
�������� �	 �
� ���� �� ���� ��� ������ ������� ����

©� �������� ����������� 	�� 
��������� �������� �������

The Distributed Computing Column
by

Panagiota Fatourou

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

Announcing the
2012 EdsgerW. Dijkstra Prize
in Distributed Computing

Marcos K. Aguilera
Microsoft Research

Dahlia Malkhi
Microsoft Research

Keith Marzullo
UCSD

Alessandro Panconesi
Sapienza, U. of Rome

Andrzej Pelc
U. Quebec

Roger Wattenhofer
ETH Zurich

The ACM-EATCS Edsger W. Dijkstra Prize in Distributed Computing is
awarded to outstanding papers on the principles of distributed computing, whose
significance and impact on the theory or practice of distributed computing have
been evident for at least ten years. The prize is sponsored jointly by the ACM



��� �������	 
� ��� ����

��

Symposium on Principles of Distributed Computing (PODC) and the EATCS
Symposium on Distributed Computing (DISC).

The 2012 Prize Committee, composed of Marcos K. Aguilera (chair), Dahlia
Malkhi, Keith Marzullo, Alessandro Panconesi, Andrzej Pelc, and Roger Watten-
hofer, has selected

Maurice Herlihy, J. Eliot B. Moss, Nir Shavit, and Dan Touitou

to receive the 2012 Edsger W. Dijkstra Prize in Distributed Computing for the
following two outstanding papers:

Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Sup-
port for Lock-Free Data Structures. 20th Annual International Symposium on Com-
puter Architecture, pages 289–300, May 1993.

Nir Shavit and Dan Touitou. Software Transactional Memory. Distributed Com-
puting 10(2):99–116, February 1997. (An earlier version appearing in the 14th
ACM Symposium on Principles of Distributed Computing, pages 204–213, Au-
gust 1995.)

These papers established the abstraction of Transactional Memory, which has
fundamentally changed parallel computing both in its theoretical foundations and
in its practice.

As with many influential papers, the work by Herlihy and Moss presents a
beguilingly simple idea: extend load-linked and store-conditional to allow a pro-
cessor to update a collection of locations atomically. This idea arose from deep
insights:

• By allowing the creator of a concurrent data structure to focus on what
should be atomic rather than how it should be made atomic, transactional
memory significantly raises the level of abstraction for parallel programs,
thereby eliminating much of the complexity of lock-free programming.

• Because actual dynamic conflicts among operations are rare in well-written
programs, a speculative implementation of atomicity can enjoy a significant
performance advantage over more conservative approaches.

• Given that cache coherence protocols already track conflicts among proces-
sors, multi-location atomic update can be realized in hardware by introduc-
ing a small “transactional cache” and by making simple modifications to
standard cache coherence protocols.

This last insight notwithstanding, Herlihy and Moss’s proposal proved too am-
bitious for the hardware of the day, and their work was largely ignored within



������ �� 	
� ��� ����� ���	
��

��

the architecture community for most of the following decade. Within the theory
community, however, it inspired multiple explorations of the limits of software
emulation, most notably the Software Transactional Memory work of Shavit and
Touitou.

Building on earlier universal non-blocking constructions, Shavit and Touitou
showed how to achieve lock freedom without the need for costly recursive helping,
and thus provide effective non-blocking multi-word operations purely in software.
It was the first work to demonstrate that software transactions could, under the
right circumstances, outperform conservative locking.

In terms of fostering research, transactional memory has become a truly trans-
formative idea. For example, two years ago, the second edition of the monograph
by Harris, Larus, and Rajwar on Transactional Memory listed over 350 papers in
the field. Google Scholar reports almost 1400 citations to Herlihy and Moss, and
almost 1000 to Shavit and Touitou. The annual TRANSACT workshop, sponsored
by ACM SIGPLAN, is now planning its eighth incarnation. In terms of prac-
tice, software architects have developed dozens of runtime implementations, both
blocking and non-blocking, of dazzling algorithmic variety. At least four major
compilers, including gcc, now support transactional memory in C++. Hardware
implementations have been developed by Azul, Sun (Oracle), AMD (on paper),
IBM, and Intel. The IBM and Intel implementations, in particular, ensure that
hardware support is here to stay.

These two papers started the distributed computing research community along
the path towards the design of general multi-word transactions; ones that in the
future will most likely be based on a combination of hardware, software, and
language techniques. Transactional memory serves as an outstanding example of
how the distributed computing community has influenced the world.


