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Negative probabilities, II
What they are and what they are for

Andreas Blass and Yuri Gurevich

What are numbers and what are they for? 1

— Richard Dedekind, 1888

Abstract

A signed probability distribution may extend a given traditional proba-
bility from observable events to all events. We formalize and illustrate this
approach. We also illustrate its limitation. We argue that the right question
is not what negative probabilities are but what they are for.

1 Introduction
The idea of negative probabilities arose in quantum mechanics [20, 13, 8, 10].
This is not surprising. The weirdness of quantum mechanics required bold fresh
ideas. The physicists have been using signed probability distributions primarily in
connection with phase spaces for quantum systems [23] as suggested by Wigner
in his 1932 paper [20].

The present article was provoked by the paper “An operational interpretation
of negative probabilities and no-signaling models” by Samson Abramsky and
Adam Brandenburger [1]. It occurred to us that the right question may not be
how to interpret negative probabilities but how to employ them.

Not everybody thinks that the idea of negative probabilities is a good one.
Let’s hear a critic. In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen
surmised that quantum mechanics is incomplete, i.e., that some hidden variables
are missing [9]. John Bell proved that local hidden-variable theories contradict
quantum-mechanical statistics [3]. It seems natural to try to save the hidden-
variable approach by means of negative probabilities, and here is what our critic,
Itamar Pitowsky, has to say about that [17, page 148].

1Was sind und was sollen die Zahlen?



What makes the classical hidden variable theories “classical” is the
identification of “mixtures of hidden variable states” as probability
measures. . . The logical step to take . . . is . . . to use (cheap) tricks such
as negative “probability”, or even complex “probability” values. For-
mally we may be able to “solve” our problem, but then the term “prob-
ability” loses completely its meaning. . . . It is absurd to talk about an
urn containing −17 red balls or 3eiπ/12 wooden balls.

We wrote about negative probabilities once [5]. Here we wish to defend the
cheap trick of negative probabilities. Indeed, the standard frequential interpre-
tation of probabilities does not apply to negative probabilities. But here is an
appetizing analogy. For a long time, the standard interpretation of numbers was
quantity. It is absurd to talk about the quantity of 3eiπ/12. Formally the complex
numbers allow us to “solve” equations like x2 = −1 but, one might argue, the term
“number” loses its meaning.

The mathematical trick of introducing complex numbers paid off richly. Some
hard number-theoretic problems have been solved using the methods of complex
analysis. Eventually it even became possible to give a physical meaning to com-
plex numbers, e.g., a complex number a + bi can be interpreted as impedance
where the real part a is resistance and the imaginary part b is the reactance [21],
and complex numbers of absolute value ≤ 1 can be interpreted as quantum ampli-
tudes.

The original purpose of complex numbers was to solve certain algebraic equa-
tions with real coefficients. What is the corresponding purpose of negative prob-
abilities? What plays the role of algebraic equations? These are the questions
addressed in this paper. Our proposal is admittedly — and provably — limited.
But it supports some of the usages of negative probabilities in the literature. One
has to start somewhere.

For simplicity and to separate concerns, we restrict attention to finite spaces.

2 Signed probability spaces

We use, as a running example, a scenario due to Piponi [16], which “while artifi-
cial, is appealingly simple, and does convey some helpful intuitions” [1].

Example (Piponi’s scenario). A machine produces boxes with pairs (l, r) of bits,
each bit viewable through its own door. Somehow it is also possible to test whether
the two bits are equal. The probability of each possible combination of two bits is



given by the following table:

00 01 10 11
−1/2 1/2 1/2 1/2

While the table is not available to the observer, the following three experiments
are available.

1. Look through the left door. This allows you to find out eventually that
P(l = 1) = 1 and P(l = 0) = 0.

2. Look through the right door. This allows you to find out eventually that
P(r = 1) = 1 and P(r = 0) = 0.

3. Test whether the two bits are equal. This allows you to find out eventually
that P(l , r) = 1 and P(l = r) = 0.

Notice that these six discovered probabilities are all nonnegative (as in traditional
probability theory), that they match the probabilities computed from the table
above, but that they are not mutually consistent in traditional probability theory. /

The following definition reflects our intent to work with finite spaces.

