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The Distributed Minimum Spanning Tree
Problem

Gopal Pandurangan∗ Peter Robinson† Michele Scquizzato‡

Abstract

This article surveys the distributed minimum spanning tree (MST) prob-
lem, a central and one of the most studied problems in distributed comput-
ing. In this problem, we are given a network, represented as a weighted
graph G = (V, E), and the nodes in the network communicate by message
passing via the edges of G with the goal of constructing an MST of G in a
distributed fashion, i.e., each node should identify the MST edges incident
to itself. This article summarizes the long line of research in designing ef-
ficient distributed algorithms and showing lower bounds for the distributed
MST problem, including the most recent developments which have focused
on algorithms that are simultaneously round- and message-optimal.
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1 Introduction
The minimum-weight spanning tree (MST) problem is a classical and fundamen-
tal problem in graph theory, with a long line of research dating back to Borůvka’s
algorithm in 1926. The MST is an important and commonly occurring primitive in
the design and operation of communication networks. Formally, the MST problem
is as follows. Given an n-node connected (undirected) graph with edge weights,
the goal is to compute a spanning tree of minimum total weight. Weights can be
used to model fundamental network performance parameters such as transmission
delays, communication costs, etc., and hence an MST represents a spanning tree
that optimizes these parameters. One of the most common applications of MST
is that it can serve as a backbone for efficient communication, e.g., it can be used
naturally for broadcasting, i.e., sending a message from a (source) node to all the
nodes in the network. Any node that wishes to broadcast simply sends messages
along the spanning tree. The message complexity is then O(n), which is optimal.
The advantage of this method over flooding (which uses all the edges in the net-
works) is that redundant messages are avoided, as only the edges in the spanning
tree are used. In particular, if weights model the cost or the delay for a message
to pass through an edge of the network, an MST can minimize the total cost for a
node to communicate with all the other nodes of the network.

Because of its fundamental importance in networks, the MST problem is also
one of the central and most studied problems in network algorithms, specifically
distributed network algorithms. In the distributed MST problem, the goal is to
compute a MST in a distributed fashion efficiently, which is achieved by minimiz-
ing two fundamental performance measures used for distributed algorithms: mes-
sage and time complexity. In a distributed network, each node (which represents
a processor) is aware only of its incident edges (which represent communication
links to its neighbors) and of their weights. That is, each node starts with only lo-
cal knowledge, and at the end of the distributed algorithm each node should know
which of its incident edges belong to the MST, i.e., the output knowledge is also
local (e.g., a node need not know about the status of edges that are not incident to
it). We will give formal details of the model assumptions in Section 2.

Besides an efficient communication backbone, a distributed MST algorithm
can be also be used for leader election, a fundamental symmetry breaking prob-
lem in distributed computing. In the leader election problem, among many nodes
(potentially all) nodes vying to be leader, the goal is to elect one unique leader.
A distributed MST algorithm can construct a rooted tree (where parent-child rela-
tionships are known to each node), and the root can serve as the leader. The MST
algorithms described in this article naturally construct a rooted tree.

In this article, we survey algorithms and lower bounds for the distributed MST
problem. The rest of the article is organized as follows. In Section 2, we formally



describe the distributed computing model and its complexity measures and dis-
cuss some preliminaries on the distributed MST problem. In section 3, we give
a quick historical survey and summarize the state of the art until 2016. In Sec-
tion 4, we discuss three well-studied distributed MST algorithms. In Section 5,
we present singularly optimal distributed MST algorithms that were discovered
more recently, i.e., distributed MST algorithms that are simultaneously time- and
message-optimal. In Section 6 we discuss lower bounds and describe the tech-
niques used to show such results. We conclude with some open questions in Sec-
tion 7.

2 Model, Definitions, and Preliminaries
We first describe the distributed computing model that we consider in this article.
The model is called the CONGEST model (see, e.g., [47, 43]), which is now
standard in the distributed computing literature.

A point-to-point communication network is modeled as an undirected weighted
graph G = (V, E,w), where the vertices of V represent the processors, the edges
of E represent the communication links between them, and w(e) is the weight
of edge e ∈ E. Without loss of generality, we assume that G is connected. We
use D to denote the hop-diameter (that is, the unweighted diameter) of G, and, in
this article, by diameter we always mean hop-diameter. We also assume that the
weights of the edges of the graph are all distinct. This implies that the MST of
the graph is unique. 1 Each node hosts a processor with limited initial knowledge.
Specifically, we make the common assumption that each node has unique identity
numbers, and at the beginning of computation each vertex v accepts as input its
own identity number and the weights of the edges incident to it. Thus, a node
has only local knowledge. Specifically, we assume that each node u has ports
(each port having a unique integer port number) and each incident edge of u is
connected to one of u’s distinct port. A node does not have any initial knowledge
of the other endpoint of its incident edge (which node it is connected to or the port
number that this node is connected to). This model is referred to as the clean net-
work model in [47, 43] and is also sometimes called the KT0 model, i.e., the initial
(K)nowledge of all nodes is restricted (T)ill radius 0, c.f. [43, 47]. The KT0 model
is a standard model in distributed computing and used by many prior results on
distributed MST (e.g., [3, 6, 15, 16, 36, 14, 10]), with a notable exception ([29],
discussed in Section 3).

The vertices are allowed to communicate by sending messages to their neigh-
bors through the edges of the graph G. Here we assume that communication is

1Even if the weights are not distinct, it is easier to make them distinct by using the unique node
identifiers of the respective endpoints of the edges to break ties.



synchronous and occurs in discrete rounds (time steps). In each round, each node
v can send an arbitrary message of O(log n) bits through each edge e = (v, u) in-
cident to v, and each message arrives at u by the end of this round. 2 The weights
of the edges are at most polynomial in the number of vertices n, and therefore
the weight of a single edge can be communicated in one time step. This model
of distributed computation is called the CONGEST(log n) model or simply the
CONGEST model [47, 43]. Some of the MST algorithms discussed are random-
ized and hence also assume that each vertex has access to the outcomes of an
unbiased private coin flips.

The efficiency of distributed algorithms is traditionally measured by their time
and message (or, communication) complexities. Time complexity measures the
number of synchronous rounds taken by the algorithm, whereas message complex-
ity measures the total number of messages sent and received by all the processors
during the execution of the algorithm. Both complexity measures crucially influ-
ence the performance of a distributed algorithm. As defined in [45], we say that a
problem enjoys singular optimality if it admits a distributed algorithm whose time
and message complexity are both optimal.

We make an assumption that simplifies our algorithms and analysis: we as-
sume that all edge weights in the graph are distinct. It is easy to show that this
implies that the MST is unique. This assumption is without loss of generality,
because one can tag each edge weight (additionally) with the node IDs of the end-
points of the edge (which are unique as a pair).3 This tagging can be used to break
ties between edges having the same weight.

As in centralized MST algorithms, distributed MST algorithms also rely on
two important properties of an MST: (1) the cut property and (2) the cycle property
[49]:

1. Cut property: A cut in a graph is a partition of the vertex set into two
disjoint sets. The cut property states that, given any cut in a graph, the
lightest, i.e. minimum weight, edge crossing the cut belongs to the MST.
(Recall that due to the assumption of unique edge weights, there is a unique
lightest edge crossing the cut.)

2. Cycle property: Consider any cycle in the graph. The heaviest (i.e. maxi-
mum weight) edge in the cycle will not be in the MST.

