
Distributed Computing and Education Column
Special Issue

by

Juraj Hromkovic, Stefan Schmid

ETH Zurich, University of Vienna

In this column, Leslie Lamport makes the case for using the language of
mathematics for describing algorithms. He argues that students should learn to
think mathematically when writing code and programs.

The column is a special issue and collaboration of the distributed computing
column and the education column.

Enjoy!



If You’re NotWriting a Program,
Don’t Use a Programming Language

Leslie Lamport
Microsoft Research, Mountain View, CA, U.S.A.

Abstract

The need to handle large programs and to produce efficient compiled code
adds complexity to programming languages and limits their expressiveness.
Algorithms are not programs, and they can be expressed in a simpler and
more expressive language. That language is the one used by almost every
branch of science and engineering to precisely describe and reason about
the objects they study: the language of mathematics. Math is useful for
describing a more general class of algorithms than are studied in algorithm
courses.

1 Introduction

I have worked with a number of computer engineers—both hardware and software
engineers—and I have seen what they knew and what they didn’t know. I have
found that most of them do not understand some important basic concepts. These
concepts are obscured by programming languages. They are better understood by
a simple and powerful way of thinking about computation mathematically that is
explained here.

This note discusses what is called correctness in the field of program verifi-
cation: the requirement that each possible execution of a program satisfies some
precisely defined property. For brevity, I will use “correctness” only in this sense,
ignoring other common meanings of the word. For example, ease of use is not a
correctness condition because it isn’t precisely defined. That a program produces
the right output 99.9% of the time is also not a correctness condition because it
isn’t an assertion about an individual execution. However, producing the right
output is a correctness condition. A mathematical understanding of this concept
of correctness is useful beyond the field of program verification. It provides a way
of thinking that can improve all aspects of writing programs and building systems.



I will consider algorithms, not programs. It’s fruitless to try to precisely distin-
guish between them, but we all have a general idea that an algorithm is a higher-
level abstraction that is implemented by a program. For example, here is Euclid’s
algorithm for computing GCD(M ,N ), the greatest common divisor of positive
integers M and N :

Let x equal M and y equal N . Repeatedly subtract the smaller of x
and y from the larger. Stop when x and y have the same value, at
which point that value is GCD(M ,N ).

Implementing this algorithm in a programming language requires adding details
that are not part of the algorithm. For example, should the types of M and N
be single-precision integers, double-precision integers, or some class of objects
that can represent larger integers? Should the program assume that M and N are
positive or should it return an error if they aren’t?

The algorithms found in textbooks and studied in algorithm courses are rela-
tively simple ones that are useful in many situations. Most non-trivial programs
implement one or more algorithms that are used only in that program. Coding is
the task of implementing an algorithm in a programming language. However, pro-
gramming is too often taken to mean coding, and the algorithm is almost always
developed along with the code. The programmer is usually unaware of the exis-
tence of the algorithm she is developing. To understand why this is bad, imagine
trying to discover Euclid’s algorithm by thinking in terms of code rather than in
terms of mathematics.

The term algorithm is generally taken to mean only an algorithm that might
appear in a textbook on algorithms. The special-purpose algorithms implemented
by programs and systems are usually called something else, such as high-level
designs, specifications, or models. However, they differ from textbook algorithms
only in being special purpose and often more complicated. I will call them algo-
rithms to emphasize that they are fundamentally the same as what are convention-
ally called algorithms.

The benefit of thinking about algorithms mathematically is not limited to ob-
viously mathematical problems like computing the GCD. Here’s what I was told
in an email from the leader of a team that built a real-time operating system by
starting with a high-level design written in a mathematics-based language called
TLA+ [14]:

The [TLA+] abstraction helped a lot in coming to a much cleaner ar-
chitecture (we witnessed first-hand the brainwashing done by years
of C programming). One of the results was that the code size is about
10× less than in [the previous version].



The previous version of the operating system was flown in a spacecraft, where
one assumes reducing code size was important. The common obsession with lan-
guages might lead readers to think this result was due to some magical features of
TLA+. It wasn’t. It was due to TLA+ letting users think mathematically.

This note is written for sophisticated readers, but the mathematical approach
it presents is simple enough to be understood by undergraduates. The mathemat-
ics can be made as rigorous or as informal as we want. The discussion here is
informal, using only simple examples. Not explained are how to make the math-
ematics completely formal and how to handle the large formulas that describe
complex real-world algorithms. Also not explained is how to write and reason
about those mathematical formulas in practice. That would require a book.

2 Behaviors and Properties
An execution of an algorithm is represented mathematically as a sequence of
states, where a state is an assignment of values to variables. A sequence of states
is called a behavior. For example, the following three-state behavior represents
the one possible execution of Euclid’s algorithm for M = 12 and N = 18

[x ← 12, y ← 18] , [x ← 12, y ← 6] , [x ← 6, y ← 6]

where [x ← 12, y ← 18] is the state that assigns 12 to x and 18 to y . The
simplicity and power of this way of representing executions has led me to find it
the best one for studying correctness (as defined above).

