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Large-scale Graph Generation and Big Data:
An Overview on Recent Results

Ulrich Meyer∗ Manuel Penschuck∗

Abstract

Artificially generated input graphs play an important role in algorithm
engineering for systematic testing and tuning. In big data settings, however,
not only processing huge graphs but also the efficient generation of appro-
priate test instances itself becomes challenging. In this context we survey
a number of recent results for large-scale graph generation obtained within
the DFG priority programme SPP 1736 (Algorithms for Big Data).

1 Introduction
Across disciplines, graphs are a universal method to model entities and their re-
lationships: search engines, social networking sites, e-commerce platforms and
other businesses regularly keep their real world data in the form of graphs. Sim-
ilarly, the internet, neurological systems such as the human brain, reactions of
pharmaceutical substances or subatomic particles, and biological networks are
commonly viewed that way. As the methods of information acquisition and stor-
age continuously improve, an ever increasing amount of data needs to be handled
and processed.

Here we focus on the aspects of experimental algorithmics related to theses big
data challenges. Algorithms processing massive graphs often use approximations,
partition the input into small local chunks, or rely on hierarchical decompositions.
Thus, empirical results on their global performance and quality obtained with
small instances typically do not generalise to much larger inputs.

Unfortunately, suited massive real world datasets are scarce, difficult to man-
age and distribute, do not scale, may exhibit noise and uncontrollable properties,
often lack ground-truth, and can pose privacy or legal issues. Synthetic instances
based on random models help to alleviate these problems. As such models are
parametrised and randomly sample instances from a large families, they addition-
ally allow for reproducible, systematic and statistically significant experiments.
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The specific types of random graph models used in a given engineering pro-
cess highly depend on the application and the experiments carried out. For in-
stance, many real-world graphs (e.g., communication or social networks) exhibit
basic features such as a small diameter, a skewed degree distribution, and a non-
vanishing local cluster coefficient. Further, some models not only provide a graph,
but also additional information which can be used to benchmark an algorithm’s
performance (e.g., LFR and CKB benchmarks for community detection [9, 19,
20]). The application-specific requirements gave rise to a large body of random
graph models which often compromise between mathematical tractability, real-
ism, and sampling costs [2, 31].

We survey a number of new sampling techniques developed by projects of the
DFG priority programme SPP 1736 on Algorithms for Big Data (see also Sec-
tion 5) and collaborations between them. While most target large graph instances
exceeding main memory, there are also continued efforts for internal memory so-
lutions such as the NetworKit library [29] (SPP), as they support the prototyping
of big data algorithms. In order to handle the memory footprint of massive graphs,
the following models of computation have been used:

• The External-Memory model by Aggarwal and Vitter [1] is a commonly ac-
cepted framework to reason about the effects of memory hierarchies. While
it is typically used in a scenario with main memory and disks (EM), the
design patterns promoting data locality often also lead to more cache effi-
cient algorithms. The model features a two-level memory hierarchy with
fast internal memory (IM) which may hold up to M data items, and a slow
disk of unbounded size. The measure of an algorithm’s performance is the
number of I/Os required. Each I/O moves a block of B consecutive items
between memory levels. Reading or writing n contiguous items from or to
disk requires scan(n) = Θ(n/B) I/Os. Sorting n consecutive items triggers
sort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For all realistic values of n, B and
M, scan(n) < sort(n) � n. Sorting complexity constitutes a lower bound
for most intuitively non-trivial EM tasks [1, 23].

• Streaming models approach inputs exceeding internal memory by impos-
ing a view even more restricted than the external memory framework [11].
While there are a number of formulations, they have in common that the
input may only be observed in a scanning fashion (i.e. read from the begin-
ning to end). For some, up to O(log n) passes are acceptable where n is the
number of tokens in the input stream. Additionally, the memory consump-
tion of the algorithm should be highly sub-linear.