2If unbounded-size messages are allowed—this is the so-called LOCAL model—the MST
problem can be trivially solved in O(D) time by collecting all the topology information in one
node [43].

3Note that this tagging involves nodes knowing the IDs of their neighbors. This tagging can be
done during the course of an MST algorithm.



3 Summary of Prior Research
Given the importance of the distributed MST problem, there has been significant
work over the last 30 years on this problem and related aspects. The distributed
MST problem has triggered a lot of research in distributed computing, leading to
new techniques for the design and analysis of distributed algorithms as well as for
showing lower bounds. We first briefly summarize research until 2016 and then
discuss very recent results on singularly optimal algorithms.

3.1 Research Until 2016
Early Work. Distributed MST was one of the very first distributed computing
problems that was studied. A long line of research aimed at developing efficient
distributed algorithms for the MST problem started more than thirty years ago
with the seminal paper of Gallager, Humblet, and Spira [15], which presented a
distributed algorithm that constructs an MST in O(n log n) rounds exchanging a
total of O(m + n log n) messages, where n and m denote the number of nodes and
the number of edges of the network, respectively.4 The message complexity of
this algorithm is (essentially) optimal [35], but its time complexity is not. Hence
further research concentrated on improving the time complexity, resulting in a
first improvement to O(n log log n) by Chin and Ting [6], a further improvement
to O(n log∗ n) by Gafni [14], and then to O(n) by Awerbuch [3] (see also [13]).
The O(n) bound is existentially optimal in the sense that there exist graphs with
diameter Θ(n) for which this is the best possible, even for randomized Monte-
Carlo algorithms (see [35]).

This was the state of the art until the mid-nineties when Garay, Kutten, and
Peleg [16] raised the question of whether it is possible to identify graph pa-
rameters that can better capture the complexity of distributed network computa-
tions. In fact, for many existing networks, the hop-diameter D is significantly
smaller than the number of vertices n, and therefore it is desirable to obtain
protocols whose running time is bounded in terms of D rather than in terms
of n. (We note that Ω(D) is a lower bound on the running time of any dis-
tributed MST algorithm in a “universal” sense [35, 34]). Garay, Kutten, and
Peleg [16] gave the first such distributed algorithm for the MST problem with run-
ning time O(D + n0.614 log∗ n), which was later improved by Kutten and Peleg [36]
to O(D +

√
n log∗ n).5 However, both these algorithms are not message-optimal,6

4The original algorithm has a message complexity of O(m log n), but it can be improved to
O(m + n log n).

5The log∗ n factor can, in all respective algorithms, be reduced to
√

log∗ n, by growing compo-
nents to a size larger by a factor

√
log∗ n in the respective first phase.

6In this paper, “optimal” means “optimal up to a polylog(n) factor.”



as they exchange O(m + n1.614) and O(m + n1.5) messages, respectively.
The lack of progress in improving the result of [36], and in particular breaking

the Õ(
√

n) barrier,7 led to work on lower bounds for the distributed MST prob-
lems, starting out by the result of Peleg and Rubinovich [48] and the more recent
extensions of [11, 7], which we discuss in more detail in Section 6.

State of the Art (until 2016). We now summarize the state of the art for dis-
tributed MST algorithms until 2016: There exist algorithms which are either
time-optimal (i.e., they run in Õ(D +

√
n) time) or message-optimal (i.e., they

exchange Õ(m) messages), but not simultaneously both. Indeed, the time-optimal
algorithms of [36, 10] (as well as the sublinear time algorithm of [16]) are not
message-optimal, i.e., they require asymptotically much more than Θ(m) mes-
sages. In contrast, the known message-optimal algorithms for MST (in partic-
ular, [15, 3]) are not time-optimal, i.e., they take significantly more time than
Õ(D +

√
n). In their 2000 SICOMP paper [48], Peleg and Rubinovich raised the

question of whether one can design a distributed MST algorithm that is simul-
taneously optimal with respect to time and message complexity. In 2011, Kor,
Korman, and Peleg [32] also raised this question and showed that distributed ver-
ification of MST, i.e., verifying whether a given spanning tree is MST or not, can
be done in optimal messages and time, i.e., there exists a distributed verification
algorithm that uses Õ(m) messages and runs in Õ(D+

√
n) time. However, achiev-

ing these bounds for MST construction remained open until 2017.

Singular Optimality. As defined in [45], the main question that remained open
for distributed MST is whether there is a distributed algorithm that is singularly
optimal or if the problem exhibits a time-message trade-off:

• Singularly optimal: A distributed algorithm that is optimal with respect to
both measures simultaneously. In this case we say that the problem enjoys
singular optimality.

• Time-message trade-off: When the problem inherently fails to admit a
singularly optimal solution, namely, algorithms with better time complexity
necessarily incur higher message complexity, and vice versa. In this case
we say that the problem exhibits a time-message trade-off.

The above question addresses a fundamental aspect in distributed algorithms,
namely the relationship between the two basic complexity measures of time and
messages. The simultaneous optimization of both time and message complex-
ity has been elusive for several fundamental problems (including MST, shortest

7Õ( f (n)) and Ω̃( f (n)) denote O( f (n) · polylog( f (n))) and Ω( f (n)/ polylog( f (n))), respectively.



paths, and random walks), and consequently research in the last three decades
in distributed algorithms has focused mainly on optimizing either one of the two
measures separately. However, in various modern and emerging applications such
as resource-constrained communication networks and distributed computation of
large-scale data, it is crucial to design distributed algorithms that optimize both
measures simultaneously [30, 24].

Besides the prior work already mentioned, we now discuss other relevant work
on distributed MST.

Other Distributed MST Algorithms. Elkin [10] showed that a parameter called
MST-radius captures the complexity of distributed MST algorithms better. The
MST-radius, denoted by µ(G,w), is a function of the graph topology as well as the
edge weights and, roughly speaking, is the maximum radius each vertex has to ex-
amine to check whether any of its edges is in the MST. Elkin devised a distributed
protocol that constructs the MST in Õ(µ(G,w) +

√
n) time. The ratio between di-

ameter and MST-radius can be as large as Θ(n), and consequently, on some inputs,
this protocol is faster than the protocol of [36] by a factor of Ω(

√
n). However, a

drawback of this protocol (unlike the previous MST protocols [36, 16, 6, 14, 15])
is that it cannot detect the termination of the algorithm in that time (unless µ(G,w)
is given as part of the input). On the other hand, it can be shown that for distributed
MST algorithms that correctly terminate, Ω(D) is a lower bound on the running
time [48, 34]. (In fact, [34] shows that for every sufficiently large n and every
function D(n) with 2 ≤ D(n) < n/4, there exists a graph G of n′ ∈ Θ(n) nodes
and diameter D′ ∈ Θ(D(n)) which requires Ω(D′) rounds to compute a spanning
tree with constant probability in the clean network model.) We also note that the
message complexity of Elkin’s algorithm is O(m + n1.5).