A property is a predicate (Boolean-valued function) on behaviors. We say that
a behavior b satisfies a property P , or that P is true on b, iff (if and only if) P (b)
equals true. A correctness condition of an algorithm asserts that every behavior
that represents an execution of the algorithm satisfies a property.

Partial correctness of Euclid’s algorithm means that if it stops, then x and y
both equal GCD(M ,N ). The algorithm stops iff x and y have the same value.
Therefore, partial correctness of the algorithm is expressed by the property that is
true of a behavior iff every state of the behavior satisfies this condition:

If x and y have the same value, then that value equals GCD(M ,N ).

The state predicate (Boolean-valued function on states) that is true on a state iff
the state satisfies this condition can be written as the formula

(x = y) ⇒ (x = GCD(M ,N )) (1)

where ⇒ denotes logical implication. The property that is true on a behavior iff
(1) is true on every state of the behavior is written as

2((x = y)⇒ (x = GCD(M ,N ))) (2)



For M = 12 and N = 18, property (2) is true on this five-state behavior:1

[x ← 1, y ← 37] , [x ← 6, y ← 6] , [x ← 42, y ← 7] ,
[x ← 6, y ← 6] , [x ← 0, y ← 12]

Partial correctness of Euclid’s algorithm means that property (2) is true of every
behavior representing an execution of Euclid’s algorithm. Amir Pnueli introduced
2 into computer science as an operator of temporal logic [13], but we can con-
sider it here to be an ordinary mathematical operator that maps state predicates to
properties.

Observe that, like almost all mathematicians, I say that formula (2) is a prop-
erty, which is a Boolean-valued function. Pedants and logicians might say that the
property is the meaning of the formula, which is different from the formula itself.
Like almost all mathematicians, I will ignore this distinction.

A property of the form 2I for a state predicate I is called an invariance prop-
erty, and we say that 2I asserts that I is an invariant. Invariants play a crucial
role in understanding algorithms.

Another important property of Euclid’s algorithm is that it always terminates.
The algorithm terminates when x equals y . Therefore, an execution that termi-
nates is represented by a behavior containing a state in which the state predicate
x = y is true. A behavior contains such a state iff it is not the case that all of its
states satisfy x , y—that is, iff the property 2(x , y) is not true on the behav-
ior, which means that ¬2(x , y) is true on the behavior. Hence a terminating
behavior of the algorithm is one satisfying the property ¬2(x , y).

3 Algorithms are Properties
We usually think of an algorithm as generating possible executions. For exam-
ple, we can think of Euclid’s algorithm generating an execution for each pair of
positive integers M and N . (Nondeterminism is a more interesting source of mul-
tiple possible executions for an algorithm.) Each possible execution is represented
mathematically by a behavior. We can represent an algorithm as the set of all these
behaviors.

There is a natural correspondence between sets and predicates. A set S corre-
sponds to the predicate, let’s call it πS , that is defined by letting πS (e) equal true
iff e is an element of S . Thus, instead of representing an algorithm by a set S of
behaviors, we can represent it by the corresponding predicate πS on behaviors. A
predicate on behaviors is what we call a property, so corresponding to the set S of

1Note that a behavior is any sequence of states, not just one representing the execution of some
algorithm.



behaviors representing executions of the algorithm is the property πS that is true
of a behavior iff the behavior represents an execution of the algorithm.

I will usually represent an algorithm with set S of behaviors as the property πS

because I find that to be the most helpful way of thinking about algorithms. This
means that instead of thinking of an algorithm as a generator of executions, we
think of it as a rule for determining if a sequence of states is an execution of the
algorithm. (In computer science jargon, we think of the algorithm as a recognizer
rather than a generator of executions.) This way of thinking about algorithms may
strike you as either bizarre or an insignificant shift of viewpoint. However, I have
found it to be quite helpful for understanding algorithms.

Algorithms are properties, but not every property is an algorithm. We use the
term algorithm for a property that is satisfied by a set of behaviors representing
the possible executions of what we think of as an algorithm.

We saw in Section 2 that a correctness condition of an algorithm asserts that
every behavior representing an execution of the algorithm satisfies a property P .
Since the algorithm is a property A, this correctness condition asserts that if a
behavior satisfies A then it satisfies P — an assertion written mathematically as
A ⇒ P .2 The property P could be an algorithm that is a higher-level (more
abstract) version of the algorithm A. In that case, we say that A ⇒ P means
that A refines P . Thus, our mathematical view of computation provides a natural
definition of algorithm refinement as implication. Refinement is generalized in
Section 6.1 to include data refinement [6].