• In a distributed setting, there are a number of processing units with a small
local memory. Accessing information not stored there is costly as it requires
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Figure 1: Preferential Attachment. Left: Vertex D is added to a seed graph (nodes
{A, B, C}) in a Barabási and Albert step. Due to its higher degree, A is twice as
likely become a neighbour. Observe that this sampling corresponds to uniformly
drawing a node from the edge list. Right: Execution of look-up-and-connect-to
for weight rank four. The query emits an edge to node B and increases its weight.

communication. Hence, a common design goal is to minimise the number
of messages exchanged (similarly to I/Os in the external memory model).
An extreme case are communication-agnostic algorithms where each pro-
cessing unit is aware of its rank, the total number of units, and some input
configuration but cannot exchange any further information.

From now on, let n be the number of nodes and m the number of edges in a graph.

2 Preferential attachment
Preferential attachment is a property found in a number of iterative random pro-
cesses where nodes with higher degrees are more likely to gain additional edges,
which then further increases their probability to be sampled again. In [22] (SPP)
we introduced two graph generators in the External-Memory Model (TFP-BA and
MP-BA) requiring O(sort(m)) I/Os to generate m edges with such a stochastic pro-
cess. Both are demonstrated for (but not limited to) the popular and minimalistic
preferential attachment family by Barabási and Albert [4]. The model iteratively
growths a random graph from an arbitrary seed graph. In each round a new vertex
is introduced and connected to a fixed number of existing nodes randomly drawn
with a probability proportional to their current individual degrees.

Batagelj and SPP member Brandes [5] observed that such a distribution can
be sampled by choosing a node uniformly at random from the edge list produced
so far since each node u appears exactly deg(u) time in it (cf. Fig. 1). Since this
method incurs unstructured accesses, it triggers Ω(m) I/Os with high probability
for edge lists exceeding the main memory size M by a constant factor. It is hence
infeasible in the external memory setting.



TFP-BA extends this algorithmic idea. It interprets each index of the generated
edge list as a check point at which information can be retrieved. The algorithm
then relies on Time Forward Processing1 to send two types of messages to them.
Firstly, TFP-BA randomly draws all positions from which it will later sample
even before the values to be stored there have actually been computed. It then
sends read messages to these positions informing them for which later indices
their values will be required.

Similarly, write messages carry the value that needs to be written to a certain
index. Initially, each edge in the seed graph is translated into two write instructions
(one for each incident node). In the main phase, the algorithm generates the edge
stream. Each entry receives exactly one write command containing its value, and
a (possibly empty) set of read tokens which can then be answered accordingly by
emitting new write tokens.

While the preferential attachment problem seems inherently sequential, our
second algorithm MP-BA combines external-memory techniques with distributed
or shared-memory parallelism. Rather than performing operations on the edge
list, it explicitly stores the degree distribution in a binary search tree, reducing
the memory footprint from Θ(m) to Θ(n). Leaves correspond to nodes and store
the nodes’ degrees as weights. Each inner node tracks the sum of weights in its
left sub-tree, thereby effectively maintaining a prefix sum over weight intervals.
This enables efficient sampling by drawing a uniform variate from the total weight
interval and finding the associated leaf.

The tree can be implemented in external or distributed memory, and allows
for a lazy look-up-and-connect-to operation (similarly to a Buffer Tree [3] but
with improved constants for this tailor-made operation). MP-BA’s data structure
is suited for all random sampling methods (including the majority of preferential
attachment models) which perform linear updates to the underlying probability
distribution after each trail. This is due to the fact that we can compute the lin-
ear change to a sum of weights without knowledge of individual constituents (cf.
Fig. 1). Therefore, we may delay all operations at any inner node in a queue.

In an experimental evaluation on a heterogeneous CPU/GPU system, MP-BA
is 17.6 times faster than the sequential internal memory scheme of [5] for instances
fitting in main memory, and scales well in the EM setting. We also show an
increase in efficiency of nearly one order of magnitude compared to the parallel
and distributed approach by [6].