Some specific classes of graphs admit efficient MST algorithms that beat the
general Ω̃(D +

√
n) time lower bound. Perhaps the first result in this direction

is due to Khan and Pandurangan [28] who showed that one can obtain a dis-
tributed O(log n)-approximate algorithm for MST for special classes of graphs
such as unit disk graphs (that are used to model wireless networks) and randomly
weighted graphs that runs in Õ(D) time and Õ(m) messages. More recently, faster
distributed MST algorithms have been presented for planar graphs, graphs of
bounded genus, treewidth, or pathwidth [17, 22, 23], and graphs with small mix-
ing time [18]. Faster distributed MST algorithms have also been developed for
networks with small constant diameter. An O(log n) time algorithm for networks
with D = 2 was given in [38], and an O(log log n) time algorithm for networks
with D = 1 (i.e., complete networks) was given in [37]. In fact, the complete
network case, and more in general, MST construction in the so-called Congested
Clique model, has received significant attention in recent years. (The Congested



Clique is a simple model for overlay networks whereby, unlike the CONGEST
model, even non-adjacent nodes can communicate directly.) The deterministic
algorithm of Lotker et al. [37] (which improved significantly over an easy-to-
construct O(log n)-round algorithm) was later improved by Hegeman et al. [24],
who presented an O(log log log n)-round randomized Monte Carlo algorithm. The
key technique for this result is linear graph sketching [1, 2, 40], which has since
been applied in other distributed algorithms (see, e.g., [44]). This paper also gives
lower bounds on the message complexity of MST construction in the Congested
Clique: Ω(n2) in the KT0 model and Ω(n) in the KT1 model respectively. It also
gives a randomized algorithm that uses Õ(n) messages and runs in Õ(1) rounds in
the KT1 model. Building on the work of Hegeman et al., the time bound for MST
construction in the Congested Clique has been improved to O(log∗ n) rounds [19],
and then, very recently, to O(1) rounds [27]. All these algorithms are randomized
and crucially rely on using graph sketches.

However, there exists a significant gap in the time complexity of the distributed
MST algorithms between the cases of network diameters 2 and 3. In [38], it was
shown that the time complexity of any distributed MST algorithm is Ω( 4

√
n/
√

B)
for networks of diameter 3 and Ω( 3

√
n/
√

B) for networks of diameter 4. These
asymptotic lower bounds hold for randomized algorithms as well. (On the other
hand, O(log n) time suffices to compute an MST deterministically for graphs with
diameter 2.)

Time Complexity. From a practical perspective, given that MST construction
can take as much as Ω(

√
n/ log n) time even in low-diameter networks, it is worth

investigating whether one can design distributed algorithms that run faster and
output an approximate minimum spanning tree. The question of devising faster
approximation algorithms for MST was raised in [48]. Elkin [11] later estab-
lished a hardness result on distributed MST approximation, showing that approx-
imating the MST problem on a certain family of graphs of small diameter (e.g.,
O(log n)) within a ratio H requires essentially Ω(

√
n/H log n) time. Khan and

Pandurangan [28] showed that there can be an exponential time gap between ex-
act and approximate MST construction by showing that there exist graphs where
any distributed (exact) MST algorithm takes Ω(

√
n/ log n) rounds, whereas an

O(log n)-approximate MST can be computed in O(log n) rounds. The distributed
approximation algorithm of [28] is message-optimal but not time-optimal.

Das Sarma et al. [7] settled the time complexity of distributed approximate
MST by showing that this problem, as well as approximating shortest paths and
about twenty other problems, satisfies a time lower bound of Ω̃(D +

√
n). This

applies to deterministic as well as randomized algorithms, and to both exact and
approximate versions. In other words, any distributed algorithm for computing a



H-approximation to MST, for any H > 0, takes Ω̃(D +
√

n) time in the worst case.

Message Complexity. Kutten et al. [35] fully settled the message complexity
of leader election in general graphs assuming the clean network (i.e. KT0 model),
even for randomized algorithms and under very general settings. Specifically, they
showed that any randomized algorithm (including Monte Carlo algorithms with
suitably large constant success probability) requires Ω(m) messages; this lower
bound holds in a universal sense: Given any n and m, there exists a graph with
Θ(n) nodes and Θ(m) edges for which the lower bound applies. Since a distributed
MST algorithm can also be used to elect a leader (where the root of the tree is the
leader, which can be chosen using O(n) messages once a tree is constructed),
the above lower bound applies to distributed MST constructions as well, for all
m ≥ cn, where c is a sufficiently large constant.

The above lower bound bound holds even if nodes have initial knowledge of
n,m, and D. It also holds for synchronous networks, where all the nodes wake up
simultaneously. Finally, it holds not only for the CONGEST model [47], where
sending a message of O(log n) bits takes one unit of time, but also for the LOCAL
model [47], where the number of bits carried in a single message can be arbitrary.
On the other hand, it is known from [15, 3] that an MST can be constructed using
Õ(m) messages in synchronous networks.

The KT1 Variant. It is important to point out that all the results discussed in this
article (including the MST results [3, 6, 15, 16, 36, 14, 10]) assume the so-called
clean network model, a.k.a. KT0 [47] (cf. Section 2), where nodes do not have
initial knowledge of the identity of their neighbors. However, one can assume
a model where nodes do have such a knowledge. This model is called the KT1

model. Although the distinction between KT0 and KT1 has clearly no bearing on
the asymptotic bounds for the time complexity, it is significant when considering
message complexity. Awerbuch et al. [4] show that Ω(m) is a message lower
bound for MST in the KT1 model, if one allows only (possibly randomized Monte
Carlo) comparison-based algorithms, i.e., algorithms that can operate on IDs only
by comparing them.

Awerbuch et al. [4] also show that the Ω(m) message lower bound applies even
to non-comparison based (in particular, algorithms that can perform arbitrary local
computations) deterministic algorithms in the CONGEST model that terminate in
a time bound that depends only on the graph topology (e.g., a function of n).
On the other hand, for randomized non-comparison-based algorithms, it turns out
that the message lower bound of Ω(m) does not apply in the KT1 model. In 2015,
King et al. [29] showed a surprising and elegant result: in the KT1 model one
can give a randomized Monte Carlo algorithm to construct an MST in Õ(n) mes-



sages (Ω(n) is a trivial message lower bound for the KT1 model) and in Õ(n) time.
This algorithm is randomized and not comparison-based. While this algorithm
shows that one can achieve o(m) message complexity (when m = ω(n polylog n)),
it is not time-optimal (it can take significantly more than Θ̃(D +

√
n) rounds). In

subsequent work, Mashreghi and King [39] presented another randomized, not
comparison-based MST algorithm with round complexity Õ(Diam(MST)) and
with message complexity Õ(n). It is an open question whether one can design
a randomized (non-comparison based) algorithm that takes Õ(D +

√
n) time and

Õ(n) messages in the KT1 model. Very recently, Gmyr and Pandurangan [20]
presented improved algorithms in the KT1 model for MST and several other prob-
lems. For the MST problem, they showed that it can be solved in Õ(D + n1−δ)
rounds using Õ(min{m, n1+δ}) messages for any δ ∈ [0, 0.5]. In particular, for
δ = 0.5 they obtain a distributed MST algorithm that runs in optimal Õ(D +

√
n)

rounds and uses Õ(min{m, n3/2}) messages. Notice that this improves over the
singularly optimal algorithms ([45, 12, 21]) for the KT0 model.