Definition 1. By a signed probability space S we mean a pair (Ω,P) where Ω

is a nonempty set and P is a real-valued function on 2Ω such that the following
probability laws hold.

PL1. P(Ω) = 1.

PL2. If e1, e2 ⊆ Ω and e1 ∩ e2 = ∅ then P(e1 ∪ e2) = P(e1) + P(e2).

If, in addition, we have

PL3. P(e) ≥ 0 for all e ⊆ Ω,

then P and S are traditional. /

Terminology. Here Ω is the sample space, and its elements are sample points or
outcomes. Subsets of Ω are events. P is a signed probability distribution. P(e),
even if it is negative, is called the probability of e. For brevity, when ω ∈ Ω, we
write P(ω) to mean P({ω}).

Notation. The complement Ω − e of an event e will be denoted ē. The collection
of all subsets of a set s will be denoted 2s. Disjoint union of sets s1, s2 will be
denoted s1 + s2. If S is a set of sets then

⋃
S =

⋃
s∈S

s.



In the example above, the sample space Ω consists of the four binary strings
00, 01, 10, 11, and the probability distribution P is given by the table.

Definition 2. A test for a signed probability space S = (Ω,P) is given by (and,
mathematically speaking, can be identified with) a partition of Ω into parts of
nonnegative probability.

An execution of a test picks out one of its parts. The example above explicitly
exhibits three tests.

Q: Normally, in traditional probability theory, an execution of a prob-
ability trial picks out an outcome ωwith probability P(ω). Why don’t
you do that in general? Require that only outcomes of nonnegative
probability are picked out.

A: The proposed test is impossible in the case of nontraditional prob-
ability distribution. Notice that, in the example, the probability of the
event e+ = {ω ∈ Ω : P(ω) ≥ 0} is more than 1. What would it mean to
pick an outcome from e+ according to a distribution with total prob-
ability > 1? Our definition of test intends to reflect measurements in
quantum mechanics.

3 Observation frames
Our goal in this section is to formalize the notions of an observable event and a
coobservable set of events. Intuitively, a set E of events is coobservable if there
is a test τE that allows us to observe, for all e ∈ E, whether e occurred or not.
Further, e is observable if the singleton set {e} is coobservable.

Definition 3. An observation frame is a pair (Ω,CO), such that Ω is a nonempty
set, CO is a collection of subsets of Ω, and the following axioms hold:

CO1. If X ⊆ Y ∈ CO then X ∈ CO.

CO2. If e1, e2 ∈ X ∈ CO then X ∪ {e1} ∈ CO and X ∪ {e1 ∪ e2} ∈ CO. /

Terminology. Event sets in CO are coobservable. An event e is observable if the
set {e} is coobservable. For brevity, maximal coobservable sets, maximal in the
inclusion order, will be called ensembles. /

Notation. The set
⋃

CO of the observable events will be denoted Ob.

It follows from the definition that every ensemble is a Boolean algebra of
subsets of Ω.



Q: How do you justify CO2.

A: Let e1, e2 ∈ X ∈ CO. Since X is coobservable, there exists a test
τX that allows us to observe, for all e ∈ X, whether e occurred or not.
Therefore τX also allows us to observe whether e1 occurred or not: it
occurred if and only if e1 didn’t occur. And τX allows us to observe
whether e1 ∪ e2 occurred or not: it occurred if and only if e1 occurred
or e2 occurred.

Proviso 1 (Finiteness). By default, observation frames are finite, i.e., their sample
spaces are finite.

Remark. The definition of observation frames should be more general by ex-
cluding Ω and dealing only with coobservation. But, at this initial point of our
investigation, we are willing to sacrifice the generality. /

Since every coobservable set is a subset of an ensemble and every subset of an
ensemble is coobservable, the whole collection CO of coobservable event sets is
determined by the ensembles.

