)

wt′(ξ j)
=
λ(1 − p′)

p′q
·

(
1 − p

p

)c j

≥ γ ·

(
1 − p

p

)c j

.



In the case that type(ξ′j) = ∗, a similar computation gives

wt′(ξ′j)

wt′(ξ j)
=

1 − λ − q
q

·

(
1 − p

p

)c j

≥ γ ·

(
1 − p

p

)c j

.

This proves (6) and completes the proof of the claim. �

�
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