3.2 Recent Results

In 2017, Pandurangan et al. [45] presented the first distributed MST algorithm for
the CONGEST model which is simultaneously time- and message-optimal. The
algorithm is randomized Las Vegas, and always returns the MST. The running
time of the algorithm is Õ(D +

√
n) and the message complexity is Õ(m), and

both bounds hold with high probability.8 This is the first distributed MST algo-
rithm that matches simultaneously the time lower bound of Ω̃(D +

√
n) [11, 7]

and the message lower bound of Ω(m) [35], which both apply even to randomized
Monte Carlo algorithms, thus closing a more than thirty-year-old line of research
in distributed computing. In terms of the terminology introduced earlier, we can
therefore say that the distributed MST problem exhibits singular optimality up to
polylogarithmic factors.

The work of Pandurangan et al. [45] raised the open problem of whether there
exists a deterministic time- and message-optimal MST algorithm. We notice that
the algorithm of Pandurangan et al. is randomized, due to the use of the random-
ized cover construction of [10], even though the rest of the algorithm is deter-
ministic. Elkin [12], building on the work of [45], answered this question affir-
matively by devising a deterministic MST algorithm that achieves essentially the
same bounds, i.e., it uses Õ(m) messages and runs in Õ(D +

√
n) time. Another

deterministic round- and message-optimal algorithm for MST appeared very re-
cently in [21]. Table 1 summarizes the known upper bounds on the complexity of
distributed MST.

8Throughout, with high probability (w.h.p.) means with probability ≥ 1 − 1/nΩ(1).



Reference Time Messages Computation

Gallager et al. [15] O(n log n) O(m + n log n) Deterministic
Awerbuch [3] O(n) O(m + n log n) Deterministic
Garay et al. [16] O(D + n0.614 log∗ n) O(m + n1.614) Deterministic
Kutten and Peleg [36] O(D +

√
n log∗ n) O(m + n1.5) Deterministic

Elkin [10] Õ(µ(G,w) +
√

n) O(m + n1.5) Randomized
Pandurangan et al. [45] Õ(D +

√
n) Õ(m) Randomized

Elkin [12] Õ(D +
√

n) Õ(m) Deterministic
Haeupler et al. [21] Õ(D +

√
n) Õ(m) Deterministic

Table 1: Summary of upper bounds on the complexity of distributed MST. Nota-
tion Õ(·) hides polyogarithmic factors in n.

4 Overview of Classical MST Algorithms
The recent singularly optimal distributed MST algorithm of [45, 12] that we
discuss in Section 5 build on prior distributed MST algorithms that were either
message-optimal or time-optimal but not both. We now provide a brief overview
of three well-known previous MST algorithms: (1) The Gallager-Humblet-Spira
(GHS) algorithm; (2) The Pipeline algorithm; (3) Garay-Kutten-Peleg (GKP) al-
gorithm. This overview is based on [43], to which we refer to for a more detailed
description of these algorithms.

4.1 The Gallager-Humblet-Spira (GHS) algorithm
The first distributed algorithm for the MST problem was given by Gallager, Hum-
blet, and Spira in 1983 [15].

We are given an undirected, connected, weighted graph G = (V, E,w). Let
n be the number of nodes and m be the number of edges of G. Let T be the
(unique) MST on G. An MST fragment (or simply a fragment) F of T is defined
as a connected subgraph of T , that is, F is a subtree of T . An outgoing edge of
an MST fragment is an edge in E where one adjacent node to the edge is in the
fragment and the other is not. The minimum-weight outgoing edge (MOE) of a
fragment F is the edge with minimum weight among all outgoing edges of F. As
an immediate consequence of the cut property of MSTs, the MOE of a fragment
F = (VF , EF) is an edge of the MST.

The synchronous GHS algorithm is essentially a distributed implementation
of the classical Borůvka’s MST algorithm [5]. The GHS algorithm operates in
phases. In the first phase, it starts with each individual node as a fragment by
itself and continues until there is only one fragment left. That is, at the beginning,



there are |V | fragments, and at the end of the last phase, a single fragment which is
exactly the sought MST. All fragments find their MOE simultaneously in parallel.

In each phase, the algorithm maintains the following invariant: Each MST
fragment has a leader and all nodes know their respective parents and children.
The root of the tree will be the leader. Initially, each node (a singleton fragment)
is a root node; subsequently each fragment will have one root (leader) node. Each
fragment is identified by the identifier of its root, called the fragment ID, and each
node in the fragment knows its fragment ID.

4.1.1 One phase of GHS

We describe one phase of the GHS algorithm. Each fragment’s operation is co-
ordinated by the respective fragment’s root (leader). Each phase consists of two
major operations: (1) Find MOE of all fragments and (2) Merging fragments via
their MOEs.

Find MOE of all fragments In a phase, all fragments find their MOE simul-
taneously in parallel. To find the MOE of a fragment, the root in the fragment
broadcasts a message (“find MOE”) to all nodes in the fragment using the edges
in the fragment. Once a node receives “find MOE” message, it finds its minimum
outgoing incident edge (i.e, the minimum weight outgoing edge among all the in-
cident edges). To find the minimum weight outgoing incident edge, a node checks
its neighbors in increasing order of weight. If the fragment ID of its neighbor is
different from its own, then the edge is an outgoing edge. Note that since edges
are checked in increasing order of weight, the first neighbor whose fragment ID
is different from its own is the minimum outgoing incident edge. Also, note that
the checking can be done (in increasing weight order) starting from the neighbor
that was checked last in the previous phase. This is because, all edges that were
checked earlier would belong to the same fragment and will continue to be in the
same fragment until the end of the algorithm. Then, each node sends its minimum
outgoing incident edge to the root by convergecasting the minimum; the root then
finds the MOE, which is the minimum among all the edges convergecast. Note
that the convergecast process uses the fragment (tree) edges only.

Merging fragments via their MOEs Next, fragments are merged via their
MOEs. Recall that MOEs belong to the MST (by the cut property).

Once the leader finds the MOE, it broadcasts a “Merge” message to all its
fragment nodes (the broadcast is sent along the tree edges); the message contains
the MOE edge of the fragment. Hence upon receiving the MOE edge, a node
knows whether it is the same as its minimum outgoing incident edge or not. If a



node is incident to the fragment’s MOE edge, then the node attempts to combine
with its neighbor (which belongs to a different fragment). It sends a “Request to
combine” message to its neighbor. If the neighbor has also selected the same edge
as its MOE then the two neighboring nodes agree to combine through this edge;
i.e., both neighboring nodes receive “Request to combine” message from each
other. (Otherwise, if only of them receives this message, it ignores it. However,
the MOE edge is not ignored: the neighbor marks the edge over which it receives
the message as the MOE edge of its neighboring fragment). The node with the
higher identifier becomes the root of the combined fragment. The (combined) root
broadcasts a “new-fragment” message through the fragment edges and the MOE
edges chosen by all the fragments. Each node updates its parent, children, and
fragment identifier (which will be the ID of the new root).

To see that the above process correctly combines the fragments, we ascribe a
direction to all the MOEs (towards the outgoing way). This creates a “directed
tree” of fragments (think of fragments as “super-nodes”). Note that since each
fragment has only one outgoing edge, there can at most one pair of neighboring
nodes (in this directed tree). One of these nodes in the pair will be the root of the
combined fragment as described above.

Analysis of GHS algorithm It is easy to argue that the total number of phases is
O(log n). This is because, in each phase, the total number of fragments is reduced
by at least half: in the worst case, each MOE will be the MOE of both neighboring
fragments and they combine into one.