Further, due to the finiteness proviso, the Boolean algebra of any ensemble E
is atomic. The atoms partition the sample space; let us call that partition ΠE. The
partition ΠE uniquely determines the ensemble E. Thus the collection CO can be
given by the table of ensemble-induced partitions ΠE.

Example (The observation frame of Piponi’s scenario). Piponi’s scenario gives
rise to the following observation frame. The sample space Ω consists of the four
binary strings 00, 01, 10, 11, and there are three ensembles giving rise to the fol-
lowing partitions: {

{00, 01}, {10, 11}
}{

{00, 10}, {01, 11}
}{

{00, 11}, {01, 10}
}

Furthermore, there is the least common refinement Π of all the ensemble-
induced partitions; it has the smallest number of parts. Notice that, for any part
e ∈ Π, different outcomes in e cannot be distinguished. For all practical purposes,
members of Π can be viewed as singletons.

Proviso 2 (Fat outcomes). By default, each part of the common refinement con-
tains a single outcome.



4 Observation spaces
Definition 4. An observation space is a triple (Ω,CO,P), such that

• (Ω,CO) is an observation frame,

• P is a real-valued function on Ob =
⋃

CO satisfying the following versions
of the probability laws PL1–PL3.

– P(Ω) = 1.

– If (e1, e2) ∈ CO and e1 ∩ e2 = ∅ then P(e1 + e2) = P(e1) + P(e2).

– P(e) ≥ 0 for all e ∈ Ob. /

Since each observable event belongs to some ensemble, it suffices to define P
on every ensemble (and ensure that every event gets the same probability in every
ensemble that contains it). Since any ensemble E is a Boolean algebra of sets,
the probability distribution on E is determined by the probabilities assigned to the
parts of the ensemble partition ΠE.

Problem 1 (Extension). Given an observation space (Ω,CO,P), do the following.

1. Decide whether there is a traditional probability distribution that extends P
from observable events to all events.

2. If such a traditional extension exists then find one.

3. Otherwise decide whether there is a signed probability distribution that ex-
tends P from observable events to all events.

4. If such a signed extension exists then find one.

The Fat-outcomes proviso of the previous section makes the Extension Prob-
lem trivial in the case of a single ensemble: the given P is already defined on
all events. If there are exactly two ensembles A and B, imposing partitions
ΠA = {A1, . . . , Am} and ΠB = {B1, . . . , Bn}, and if every intersection Ai ∩ B j , ∅,
then there is a traditional solution for the Extension Problem: set P(Ai ∩ B j) =

P(Ai) · P(B j).

Example (The observation space of Piponi’s scenario). The observation frame of
the scenario is described in the previous Example. It has exactly three ensem-
bles. It remains only to specify the probability distribution P. It is given by the
following table.

P{00, 01} = 0 P{10, 11} = 1
P{00, 10} = 0 P{01, 11} = 1
P{00, 11} = 0 P{01, 10} = 1



The following simple theorem will turn out to be useful.

Theorem 5 (Symmetry). Let G be a group of automorphisms of an observation
space O = (Ω,CO,P). If Q is a possibly-signed extension of P to all events, then
so is the average

R(e) =
1
|G|

∑
g∈G

Q(ge).

Proof. If event e is observable then Q(ge) = Q(e) = P(e) for any g ∈ G;
hence R(e) = P(e). It remains to check that R is a possibly-signed probability
distribution. Since Ω is observable, R(Ω) = 1

|G|

∑
g∈G P(Ω) = P(Ω) = 1. Further, if

events e1, e2 are disjoint and coobservable then

R(e1∪e2) =
1
|G|

∑
g∈G

Q(g(e1∪e2)) =
1
|G|

∑
g∈G

[Q(ge1)+Q(ge2)] = R(e1)+R(e2). QED

5 Bell’s theorem and negative probabilities

Quantum theory is contextual in the sense that the value of an observable O, mea-
sured as a part of one context, may differ from the value of O measured as a
part of another context. Attempts to avoid contextuality may lead to negative
probabilities. This will be illustrated in the present section. We start with two
Gedankenexperiments exhibiting the contextuality of quantum mechanics.