Subsequently, inspired by recent work of Shun et al. [28] on parallelism in
randomised incremental algorithms, SPP members Sanders and Schulz published

1Time Forward Processing is a generic technique in external-memory algorithms which relies
on some topological order of a problem’s (implicit) dependency graph. Based on the rank in
this order, a checkpoint can send messages forward to points with higher ranks using a priority
queue [21]. In TFP-BA ranks are identified with edge list indices.



a communication-agnostic, hashing-based preferential attachment approach [26]
that exhibits even more parallelism, albeit in a more restricted setting.

3 LFR benchmark and beyond

The LFR model [19] is a de facto standard benchmark for community detection
algorithms. It constructs a graph with a planted cluster structure and additionally
emits the memberships of each node as ground-truth to assess the quality of a
clustering algorithm.

In order to do so, the degrees of all nodes and sizes of communities are ran-
domly drawn from two parameterisable powerlaw distributions. Subsequently,
each node randomly joins a community it fits in. In case of overlapping commu-
nities, multiple memberships per vertex are possible. The benchmark then provi-
sions a fraction (controlled by the global mixing parameter) of each node’s edges
for neighbours outside its own communities, while the remainder stays within
its clusters. This is achieved, by first independently generating and subsequently
merging the inter-community graph and intra-communities networks. Here it has
to be ensured that the inter-community graph does not contain intra-community
edges. Also, multi-edges may need to be handled in the overlapping case.

In [15] (SPP collaboration), we describe and analyse a pipeline consisting of
four I/O-efficient algorithms which in combination match the LFR model. During
the generation of m edges it triggers O(sort(m)) I/Os with high probability. In an
experimental evaluation, our implementation outperforms the original generator
by at least two orders of magnitude for large instances still fitting into internal
memory, and scales to graphs exceeding main memory.

The most demanding stage in our pipeline is the sampling of a graph from
a prescribed degree sequence. In accordance with the original LFR generator,
we employ the fixed degree sequence model (FDSM) which works in two steps:
Firstly, a highly biased simple graph is materialised using a deterministic algo-
rithm by Havel and Hakimi [13, 16]. It is then randomised as described in the
next section.

3.1 Graph randomisation

The graph randomisation takes a simple graph G which represents the family of
all simple graphs with the same degrees as in G. The task is to output a uniform
sample. This problem is not limited to LFR: for instance, it also arises in network
analysis where randomisation is used to estimate the significance of an observa-
tion relative to the family of graphs with the same degree sequence [27] (SPP).
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Figure 2: EM-ES: Stages executed for each batch of swaps.

In [15], we rely on the edge switching markov chain to match the original
LFR scheme. It applies a list of c · m swaps2 to a graph with m edges where c is a
constant (typically in the range of 10 to 100). Each swap mixes the incident nodes
of two random edges. To ensure that the graph remains simple, a swap has to be
skipped if it would produce a multi-edge or self-loop. Therefore, the following
steps are necessary for each switch:

1. Randomly draw two edges and gather their incident nodes.
2. Mix the nodes and skip if a self-loop arises.
3. Check whether a new edge already exists in the graph and skip if this is the

case to prevent multi-edges.
4. Update the graph, i.e. delete the old edges and insert the new ones.

Observe that all steps but the second one access the edge list in a unstructured
manner. Our I/O-efficient algorithm EM-ES solves this issue by executing batches
of Θ(m) swaps. Each batch roughly follows the steps outlined above but answers
look-ups for all swaps combined (cf. Fig. 2).

Additional care has to be taken to deal with dependencies and conflicts arising
if two swaps operate on the same edge. Before we actually perform the swaps,
we determine in a simulation phase which configurations are possible and then
load and organize all information potentially required. We show (and confirm
experimentally) that the incurred overhead is small and that each batch triggers
O(sort(m)) I/Os with high probability.