We next argue that each phase takes O(n) time. Hence, overall time complexity
is O(n log n). This is because in each phase, both the major operations take O(n)
time (these include broadcast and convergecast), since they happen along the MST
edges and the diameter of the MST can be as large as Θ(n).

We next argue that each phase takes O(n) messages (for convergecast and
broadcast) plus the messages needed to find the MOE. The latter takes a total
of O(m + n log n) messages because in each phase a node checks its neighbor in
increasing order of weight starting from the last checked node. Thus, except for
the last checked node (which takes one message per phase) all other neighbors are
checked at most once. Hence, the total message complexity is∑

v∈V

2d(v) +

log n∑
i=1

∑
v∈V

1 = O(m + n log n).

4.2 The Pipeline Algorithm
Next we discuss the Pipeline algorithm due to Peleg [46], which is slightly better
than the GHS algorithm, i.e., it runs in O(n) rounds. Note that this is existentially



optimal, since we know that the diameter is a lower bound for MST (even for ran-
domized algorithms) [35] and hence there exists graphs of diameter Θ(n), where
any MST algorithm will require Ω(n) rounds.

The Pipeline algorithm is essentially an upcast algorithm, where we build a
BFS tree over the graph and each node upcasts edges to the root of the BFS tree;
the root ends up having (enough) global knowledge of the network topology and
locally computes the MST and downcasts the MST edges to all nodes in the net-
work. Of course, a naive upcast is for each node to send all its incident edges and
this upcast can take Θ(m) rounds, since there are as many edges. The main idea of
the Pipeline MST algorithm is to filter the number of edges broadcast so that the
running time is reduced to O(n) rounds. However, the message complexity of the
Pipeline algorithm can be as much as Θ(n2).

The pipeline algorithm uses the cycle property of MST to filter edges at in-
termediate nodes. Each node v, except the root r, maintains two lists of edges, Q
and U. Initially, Q contains only the edges adjacent to v, and U is empty. At each
round, v sends the minimum-weight edge in Q that does not create a cycle with the
edges in U to its parent and moves this edge from Q to U. If Q is empty, v sends
a terminate message to its parent. The parent after receiving an edge from a child,
adds the edge in its Q list. A leaf node starts sending edges upwards at round 0.
An intermediate node starts sending at the first round after it has received at least
one message from each of its children.

4.2.1 Analysis

We give the high-level idea behind the correctness and running time.

Correctness The algorithm’s correctness follows from the cycle property. Us-
ing the cycle property, since only non-MST edges are filtered (note that an edge
at node v is not sent upward if it closes a cycle with edges in U, i.e., the already
sent edges—since edges are sent in non-increasing order, the filtered edges are
the respective heaviest edge in a cycle) it can be shown that the root receives all
the MST edges (plus possible additional edges) required to compute the MST
correctly.

Running time It is easy to show that the edges reported by each node to its
parent in the tree are sent in non-decreasing weight order, and each node sends at
most n − 1 edges upward to its parent. This is because if more than n − 1 edges
are sent through a node, then at least one edge will form a cycle with the edges
sent previously and will be filtered by the cycle property. To build the BFS tree,
it takes O(D) time. Since the depth of the BFS tree is D and each node sends at



most n− 1 edges upward, the pipeline algorithm takes O(D + n) = O(n) time. The
analysis shows that there is not too much delay (more than n) overall before the
root receives all the edges that it needs for computing the MST.

The complexity of the Pipeline algorithm is stated in Table 1; for a detailed
proof we refer to [43].

4.3 The Garay-Kutten-Peleg (GKP) Algorithm
The GKP algorithm [36] runs in O(D +

√
n log∗ n) time, where D is the diameter

of the graph G, which is essentially optimal (up to logarithmic factors), due to
the existence of the time lower bound of Ω̃(D +

√
n) [48, 11, 7]. Note that in

graphs with diameter smaller than
√

n, this algorithm can be much faster than the
Pipeline algorithm.

We give a high-level overview of the GKP algorithm; for full details we refer
to [43].

The GKP algorithm consists of two parts: it combines the GHS algorithm and
the Pipeline algorithm in a judicious way.

4.3.1 First part: Controlled-GHS Algorithm

The first part, called the controlled-GHS algorithm is similar to the GHS algo-
rithm, with the crucial property of ensuring that the diameter of fragments do not
become too big. (Note that in the GHS algorithm, even after the first phase, there
can be fragments with diameter as large as n). The controlled-GHS begins with
each node as a singleton fragment. In every phase, as in the GHS algorithm, each
fragment finds its MOE. However, not all fragments are merged along their MOE
edges. Only a subset of MOE edges are selected for merging. A crucial prop-
erty of the merging is the following: in every phase, the number of fragments is
reduced by at least a factor of two, while the diameter is not increased by more
than a constant factor. The controlled-GHS algorithm continues for about log(

√
n)

phases. At the end of the first part, the following property is guaranteed: the di-
ameter of each fragment is O(

√
n) and there are at most

√
n fragments. The first

part of the algorithm takes O(
√

n log∗ n) time.
We note that Controlled-GHS as implemented in the time-optimal algorithm

of [36] is not message-optimal—the messages exchanged can be Õ(m+n1.5); how-
ever, a modified version can be implemented using Õ(m) messages [43].

4.3.2 Second part: Pipeline algorithm

The second part of the algorithm uses the Pipeline algorithm to find the remaining
(at most)

√
n − 1 MST edges (since there are ≤

√
n fragments left). As in the



Pipeline algorithm, a breadth-first tree B is built on G. Let r(B) be the root of
B. Using the edges in B, root r(B) collects weights of the inter-fragment edges,
computes the minimum spanning tree T ′ of the fragments by considering each
fragment as a super node. It then broadcasts the edges in T ′ to the other nodes
using the breadth-first tree B. Since the depth of B is O(D) and each node sends
at most

√
n edges upward, the Pipeline algorithm takes O(D +

√
n) time; this

analysis is very similar to the one of the Pipeline algorithm (by replacing n with
√

n). Thus the overall time complexity of the GKP algorithm is O(D +
√

n log∗ n).
The message complexity can be shown to be O(m + n1.5).

The overall algorithms consists of running the controlled-GHS first and then
switching to the Pipeline algorithm after O(

√
n log∗ n) rounds. Combining the two

parts, the complexity bounds as stated in Table 1 follow.

5 Toward Singular Optimality: Round- and Message-
Optimal Distributed MST Algorithms

As mentioned in Section 1, up until recently, all known distributed MST algo-
rithms achieved either optimal time or optimal message complexity, but not both.
In this section, we describe the recent progress toward achieving singular opti-
mality, as defined in Section 1. We begin by describing the algorithm of [45]
in Section 5.1, on which the subsequent work of Elkin is based [12], which is
discussed in Section 5.2.

5.1 A Randomized Singularly-Optimal Algorithm

We now describe the algorithm of [45] that attains singular optimality, i.e., Õ(m)
messages and Õ(D+

√
n) time. The first part of the algorithm consists of executing

Controlled-GHS, described in Section 4.3.1. At the end of this procedure, at most
O(
√

n) distinct MST fragments remain, each of which has diameter O(
√

n); we
call these base fragments.

The second part of the algorithm is different from the existing time-optimal
MST algorithms. The existing time-optimal MST algorithms [36, 10], as well
as the algorithm of [16], are not message-optimal since they use the Pipeline
procedure of [46, 16].