Prepare the state 1
√

2

(
|01〉 − |10〉

)
, known as the spin singlet state, of a pair of

spin 1/2 particles, e.g., electrons. Here |0〉 represents spin up in the z direction,
and |1〉 represents spin down. Choose an arbitrary direction a and measure spin in
direction a on both particles, getting +1

2 if the spin is up or −1
2 if the spin is down.

According to quantum mechanics, the results of the two measurements are oppo-
site to one another: one measurement yields +1

2 and the other −1
2 [14, Box 2.7].

This is true even if each measurement is performed outside of the lightcone of the
other and thus cannot possibly affect the other measurement.

Alternatively, one can work with photons, which are spin 1 particles. In this
connection, see Figure 1 which, together with the caption, is borrowed from [2].



The two photons are moving along the z axis. Formula |Ψ(1, 2)〉 in the figure is
1
√

2

(
|00〉+ |11〉

)
where |0〉 and |1〉 are unit vectors in the Hilbert space for the quan-

tum system of one photon. |0〉 and |1〉 correspond to polarization in the directions
of the x and y axes respectively. If the orientations a,b of the analyzers in the
figure coincide then the two measurement outcomes are guaranteed to coincide:
both are +1 or both are −1.

Einstein, Podolsky and Rosen (EPR) saw contextuality as an indication that
quantum mechanics is incomplete, i.e., that some hidden variables are missing
[9]. Bell famously proved that local hidden-variable theories contradict quantum-
mechanical statistics [3]. Subsequent experiments supported the latter.

In general, the orientations a, b of the two analyzers on Figure 1 may be
different. If θ is the angle ∠(a,b) between vectors a and b then the two outcomes
(+1,+1) and (−1,−1) in which the two measurements give us the same result,
have probability 1

2 cos2 θ each, and the other two outcomes (+1,−1) and (−1,+1)
have probability 1

2 sin2 θ each [15, §6-2]. In particular, if a = b then the probability
of getting the same result is 1.

To illustrate how Bell’s Theorem leads to negative probabilities, David Schnei-
der played with three orientations ~A, ~B, ~C in his blog post [18]. The angle
∠(~A, ~C) = 3π/8, and ~B is in between so that the angle ∠(~A, ~B) = π/4 and
∠(~B, ~C) = π/8. (We swapped Schneider’s ~B and ~C so that our ~B is between ~A
and ~C.) He arrived at negative probabilities, implicitly assuming that (in terms
of §4) there is some solution of the appropriate Extension Problem. In the rest
of this section, we explain Schneider’s derivation and then address the implicit
assumption.

Imagine that we work with a noncontextual hidden-variable theory where the
measurements are determined locally, “so the first thing we need to do is momen-
tarily forget all our knowledge of quantum mechanics,” [14, page 148]. But we do
use the data obtained in three optical experiments of the kind depicted in Figure 1.



1. Experiment AB involves orientations ~A and ~B,

2. Experiment BC involves orientations ~B and ~C,

3. Experiment AC involves orientations ~A and ~C.

This gives rise to the following observation space T = (Ω,CO,P).

Sample space. The sample space Ω consists of eight sample points

1, a.k.a. + ++, 2, a.k.a. + +−, 3, a.k.a. + −+, 4, a.k.a. + −−,
5, a.k.a. − ++, 6, a.k.a. − +−, 7, a.k.a. − −+, 8, a.k.a. − − − .

In the three-letter words abc in alphabet {+,−}, the first letter a is the result of
measuring the spin in the ~A direction. Similarly for the second letter b and the
third letter c using the ~B and ~C directions.