In ongoing research we propose to integrate the configuration model [24] into
our LFR pipeline. This graph randomisation is fast but does not produce simple
graphs. However, multi-edges and self-loops can be removed with targeted edge

2The number of swaps is a common choice based on empirical results. To the best of our
knowledge, there is no rigorous theoretical results for general graphs near the empirically found
bounds [8].
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Figure 3: Left: A random hyperbolic graph with n=150 nodes. The area enclosed
by the two hyperbolic circle (lobes) corresponds to all points in distance at most
R around its highlighted centre. Right: Band model introduced by [34] (not to
scale). Neighbours can be found in the inner partial lobe while the step-wise
overestimation corresponds to the area considered during candidate selection.

swaps (at least for the required graph classes). In our empirical study [14] (SPP
collaboration), we compare the classic FDSM pipeline to one containing these
building blocks and find a substantial speed-up due to the extensions.

3.2 Graph replication
Staudt et al. introduce the graph replication method ReCoN [30] (SPP collabo-
ration). It requires a graph and its community structure (which may be supplied
using a clustering algorithm) as input. Inspired by LFR, it generates and ran-
domises inter- and intra-community networks with parameters matching the orig-
inal graph. Outputs larger than the input can be obtained by copying individual
cluster parameters to new communities (and adapting the degree sequence accord-
ingly). While these copies locally share a similar structure, they are in general not
identical due randomisation steps and unequal memberships. In an experimental
evaluation, ReCoN is shown to capture the input graph structure and to output
similar networks orders of magnitude larger. While not studied in their work, all
steps are compatible with the I/O-efficient techniques outlined above.

4 Hyperbolic random graphs
Random hyperbolic graphs [17] are a popular model for social networks as they
naturally capture their features. Each node is associated with a point randomly
placed inside a hyperbolic circle of radius R = Θ(log n). As shown in Fig. 3,
most points lie near the boundary as the radial probability density function grows
exponentially towards the outside.



In the simplest formulation (threshold model, cf. [12]) two nodes are adjacent
iff their distance is at most R. Also in some extensions (e.g., [17]) the probabil-
ity that any two points are adjacent is a continuous function depending on their
distance. For both, the geometric embedding intuitively yields a skewed degree
distribution. Due to the hyperbolic distances, the few points near the origin cover
a much larger probability mass than a point at the boundary and hence have a
higher degree. Additionally, there is a non-vanishing clustering coefficient as two
neighbours of some node are likely to be relatively close to each other as well.

A naïve generator for hyperbolic graphs enumerates all
(

n
2

)
pairwise distances

and emits an edge for each pair of points close enough. It incurs a sequential run-
time of Θ(n2) and is hence prohibitively expensive for large n. All sub-quadratic
algorithms we are aware of rather identify a set of neighbour candidates based on
some geometric overestimation. In a second step, edges are generated by comput-
ing only the distances between a node and its candidates.

Here, we present contributions of three SPP projects. We are currently seeking
to combine and extend these results in a joint effort.

4.1 Fast generators in internal memory

Looz et al. [33] (SPP) project all points from the hyperbolic plane into a Poincaré
disk which allows neighbourhood queries based on euclidean circles. Candidates
are then selected using a polar quad-tree. The authors bound the generator’s run-
time to O((n3/2 +m) log n) with high probability. This approach is compatible with
the threshold model and all probabilistic extensions with monotonic decreasing
edge probability functions. In [32] (SPP) the techniques are extended to general
probabilistic geometric sampling with suggested applications in facility location
problems and sensor networks.

Later, Looz et al. introduce a new candidate selection for the threshold model
which significantly reduces the runtime by removing the angular separation of the
quad-tree [34] (SPP). As sketched in Fig. 3, their generator decomposes the hy-
perbolic plane into Θ(log n) bands whose heights decrease geometrically towards
higher radii. In a preprocessing step, the points are randomly scattered over the
plane and inserted into the appropriate bands based on their radii. The points are
then sorted by their angular coordinates independently for each band.