The algorithm of [45] uses a different strategy to achieve optimality in both
time and messages. The main novelty is how the (at most)

√
n base fragments

which remain at the end of the Controlled-GHS procedure are merge into one re-
sulting fragment (the MST). Unlike previous time-optimal algorithms [36, 10, 16],
this algorithm does not use the Pipeline procedure of [46, 16], since it is not



message-optimal. Instead, it continues to merge fragments and uses two main
ideas to implement a Borůvka-style merging strategy efficiently. The first idea
is a procedure to efficiently merge when D is small (i.e., D = O(

√
n)) or when

the number of fragments remaining is small (i.e., O(n/D)). The second idea is to
use sparse neighborhood covers and efficient communication between fragments
to merge fragments when D is large and the number of fragments is large. Ac-
cordingly, the second part of the algorithm can be conceptually divided into three
phases, which are described next. The description in the remainder of this subsec-
tion closely follows Section 2 in [45].

5.1.1 Phase 1: When D is O(
√

n):

At the start of this phase, a BFS tree of the entire network is constructed, and then
merging is performed as follows: Each base fragment finds its minimum-weight-
outgoing edge (MOE) by convergecasting within each of its fragments. This takes
O(
√

n) time and O(
√

n) messages per base fragment, leading to O(n) messages
overall. The O(

√
n) MOE edges are sent by the leaders of the respective base

fragments to the root by upcasting (see, e.g., [47]). This takes O(D +
√

n) time
and O(D

√
n) messages, as each of the at most

√
n edges has to be sent along

up to D edges to reach the root. The root merges the fragments and sends the
renamed fragment IDs to the respective leaders of the base fragments by downcast
(which has the same time and message complexity as upcast [47]). The leaders
of the base fragments broadcast the new ID to all other nodes in their respective
fragments. This takes O(

√
n) messages per fragment and hence O(n) messages

overall. Thus one iteration of the merging can be done in O(D +
√

n) time and
using O(D

√
n) messages. Since each iteration reduces the number of fragments

by at least half, the number of iterations is O(log n). At the end of this iteration,
several base fragments may share the same label. In subsequent iterations, each
base fragment finds its MOE (i.e., the MOE between itself and the other base
fragments which do not have the same label) by convergecasting within its own
fragment and (the leader of the base fragment) sends the MOE to the root; thus
O(
√

n) edges are sent to the root (one per base fragment), though there is a lesser
number of combined fragments (with distinct labels). The root node finds the
overall MOE of the combined fragments and initiates the merging. Since the time
and message complexity per merging iteration is O(D+

√
n) and O(D

√
n) = O(n),

respectively, the overall complexity is still within the sought bounds.

5.1.2 Phase 2: When D and the Number of Fragments are Large:

When D is large (e.g. n1/2+ε, for some 0 < ε ≤ 1/2) and the number of frag-
ments is large (e.g. Θ(

√
n)) the previous approach of merging via the root of the



global BFS tree does not work directly, since the message complexity would be
O(D

√
n). A second idea addresses this issue by merging in a manner that respects

locality. That is, we merge fragments that are close by using a local leader, such
that the MOE edges do not have to travel too far. The high-level idea is to use a
hierarchy of sparse neighborhood covers due to [10] to accomplish the merging.
9 Intuitively, a sparse neighborhood cover is a decomposition of a graph into a set
of overlapping clusters that satisfy suitable properties.

The main intuitions behind using a cover are the following: (1) the clusters
of the cover have relatively smaller diameter (compared to the strong diameter
of the fragment and is always bounded by D) and this allows efficient commu-
nication for fragments contained within a cluster (i.e., the weak diameter of the
fragment is bounded by the cluster diameter); (2) the clusters of a cover overlap
only a little, i.e., each vertex belongs only to a few clusters; this allows essen-
tially congestion-free (overhead is at most polylog(n) per vertex) communication
and hence operations can be done efficiently in parallel across all the clusters of
a cover. This phase continues till the number of fragments reduces to O(n/D),
when we switch to Phase 3. We next give more details on the merging process in
Phase 2.
Communication-Efficient Paths. An important technical aspect in the merging
process is constructing efficient communication paths between nearby fragments,
which are maintained and updated by the algorithm in each iteration. The algo-
rithm requires fragments to be communication-efficient, in the sense that there is
an additional set of short paths between the fragment leader f and fragment mem-
bers, which may use “shortcuts” through vertices that are not part of the fragment
to reduce the distance. A fragment F is communication-efficient if, for each ver-
tex v ∈ F, there exists a path between v and f (possibly including vertices in
V(G) \V(F)) of length O(diamG(F) +

√
n), where diamG(F) is the weak diameter

of F.
It can be shown that, in each iteration, all fragments find their respective MOE

in time Õ(
√

n + D) and Õ(m) messages. Note that it is difficult to merge all
fragments along their respective MOE, as this might create long fragment-chains.
Instead, [45] compute a maximal matching in the fragment graph Fi induced by
the MOE edges to merge fragments in a controlled manner. The crucial part is to
use time- and message communication between the fragment leader and the nodes
in the fragment (while finding MOEs) as well as between fragment leaders of ad-
jacent fragments, which is made possible by the existence of the communication-
efficient paths.

9Neighborhood covers were used by Elkin [10] to improve the running time of the Pipeline
procedure of his distributed MST algorithm; on the other hand, in [45] they are used to replace the
Pipeline part entirely.



In more detail, [45] use a hierarchy of sparse neighborhood covers to construct
communication-efficient fragments. Each cover in the hierarchy consists of a col-
lection of clusters of a certain radius, where the lowest cover in the hierarchy con-
tains clusters of radius O(

√
n) and subsequent covers in the hierarchy have clusters

of geometrically increasing radii, whereby the last cover in the hierarchy is simply
the BFS tree of the entire graph. Initially, it is easy to construct communication-
efficient paths in base fragments, since they have strong diameter O(

√
n). In sub-

sequent iterations, when merging adjacent fragments, the algorithm finds a cluster
that is (just) large enough to contain both fragments. The neighborhood prop-
erty of the cluster allows the algorithm to construct communication-efficient paths
between merged fragments (that might take shortcuts outside the fragments, and
hence have small weak diameter), assuming that the fragments before merging
are efficient. Note that it is important to make sure that the number of fragments
in a cluster is not too large in relation to the radius of the cluster—otherwise the
message complexity would be high. Hence, a key invariant maintained through
all the iterations is that the cluster depth times the number of fragments that are
contained in the cluster of such depth is always bounded by Õ(n). This invariant is
maintained by making sure that the number of fragments per cluster reduces suf-
ficiently to compensate for the increase in cluster radius: At the end of the phase,
when the cluster radius is D, the number of fragments is Õ(n/D).

5.1.3 Phase 3: When the Cluster Radius is D:

Phase 3 employs a merging procedure similar to the one used in Phase 1. Recall
that, in Phase 1, in every merging iteration, each base fragment finds their respec-
tive MOEs (i.e., MOEs between itself and the remaining fragments) by converge-
casting to their respective leaders; the leaders send at most O(

√
n) edges to the

root by upcast. The root merges the fragments and sends out the merged infor-
mation to the base fragment leaders. In Phase 3, it is possible to treat the O(n/D)
fragments remaining at the end of Phase 2 as the “base fragments” and repeat the
above process. An important difference to Phase 1 is that the merging leaves the
leaders of these base fragments intact: in the future iterations of Phase 3, each of
these base fragments again tries to find an MOE, whereby only edges that have
endpoints in fragments with distinct labels are considered as candidate for the
MOE.