Coobservation. The first two letters a, b of outcomes abc give rise to an equiva-
lence relation abc ≡ a′b′c′ ⇐⇒ (a = a′∧b = b′) whose four equivalence classes
{1, 2}, {3, 4}, {5, 6}, {7, 8} form a partition Π12 of Ω. Thanks to experiment AB, the
four parts of Π12 are coobservable. Define partitions Π23 and Π31 similarly. The
four parts of Π23 are coobservable thanks to the experiment BC, and the four parts
of Π13 are coobservable thanks to the experiment AC.

The four parts of any partition Πi j generate a Boolean algebra Ei j of subsets
of Ω. Define

CO =
{
E : E ⊆ Ei j for some i, j

}
,

so that each Ei j is an ensemble.

Probability distribution. Since the experimental results support quantum
mechanics, the experiments AB, BC and AC produce results approximating the
following three tables.

P(+ + ±) = P{1, 2} =
1
2

cos2(π/4) = 1/4,

P(− − ±) = P{7, 8} =
1
2

cos2(π/4) = 1/4, (AB)

P(+ − ±) = P{3, 4} =
1
2

sin2(π/4) = 1/4,

P(− + ±) = P{5, 6} =
1
2

sin2(π/4) = 1/4.



P(± + +) = P{1, 5} =
1
2

cos2(
π

8
) =

1
8

(2 +
√

2),

P(± − −) = P{4, 8} =
1
2

cos2(
π

8
) =

1
8

(2 +
√

2), (BC)

P(± + −) = P{2, 6} =
1
2

sin2(
π

8
) =

1
8

(2 −
√

2),

P(± − +) = P{3, 7} =
1
2

sin2(
π

8
) =

1
8

(2 −
√

2).

P(+ ± +) = P{1, 3} =
1
2

cos2(3π/8) =
1
8

(2 −
√

2),

P(− ± −) = P{6, 8} =
1
2

cos2(3π/8) =
1
8

(2 −
√

2), (AC)

P(+ ± −) = P{2, 4} =
1
2

sin2(3π/8) =
1
8

(2 +
√

2)

P(− ± +) = P{5, 7} =
1
2

sin2(3π/8) =
1
8

(2 +
√

2).

Let [a = b] be the event that the measurements for orientations ~A, ~B coincide,
and [a , b] be the complementary event, that these measurements are distinct.
Define events [b = c], [b , c], [a = c] and [a , c] similarly. We have

[a = b] = (+ + ±) ∪ (− − ±) = {1, 2, 7, 8}, P[a = b] = 1/2,
[a , b] = (+ − ±) ∪ (− + ±) = {3, 4, 5, 6}, P[a , b] = 1/2,

[b = c] = (± + +) ∪ (± − −) = {1, 4, 5, 8}, P[b = c] = cos2(π/8) =
1
4

(2 +
√

2),

[a = c] = (+ ± +) ∪ (− ± −) = {1, 3, 6, 8}, P[a = c] = sin2(π/8) =
1
4

(2 −
√

2).

Suppose that a possibly-signed probability distribution Q extends P to all
events. Let U be the nonobservable event {3, 6}. The following computation shows
that Q cannot be traditional.

2Q(U) =
[
Q(U) + Q([a = c] − U)

]
+

[
Q(U) + Q([a , b] − U)

]
−

[
Q([a = c] − U) + Q([a , b] − U)

]
= P[a = c] + P[a , b] − P[b = c] =

1
4

(2 −
√

2) +
1
2
−

1
4

(2 +
√

2)

=
1
2

(1 −
√

2)

Q(U) =
1
4

(1 −
√

2) < 0.



Now let’s address the question whether there is any solution of the Extension
Problem in our case.

Consider the transformation g of Ω that, for any outcome abc, replaces every
letter by its opposite. For example, g(+ − +) = − + −. It is easy to see that
g is an automorphism of the observation space T . By Theorem 5, the average
R(e) = 1

2 (Q(ge) + Q(e)) is a signed probability distribution that extends P to all
events.