In the main phase, all points search their neighbours in their own bands and
all above them. Every time, the minimal and maximal polar angles in which
neighbours can be found in a particular band are computed. Based on these, the
first and last candidate in each band can be identified using binary searches. The
authors empirically establish a runtime of O(n log n + m).



4.2 Streaming

In [25] (SPP), we prove a runtime of O(n log log(n) + m) for a generator very
similar to the band-wise sampling of Looz et al.. It uses bands of constant height
and improves data locality by avoiding binary searches. This algorithm is optimal
for all graphs with an average degree3 of Ω(log log n). We also propose method to
enumerate all edges in a streaming fashion with a memory footprint ofO([n1−αdα+

log n] log n) where d is the average degree and α > 1/2 a parameter controlling the
powerlaw degree distribution’s exponent 2α+1 with typically α � 2. For realistic
networks with an average degree of o(n/ log1/α(n)), this significant reduction is
especially useful in the context of co-processors (e.g., GPUs or Xeon Phi) with a
relatively small internal memory. On commodity hardware, the implementation
produces 3.7 · 108 edges per second for graphs with 106 ≤ m ≤ 1012 and α=1,
utilising less than 600 MB of RAM.

4.3 Distributed

Lamm [18] (SPP) introduced communication-agnostic distributed sampling
schemes for a number of models such as Erdös-Rényi graphs and random ge-
ometric networks with euclidean and hyperbolic embeddings. In the sequential
case, the hyperbolic generator has an expected linear runtime complexity and can
be interpreted as an extension of [7]. It partitions the hyperbolic space into dis-
crete bands of buckets. Their number is chosen such that each cell is expected to
contain k points, where k ≈ 4 is a tuning parameter. The generator allows all pro-
cessing units to compute the points within any bucket independently, eliminating
the need for communication. Lamm bounds the generation time of the distributed
grid structure to O(P log n + n/P), where P is the number of processors, and em-
pirically finds a time-complexity of O(n+m

P + P log n) for the parallel algorithm.

5 Priority Programme SPP 1736

The results presented above have been obtained within the Priority pro-
gramme [10] SPP 1736 (Algorithms for Big Data), which has been established
by the German Research Foundation (DFG) in 2013 for a total funding period of
six years basically split into two funding periods of three years each.

3Hyperbolic random graphs not meeting this assumption are typically not connected and have
degenerate powerlaw degree distribution with a significant number of singletons. So a different
model may be better suited.



Starting in 2014, fifteen research projects plus a coordination project (totalling
about 20 full PhD student positions) have been funded during the first period.
Most of these research projects will also receive funding within the second period
which just starts now. Additionally, a few more projects with own funding have
been associated in order to benefit from collaboration and joint events (workshops,
PhD meetings, summer schools etc.) organised by the SPP.

Most of the funded projects concentrate on big data algorithms that are not
machine learning and frequently tackle more than one of the following areas:
(1) technological challenges, (2) fundamental algorithmic techniques, and (3) ap-
plications. In particular, the projects investigate algorithmic exploitation of paral-
lelism (multicores, GPUs, parallel and distributed systems, etc.), handling external
and outsourced memory as well as memory-hierarchies (clouds, distributed stor-
age systems, hard-disks, flash-memory, etc.), dealing with large scale dynamic
data updates, processing compressed data, approximation and online processing
under resource constraints. Concrete applications include 3D+T terabyte im-
age analysis, large-scale text processing and semantic search, drug design, and
genome assembly.

In spite of covering different areas, the vast majority of projects actually works
with graphs and is highly interested in efficient ways to generate artificial graph
data. This has already led to a number of ongoing collaborations with joint publi-
cations and software packages some of which we reviewed above.

More detailed information about SPP 1736 can be found on the webpage of
the programme: https://www.big-data-spp.de.
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