Note that the fragment leaders communicate with their respective nodes as
well as the BFS root via the hierarchy of communication-efficient routing paths
constructed in Phase 2; these incur only a polylogarithmic overhead. This takes
Õ(D + n/D) time (per merging iteration) since O(n/D) MOE edges are sent to the
root of the BFS tree via communication-efficient paths (in every merging iteration)
and a message complexity of Õ(D · n/D) = Õ(n) (per merging iteration) since, in



each iteration, each of the O(n/D) edges takes Õ(D) messages to reach the root.
Since there are O(log n) iterations overall, the overall bound follows.

5.2 Deterministic Singularly-Optimal Algorithms
Shortly after the work of Pandurangan et al. [45], Elkin[12] presented a new
simultaneously optimal distributed MST algorithm which 1) is deterministic, thus
answering an explicit question raised in [45], and 2) is simpler and allows for a
simpler analysis [12].

The main novelty in Elkin’s algorithm is to grow fragments up to (strong)
diameter O(D), as opposed to O(

√
n), in the first phase of the algorithm. This

results in an (O(n/D),O(D))-MST forest as the base forest, as opposed to an
(O(
√

n),O(
√

n))-MST forest. The algorithm in [45] is then executed on top of
this base forest.

This simple change brings benefits to the case D ≥
√

n, for which now the
complexities of finding minimum-weight outgoing edges and of their subsequent
upcast to the root of the auxiliary BFS tree of the network are within the desired
time and message bounds. Hence Phase 2 of Part 2 of Pandurangan et al.’s algo-
rithm can be bypassed, and since this phase contains the sole randomized portion
of the algorithm (that is, the randomized cover construction of [10]), the final
result is a fully deterministic algorithm.

A different approach toward singular-optimality has been given recently by
Haeupler et al. [21], who provide a new deterministic distributed algorithm for
MST which is simultaneously time- and message-optimal, and also achieve the
same goal for some other problems.

6 Time and Message Lower Bounds
In this section, we provide some intuition behind the complexity lower bounds
that have been shown for the distributed MST problem.

The Peleg-Rubinovich Lower Bound. In a breakthrough result, Peleg and Ru-
binovich [48] showed that Ω(D +

√
n/B) time is required by any distributed al-

gorithm for constructing an MST, even on networks of small diameter (at least
Ω(log n)), when assuming that at most B bits can be sent across an edge in a round.
As a consequence, this result established the asymptotic (near) time-optimality of
the algorithm of [36]. Peleg and Rubinovich introduced a novel graph construction
that forces any algorithm to trade-off dilation with communication bottlenecks.
While the original lower bound of Peleg and Rubinovich applies to deterministic
algorithms for exact MST computation, the more recent work of [11, 7] extend
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Figure 1: The simplified Peleg-Rubinovich lower bound graph of [48]. The shaded
bottom path between vertices s and t represents the highway path and the rest of the
other horizontal paths between the two nodes represent the vertex-disjoint long paths.
The weight of each blue edge incident to s is chosen to be either 1 or 3. The spoke edges
connect each highway vertex to the appropriate vertices of each long path and have weight
4.

this result by showing a lower bound of Ω̃(D+
√

n) for randomized (Monte Carlo)
and approximation algorithms as well.

The (simplified) lower bound graph construction considers two designated
nodes, s and t, which are connected by Θ(

√
n) vertex-disjoint long paths, each

of length Θ(
√

n), and one highway path consisting of D = Θ(n1/4) highway ver-
tices, which determines the graph diameter. To ensure that the resulting graph
does indeed have diameter O(D), spoke edges are added from each i-th highway
vertex to the respective (iD)-th vertex of each long path. Figure 1 depicts the
weighted variant of the above graph; the assignment of the weights is explained
below.

So far, the constructed graph Ḡ is unweighted and, as an intermediate step,
[48] consider the mailing problem on Ḡ, where node s is given as input a Θ(

√
n)-

length bit string. An algorithm solves the mailing problem if eventually node t
outputs the same bit string. The way Ḡ is constructed, one strategy is to send the
input bits held by s in parallel along the Θ(

√
n) long paths; another strategy is

to send them along the (single) highway path of length Θ(n1/4) towards t, which
means the bits are essentially forced to travel in sequence since each (highway)
edge can carry at most B bits per round. Of course, we cannot make any assump-
tions on how exactly these bits are being sent from s to t: In fact, an algorithm
is not bound to send these bits explicitly (i.e. one by one) along the edges but
might attempt to somehow compress the bit string to speed up the process. To



rule out such shortcuts, [48] show that any algorithm that correctly solves the
mailing problem, must ensure that the size of the possible state space of node t
is large enough upon termination. That is, since there are 2Θ(

√
n) choices for the

input bit string given to s, the number of distinct states that node t can be in upon
termination must also be at least 2Θ(

√
n). Otherwise, there are at least 2 distinct

input bit strings of s for which t is in the same state upon termination and hence
t (wrongly) outputs the same bit string for both inputs. Initially, only s holds the
input string and hence all other nodes (including t) have a state space of size 1.
Taking into account the possibility of remaining silent, there are 2B + 1 possible
ways that any given edge can be used in any given round. It follows that, after r
rounds, the “information” delivered by the highway edges can increase the state
space by a factor of at most (2B + 1)r. Given that r ≥ Θ(

√
n/B) must hold upon

termination, [48] obtain an Ω(
√

n/B) lower bound for the mailing problem. They
also extend the above idea to graphs of diameter as small as Θ(log n).

To obtain a time lower bound for the MST problem, Peleg and Rubinovich
consider a weighted version of the graph, where all path edges have weight 0 and
all spoke edges are given weight 4. The edges connecting t to the paths have
weight 2, whereas the weights of edges incident to s have weight either 1 or 3.
The crucial property of this construction is that node t must add to the MST edges
its edge incident to the j-th slow path if and only if the weight of the edge that
connects s to the j-th slow path is 3. See Figure 1 for an example. Intuitively
speaking, this means that node t can only add the correct MST edges if there is
an algorithm that solves the corresponding mailing problem, hence implying the
sought Ω(D +

√
n/B) time lower bound.

The Das Sarma et al. [7] Lower Bound. The work of Das Sarma et al.[7]
established that Ω̃(D +

√
n) rounds is a fundamental time lower bound for several

important distributed network problems including MST, shortest paths, minimum
cut etc., and showed that this lower bound holds even for Monte-Carlo randomized
algorithms. More importantly, they show that the bound holds for approximation
algorithms as well, i.e., those that compute a solution that is within any non-trivial
approximation factor to the optimal.

The approach of Das Sarma et al is to prove lower bounds by establishing an
interesting connection between communication complexity and distributed com-
puting. A key concept that facilitates this connection is the notion of distributed
verification. In distributed verification, we are given a network G and a subgraph
H of G where each vertex of G knows which edges incident on it are in H. The
goal is to verify whether H has some properties, e.g., if it is a tree or if it is
connected (every node knows at the end of the process whether H has the spec-
ified property or not). Das Sarma et al. [7] initiate a systematic study of dis-



tributed verification, and give almost tight lower bounds on the running time of
distributed verification algorithms for many fundamental problems such as con-
nectivity, spanning connected subgraph, and s − t cut verification. They show
applications of these results in deriving time lower bounds on the hardness of dis-
tributed approximation for many classical optimization problems including MST,
shortest paths, and minimum cut.