Since Q{3, 6} = 1
4 (1 −

√
2), we have:

R(3) = R(6) =
1
2

(Q(3) + Q(6)) =
1
2

Q{3, 6} =
1
8

(1 −
√

2)

R(1) = R(8) =
1
8

(2 −
√

2) −
1
8

(1 −
√

2) =
1
8

by (AC)

R(2) = R(7) =
1
4
−

1
8

=
1
8

by (AB)

R(4) = R(5) =
1
4
−

1
8

(1 −
√

2) =
1
8

(1 +
√

2) by (AB)

To prove that R is consistent with P, it suffices to check that these probabilities
satisfy the constraints (AB), (BC) and (AC) where P{k, l} is replaced with R(k) +

R(l).
The (AB) constraints and the first two of the (AC) constraints are satisfied in

a trivial way (because of the way they have been used to compute the outcome
probabilities). R(2)+R(4) = R(7)+R(5) = 1

8 + 1
8 (1+

√
2) = 1

8 (2+
√

2) = P{2, 4} =

P{5, 7}, and so the remaining two (AC) constraints are satisfied. We check the
(BC) constraints.

R(1) + R(5) = R(8) + R(4) =
1
8

+
1
8

(1 +
√

2) =
1
8

(2 +
√

2) = P{1, 5} = P{4, 8}

R(2) + R(6) = R(3) + R(7) =
1
8

+
1
8

(1 −
√

2) =
1
8

(2 −
√

2)

6 Hardy’s Gedankenexperiment: Contextuality
without negativity

The previous section may give one the idea that contextuality always leads to
negative probabilities. In this section, building on Lucien Hardy’s article [11] and
also influenced by David Mermin’s article [12], we illustrate that this is not so.

Experiment. Two one-qubit particles emerge from a common source heading for
two far apart detectors. Aside from the passage of the particles from the source
to the detectors, there are no connections between the source and either detector



or between the two detectors. The following picture is borrowed from [12] (and
slightly modified).

 
Each of the detectors is randomly set, ahead of time, to one of two modes, indi-
cated by “1” and “2” in the picture. Four cases arise, two possible settings on each
of the two detectors.

When a particle arrives at a detector, that detector performs a measurement
and exhibits the result. In mode 1, observable Z is measured. Its value is +1 in
state |0〉 and −1 in state |1〉. In mode 2, observable X is measured. Its value is +1
in state |+〉 = 1

√
2
(|0〉 + |1〉) and −1 in state |−〉 = 1

√
2
(|0〉 − |1〉). Initially, the two

particles are in state

|ψ〉 =
1
√

3

(
|01〉 + |10〉 − |00〉

)
. (1)

That completes the description of the experiment. /

In the rest of the section, we analyse the experiment. The initial state is given
to us in the basis |00〉, |01〉, |10〉, |11〉. It will be convenient to express it in three
additional bases. In the basis |0+〉, |0−〉, |1+〉,|1−〉, we have

√
3|ψ〉 = −|0〉(|0〉 − |1〉) + |1〉(|+〉 + |−〉) = −

√
2|0−〉 +

1
√

2
|1+〉 +

1
√

2
|1−〉. (2)

In the basis | + 0〉, | + 1〉, | − 0〉, | − 1〉, we have

√
3|ψ〉 = |01〉−(|0〉−|1〉)|0〉 =

(|+〉 + |−〉) |1〉
√

2
−
√

2|−0〉 =
1
√

2
|+1〉+

1
√

2
|−1〉−

√
2|−0〉.

(3)
In the basis | + +〉, | + −〉, | − +〉, | − −〉, we have

√
3|ψ〉 =

1
2
| + +〉 −

1
2
| + −〉 −

1
2
| − +〉 −

3
2
| − −〉. (4)

Contextuality. Again, suppose that we work with a noncontextual hidden-
variable theory where the measurements are determined locally. Let fl(Z) and
fl(X) be the sets of values that may occur as the result of the Z measurement and
X measurement respectively on the left. Define fr(Z) and fr(X) similarly. By the
noncontextuality assumption, these sets depend only on what happens on their
side of the common source. But this leads to a contradiction.



