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Abstract

The model of (reactive) probabilistic automata was introduced by Rabin
in 1963 [10], generalising non-deterministic automata by assigning proba-
bilities to transitions. Such an automaton associates with a word a value
between 0 and 1, which is the probability that the run is accepted.

This extended abstract presents recent progress on the value 1 problem
for probabilistic automata, which asks whether given a probabilistic automa-
ton, there exist words accepted with arbitrarily high probability.

Since its introduction by Gimbert and Oualhadj in 2010 [8], the value 1
problem has been studied at great depth, leading to the development of new
tools of algorithmic, algebraic, and topological nature. We report on a re-
cent paper which introduces a topological approach called the prostochastic
theory for understanding the value 1 problem [6, 7].

1 The value 1 problem: motivations and context
The synthesis problem for partially observable systems. A partially observ-
able Markov decision process (POMDP) is a stochastic system whose evolution
depends on the actions of a controller having only a partial observation on the
evolution of the system. This model appears in various fields such as operational
research, artificial intelligence and motion planning in robotics. Developing for-
mal methods to analyse such systems is a major challenge, which attracted a lot
of attention in the past ten years.

The synthesis problem asks, given a POMDP and a specification, whether there
exists a controller for this POMDP ensuring the specification. Unfortunately, this
problem is in general undecidable; as shown by Gimbert and Oualhadj it remains
undecidable under two restrictions [8]:

• the controller is blind, i.e. does not observe anything about the evolution,

• the objective is to satisfy the specification with arbitrarily high probability.



The setting of blind controllers corresponds to the model of probabilistic au-
tomata. They were introduced by Rabin [10] as an extension of non-deterministic
automata over finite words. A probabilistic automaton A assigns to every finite
word u a value in [0, 1], which is the probability that a run ends up in an accepting
state, denoted PA(u).

The value 1 problem takes as input a probabilistic automaton A and asks
whether there exists a sequence of words (un)n∈N such that limnPA(un) = 1.
Equivalently, is it true that for all ε > 0, there exists a word u such that PA(u) ≥
1 − ε? In such case, we say thatA has value 1.

Related works. Over the past years, different restrictions on the class of prob-
abilistic automata have been introduced in order to obtain decidability results.
The first subclass which was introduced specifically to decide the value 1 prob-
lem are the ]-acyclic automata by Gimbert and Oualhadj [8]. Later on Chatterjee
and Tracol [3] introduced structurally simple automata, which are probabilistic
automata satisfying a structural property (related to the decomposition-separation
theorem from probability theory), and proved that the value 1 problem is decid-
able for structurally simple automata. Chadha, Sistla and Viswanathan introduced
the subclass of hierarchical automata [2], and showed that this restriction allows
one to recover decidability results.

The Markov monoid algorithm. Gimbert, Oualhadj and the author introduced
an algorithm for the value 1 problem called the Markov monoid algorithm [5].
It is based on the notion of stabilisation monoids defined by Colcombet in the
study of regular cost functions [1]. A stabilisation monoid is a set equipped with
an associative product and a unary operation ] called stabilisation. The intuitive
meaning of e] for an element e is limn en: stabilisation monoids have a built-in
notion of limits.

The Markov monoid of a probabilistic automaton generalises the transition
monoid for non-deterministic automata by adding the stabilisation operation. In-
tuitively, each element of the Markov monoid represents the action of a sequence
of words. The Markov monoid algorithm takes as input a probabilistic automaton,
computes the Markov monoid of this automaton and looks for value 1 witnesses.

Since the value 1 problem is undecidable, the Markov monoid algorithm does
not solve it for the whole class of probabilistic automata. However, we introduced
the class of probabilistic leaktight automata, and proved the following theorem,
using the factorisation forest theorem of Simon [11].

Theorem ([5]). The Markov monoid algorithm solves the value 1 problem for
probabilistic leaktight automata.

Moreover, this result extends all the previous results in this direction.



Theorem ([4]). The classes of ]-acyclic, structurally simple and hierarchical
probabilistic automata are strictly subsumed by the class of probabilistic leak-
tight automata.

The combination of these two results imply that the Markov monoid algorithm
subsumes all other algorithms for the value 1 problem. The aim of the prostochas-
tic theory is to develop topological tools for analysing this algorithm.

2 The prostochastic theory
Profinite theory. The profinite theory is a deep mathematical theory originating
from topology. It has been developed in automata theory by Almeida, Pin, Weil
and others, see for instance [9]. In this context, it consists in constructing the
topological completion of the set of finite words. In other words, it allows one to
define the notion of converging sequences of finite words and their limits.

The prostochastic theory follows the same approach, generalising it to prob-
abilistic automata. In particular, we construct the topological completion of the
set of finite words, with respect to all probabilistic automata. We proved the fol-
lowing result, which reformulates the value 1 problem over finite words as the
emptiness problem over prostochastic words.

Theorem ([6, 7]). LetA be a probabilistic automaton. Then:

• A has value 1 if, and only if,

• there exists a prostochastic word accepted byA.

Convergence speeds. Our motivations for introducing the prostochastic theory is
to formalise the notion of convergence speeds. Indeed, analysing the undecidabil-
ity proof reveals that the constructed probabilistic automata create two competing
converging speeds making the combined behaviour hard to describe, and in par-
ticular not taken into account by the Markov monoid algorithm.

These behaviours only arise with non-polynomial sequences. Informally, we
say that the sequence ((anb)n)n∈N is polynomial, while the sequence ((anb)2n

)n∈N is
not, since n and 2n are not polynomial related. We proved that the Markov monoid
algorithm captures exactly all polynomial sequences, which is formalised in the
following theorem.

Theorem ([6, 7]). LetA be a probabilistic automaton. Then:

• the Markov monoid algorithm answers “YES” on inputA, if, and only if,

• there exists a polynomial sequence (un)n∈N such that limnPA(un) = 1.



This theorem precisely characterises the computations of the Markov monoid
algorithm. Its proof is rather technical as it requires to obtain precise bounds
on convergence phenomena of sequences of Markov chains. The prostochastic
theory is a language to formalise this proof, meaning that it provides a set of
definitions and notions that are used to formulate the statements and the proofs of
this theorem.

Formally, we define an ω operator echoing the profinite theory for classical
automata, and obtain the set of polynomial prostochastic words as induced by the
set of ω-terms. We prove the following characterisation theorem, equivalent to the
previous one.

Theorem ([6, 7]). LetA be a probabilistic automaton. Then:

• the Markov monoid algorithm answers “YES” on inputA, if, and only if,

• there exists a polynomial prostochastic word accepted byA.
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