The lower bound proofs consider the family of graphs (similar to the one in
Figure 1) that was first used in [48, 10, 38]. However, while previous results
[48, 10, 38, 31] rely on counting the number of states needed to solve the mail-
ing problem (along with some sophisticated techniques for its variant, called cor-
rupted mailing problem, in the case of approximation algorithm lower bounds),
and use Yao’s method [51] to derive lower bounds for randomized algorithms, the
results of [7] used three main steps of simple reductions, starting from problems
in communication complexity, as follows:

In the first step, they reduce the lower bounds of problems in the standard com-
munication complexity model [33] to the lower bounds of the equivalent problems
in the “distributed version” of communication complexity. Specifically, they prove
the Simulation Theorem [7] which relates the communication lower bound from
the standard communication complexity model [33] to compute some appropri-
ately chosen function f , to the distributed time complexity lower bound for com-
puting the same function in a specially chosen graph G. In the standard two-party
communication complexity model[33], Alice and Bob can communicate directly
(via a bidirectional edge of bandwidth one). In the distributed model, we assume
that Alice and Bob are some vertices of G and they together wish to compute the
function f using the communication graph G. The choice of graph G is critical
and is the same as the graph used by Peleg and Rubinovich [48] (see Figure 1).

The connection established in the first step allows one to bypass the state
counting argument and Yao’s method, and reduces the task in proving lower
bounds of distributed verification problems (see below) to merely picking the
right function f to reduce from. The function f that is useful in showing ran-
domized lower bounds for many problems (including MST) is the set disjointness
function [33], which is the quintessential problem in the world of communication
complexity with applications to diverse areas. Following a result well known in
communication complexity [33], they show that the distributed version of the set
disjointness problem has an Ω̃(

√
n) lower bound on graphs of small diameter.

The second step is to reduce the concerned problem (such as MST or shortest
paths) to an appropriate verification problem using simple reductions similar to
those used in data streams [26]. The verification problem that is appropriate for
MST is the spanning connected subgraph verification problem, where the goal is
to verify if a given subgraph H of a graph G is spanning and connected.

Finally, in the third step, they reduce the verification problem to hardness of



distributed approximation for a variety of problems to show that the same lower
bounds hold for approximation algorithms as well. For this, they use a reduc-
tion whose idea is similar to the one used to prove hardness of approximating
TSP (Traveling Salesman Problem) on general graphs (see, e.g., [50]): Convert
a verification problem to an optimization problem by introducing edge weights
in such a way that there is a large gap between the optimal values for the cases
where H satisfies (or does not satisfy) a certain property. This technique is surpris-
ingly simple, yet yields strong unconditional hardness bounds — many hitherto
unknown, left open (e.g., minimum cut) [9] and some that improve over known
ones (e.g., MST and shortest path tree) [10]. As mentioned earlier, this approach
shows that approximating MST by any factor needs Ω̃(

√
n) time, while the previ-

ous result due to Elkin gave a bound that depends on α (the approximation factor),
i.e. Ω̃(

√
n/α), using more sophisticated techniques.

To summarize, the lower bound proof for MST that applies to Monte Carlo
randomized and approximation algorithms proceeds as follows. It starts by reduc-
ing the set disjointness problem in the standard two party communication com-
plexity setting to the distributed version of the set disjointness problem which has
to solved by communicating in a graph (the one in Figure 1). Then the distributed
version is in turn reduced to the spanning connected subgraph verification prob-
lem which is then finally reduced to MST or approximate MST. Hence starting
with the lower bound of the set disjointness problem (which is already known in
communication complexity) we obtain a lower bound for MST.

The lower bound proof technique via this approach is quite general and con-
ceptually straightforward to apply as it circumvents many technical difficulties by
using well-studied communication complexity problems. Nevertheless, this ap-
proach yields tight lower bounds for many problems. More specifically, a signifi-
cant advantage of this technique over previous approaches is that it avoids starting
from scratch every time we want to prove a lower bound for a new problem. For
example, extending the result from the mailing problem in [48] to the corrupted
mailing problem in [10] requires some sophisticated techniques. The new tech-
nique, on the other hand, allows one to use known lower bounds in communication
complexity to streamline such tasks. Another advantage of the approach by [7] is
that extending a deterministic lower bound to a randomized one is sometimes
technically difficult, when all that is available is a deterministic bound. By using
connection to communication complexity, the technique of [7] allows one to ob-
tain lower bounds for Monte Carlo randomized algorithms, while previous lower
bounds hold only for Las Vegas randomized algorithms. The general approach of
Das Sarma et al has been subsequently used to show many new lower bounds for
other distributed graph algorithms.



A Simultaneous Lower Bound. The prior time and message lower bounds for
MST are derived using two completely different graph constructions; the existing
lower bound construction that shows one lower bound does not work for the other.
Specifically, the existing graph constructions of [11, 7] used to establish the lower
bound of Ω̃(D +

√
n) rounds does not simultaneously yield the message lower

bound of Ω(m); similarly, the existing lower bound graph construction of [35] that
shows the message lower bound of Ω(m) (cf. Section 3.1) does not simultaneously
yield the time lower bound of Ω̃(D +

√
n).

In [45], the authors combine the two lower bound techniques — hardness of
distributed symmetry breaking, used to show the message lower bound of Ω(m)
for the KT0 model [35], and communication complexity, used to show the lower
bound on time complexity [7] — to show that, for any algorithm, there is some
graph where both the message and time lower bounds hold.

7 Conclusion and Open Problems
This article surveyed the distributed MST problem, a cornerstone problem in dis-
tributed network algorithms. It has received a rich and continuing interest since
the very first distributed MST algorithm was published more than 35 years ago.

On the algorithmic side, there has been a lot of work in trying to improve
the time complexity and more recently both time and message complexity with
the goal of obtaining singularly optimal algorithms. An important conceptual
contribution that research in distributed MST introduced is the notion of efficiency
with respect to specific graph parameters such as D, the network diameter. This
notion led to development of new algorithms — starting with that of [16] and
leading to the more recent singularly-optimal algorithms of [45, 12, 21]. More
importantly, it also led to a deeper understanding of lower bounds in distributed
network algorithms. The time lower bound of Ω̃(D +

√
n) for MST first shown

by Peleg and Rubinovich [48] led to similar lower bounds for distributed network
algorithms for various other problems, including for randomized algorithms and
approximation algorithms [7].

An open question is whether there exists a distributed MST algorithm with
near-optimal time and message complexities in the KT1 variant of the model, i.e.,
using Õ(n) messages and (̃D +

√
n) time. Very recently there has been some

progress on this question [20]. Another interesting question is improving the per-
formance of MST in special classes of graphs, e.g., in graphs of diameter two
(where it is not known if one can get o(log n)-round algorithms). There has been
recent progress in this direction (cf. Section 3.1).

Currently, it is not known whether other important problems such as shortest
paths, minimum cut, and random walks, enjoy singular optimality. These prob-



lems admit distributed algorithms which are (essentially) time-optimal but not
message-optimal [41, 25, 8, 42]. Some work in this direction recently started to
appear [21], but further research is needed to address these questions.
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