Indeed, consider the case ZZ, where both modes are 1 and thus observ-
able Z is measured on the left and the right. By (1), the conditional probabil-
ity P

[
(+1,+1) | ZZ

]
that we have +1 on the left and the right is 1/3. Hence

+1 ∈ fl(Z) ∩ fr(Z). In particular, +1 ∈ fl(Z).
By (4), in the case XX, where both modes are 2 and thus observable X is

measured on the left and the right, the conditional probabilityP
[
(+1,+1) |XX

]
that

+1 is produced on the left and the right is positive (namely 1/12) and therefore
+1 ∈ fr(X).

Now let’s consider the case ZX, where the left mode is 1 and so Z is measured
on the left and where right mode is 2 and so X is measured on the right. By
noncontextuality, it must be possible to have +1 on the left and on the right in the
same trial. But this does not happen. For, by (2), the conditional probabilities in
the ZX case are as follows.

P
[
(+1,−1) | ZX

]
= 2/3, P

[
(−1,+1) | ZX

]
= 1/6, P

[
(−1,−1) | ZX

]
= 1/6,

so that P
[
(+1,+1) | ZX

]
= 0 which gives the desired contradiction.

Observation space. The sample space Ω consists of 16 outcomes for the
combination of the random settings of modes and the observations of the results:
(ZZ,±1,±1), (ZX,±1,±1), (XZ,±1,±1) and (XX,±1,±1).

In the sense of the observation space, all 16 outcomes are observable. For
example, consider the case ZZ where both modes are 1. By (1), the conditional
probabilities P

[
(+1,+1) |ZZ

]
, P

[
(+1,−1) |ZZ

]
, P

[
(−1,+1) |ZZ

]
are 1/3. Accord-

ingly
P
[
{(+1,+1), (+1,−1), (−1,+)} | ZZ

]
= 1

and so P
[
(−1,−1) | ZZ

]
= 0. Thus, in the case ZZ, it is impossible to have −1 on

the left and on the right in the same trial. But, like event ∅, the event {(ZZ,−1,−1)}
is observable in the sense of §3.

Thus P is defined on all events. The extension problem is trivial in Hardy’s
case, and negative probabilities do not arise.

Remark. The presence of contextuality and the absence of negativity seem to
contradict Robert Spekkens’s claim that negativity and contextuality are equiva-
lent forms of nonclassicality [19]. Earlier, in a lengthy footnote in Section 6 of
[6], we showed that the equivalence claim is unsubstantiated.

7 Limitation
The notion of observation spaces was motivated by quantum mechanics with its
observables, i.e., Hermitian operators, which may or may not be coobservable, i.e.,



commeasurable. Unfortunately, as this section shows, this notion is too simplistic
to faithfuly model more complicated sets of quantum mechanical observables.

Let S be a set of Hermitian operators on a finite-dimensional Hilbert spaceH ,
and let (Ω,CO) be an observation frame. By a model of S in (Ω,CO) we mean a
partial function µ from closed subspaces ofH to subsets of Ω such that:

M1 For each operator A ∈ S and each sum E of eigenspaces of A, µ(E) is
defined and is an observable event in (Ω,CO).

M2 For each operator A ∈ S, the collection EA of all sums of eigenspaces of A
has {µ(E) : E ∈ EA} coobservable in (Ω,CO).

M3 If E is a sum of eigenspaces of some A ∈ S, then the complementary sum
E⊥ satisfies µ(E⊥) = Ω − µ(E).

M4 If E1 and E2 are sums of eigenspaces of a single A ∈ S, then µ(E1 + E2) =

µ(E1) ∪ µ(E2).

Q: Explain M1. Why are we talking about sums of eigenspaces?

A: Given a set V of eigenvalues of a Hermitian operator A ∈ S, let
E be the sum of the corresponding eigenspaces of A. As a closed
subspace of the Hilbert space, E is an event. When we measure the
Hermitian operator A, the result v is one of its eigenvalues. By ob-
serving whether v is in V we know whether E occurred. So E should
be observable in (Ω,CO).

The same justification applies to M2.

Q: Actually M2 implies M1.

A: Almost. M1 contains the requirement that µ(E) is defined which
is used implicitly in M2.

Theorem 6. There is a finite set S of Hermitian operators on C4 that admits no
model in any observation frame.

Proof. Consider the 18-vector, 9-basis example of Cabello et al. [7] given in color
on the Wikipedia page for “Kochen-Specker Theorem” [22]. For each of the
9 bases B there, invent an operator S B (Hermitian, with 4 distinct eigenvalues)
whose eigenspaces are exactly the 4 vectors in B (and their scalar multiples). Let
S be the set of these 9 S B’s, and suppose, toward a contradiction, that µ were a
model of S in (Ω,CO).

Let B be any one of the nine bases, and consider the sums E of eigenspaces
of S B, i.e., the “coordinate subspaces” of C4 with respect to the basis B. They



constitute a Boolean algebra BA(B) and, by the requirements for a model, their µ-
images are defined and constitute a Boolean subalgebra of 2Ω; furthermore, when
restricted to BA(B), µ is a Boolean homomorphism. The atoms of BA(B) are the
eigenspaces themselves. The µ-image of BA(B) is a finite Boolean algebra of
events in (Ω,CO). Its atoms are the µ-images of the four eigenspaces. So each
ω ∈ Ω is in exactly one of those four µ-images.

Fix some point ω ∈ Ω. It selects, for each of the 9 bases B, exactly one of the
4 vectors in B. Furthermore, when the same vector occurs in two bases, then it is
selected from one if and only if it is selected from the other. This is because for ~v
to be selected means that (writing 〈~v〉 for the subspace generated by ~v) ω ∈ µ〈~v〉,
and this doesn’t depend on the rest of a basis.

But the point of the example of Cabello et al. is precisely that such a selection
is impossible. Indeed, we would have 9 selections, one from each basis, but every
selection would occur twice because, as indicated by the colors in [22], every
vector occurs in exactly two bases. So 9 would have to be even. �

The C4 in the theorem can be improved to C3 at the cost of using a more
complicated example, as in the original Kochen-Specker proof.

Q: This is too bad that there is such a brutal limitation on observation
spaces. And, since the theorem speaks about modeling in an obser-
vation frame, rather than observation space, negative probabilities are
irrelevant.

A: It is not completely obvious to us at this point that negative prob-
abilities are irrelevant. We can weaken conditions M3 and M4 by
requiring that the equalities hold only up to an error of probability
zero. The resulting weaker models would be defined not in obser-
vation frames but in observation spaces because the weaker notion
involves probabilities.

If we stick to nonnegative probabilities, this doesn’t buy us anything.
But once negative probabilities enter the picture, errors of probabil-
ity zero become more complicated. They may involve cancellation
between outcomes of positive probability and outcomes of negative
probability.

Q: I have another question. It seems that the proof of the limita-
tive Theorem 6 crucially uses the existence of points in observation
frames. Did you consider working more abstractly with just observ-
able events and coobservable sets of events?



A: Yes, a little. We found that a “pointless” abstraction of observa-
tion frames seems to lead naturally to orthomodular lattices, exten-
sively studied (though not by us) in quantum logic [4].

Future work
We introduced observation spaces and the extension problem. Observation spaces
allow us to model some interesting quantum mechanical situations. And the ex-
tension problem amounts to asking when does one need negative probabilities and
what can one accomplish with negative probabilities. This is a small step toward
understanding what negative probabilites can be used for. Observation spaces do
not allow us to model straightforwardly the more complicated situations involved
in proofs of the Kochen-Specker theorem. We’d like to understand what the next
step should be.
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