4 Describing Algorithms Mathematically

4.1 State Machines

The practical way to precisely describe algorithms is with state machines. A state
machine is usually described by a set of possible initial states and a next-state
relation that determines the possible steps, where a step is a pair of successive
states in a behavior. The possible executions of the state machine consist of all
sequences s1, s2, . . . of states such that (1) s1 is a possible initial state and (2) ev-
ery step (s i , s i+1) satisfies the next-state relation. A Turing machine is obviously
a state machine. An operational semantics of a programming language describes
every program in the language as a state machine. Nondeterminism is represented
by a next-state relation that is satisfied by more than one pair (s , t) of states for

2I am extending the operator⇒ on Boolean values to an operator on Boolean-valued functions.
Such extensions are ubiquitous in mathematics. For example, if f and g are numerical-valued
functions, then f + g is the function defined by (f + g)(x ) = f (x ) + g(x ).



the same state s . We’ll see in Section 4.4 that this definition of a state machine is
incomplete, but it will suffice for now.

If a state is an assignment of values to variables, then an execution of a state
machine is a behavior. The set of initial states can be represented as a state predi-
cate and the next-state relation can be represented as a predicate on pairs of states.
The state machine is represented as a property that is true on a behavior s1, s2, . . .
iff these two conditions are satisfied:

SM1 The initial-state predicate is true on s1.

SM2 The next-state predicate is true on every step (s i , s i+1).

4.2 State Machines in Mathematics
Let’s represent Euclid’s algorithm by a state machine. We described the algorithm
above for a single pair of input values M and N , so we considered Euclid’s algo-
rithm for different values of M and N to be different algorithms. Let’s do this in
our mathematical representation of the algorithm, so we describe Euclid’s algo-
rithm for a single fixed pair M , N of positive integers. The algorithm has a single
behavior; what that single behavior is depends on the (unspecified) values of the
positive integers M and N .

The initial predicate is true on a state iff x has the value M and y has the value
N . This state predicate can obviously be written

(x = M ) ∧ (y = N ) (3)

A predicate on pairs of states is often written as a formula containing primed
and unprimed variables, where an unprimed variable represents the value of the
variable in the first state and a primed variable represents its value in the second
state [5]. With this notation, the next-state predicate for Euclid’s algorithm is

( (x > y)
∧ (x ′ = x − y)
∧ (y ′ = y) )

∨ ( (y > x )
∧ (y ′ = y − x )
∧ (x ′ = x ) )

(4)

For example, the predicate (4) is true on the pair of states

( [x ← 18, y ← 12] , [x ← 6, y ← 12] )

because that formula equals true if x = 18, y = 12, x ′ = 6, and y ′ = 12. Formula
(4) equals false if the value of x equals the value of y . Hence, the next-state



predicate of Euclid’s algorithm equals false for any pair of states with x = y true
in the first state. This means that Euclid’s algorithm halts in such a state.

Let’s define InitE to equal the initial-state predicate (3) and NextE to equal
the next-state predicate (4). These two formulas describe Euclid’s algorithm—that
is, they describe the property that is our mathematical representation of Euclid’s
algorithm. It’s more convenient to describe this property with a single formula,
which we now do.

First, define [P , for any state predicate P , to be the property that is true on a
behavior iff P is true on the first state of the behavior. Then [InitE is the property
that expresses condition SM1 of the state machine.

Next, extend the operator 2 to predicates Q on pairs of states by letting 2Q
be true on a behavior iff Q is true on every step of the behavior. Thus, 2NextE is
the property that expresses condition SM2 of the state machine.

The property that is Euclid’s algorithm, which is the property satisfying con-
ditions SM1 and SM2, is represented by the formula [InitE ∧ 2NextE . For a
state predicate P , it’s customary to write [P as simply P , determining from con-
text whether P means the state predicate or the property [P . We thus write the
property that is Euclid’s algorithm as

InitE ∧ 2NextE (5)

Instead of defining Euclid’s algorithm for a specific pair of integers, we could
define it for an arbitrary pair of integers. The definition is the formula obtained
by existentially quantifying formula (5) over all positive integers M and N — a
formula I will write

∃ M ,N ∈ Z+. (InitE ∧ 2NextE )

where Z+ is the set of positive integers. Since M and N don’t occur in NextE ,
this formula can also be written

(∃ M ,N ∈ Z+. InitE ) ∧ 2NextE

However, let’s stick with our definition (5) of Euclid’s algorithm for a single pair
of positive integers M and N .

4.3 Proving Invariance
Let’s now prove partial correctness of Euclid’s algorithm, which is expressed as
the property (2). We first consider the general problem of proving that an algo-
rithm described by the formula Init ∧2Next satisfies an invariance property 2I .
We saw in Section 3 that this means proving the formula Init ∧2Next ⇒ 2I .



Since 2I asserts that the state predicate I is true on all states of a behavior,
the natural way to prove 2I is by induction: proving that (i) I is true on the first
state and (ii) for any j , if I is true on the j th state then it’s true on the (j +1)st state.

We can obviously prove (i) by proving Init ⇒ I . To prove (ii), it suffices to
prove that for any pair (s , t) of states, if I is true on s and Next is true on (s , t),
then I is true on t . Let’s define I ′ to be the formula obtained from I by priming all
its variables. The formula I ′ represents the predicate on pairs of states that is true
on (s , t) iff I is true on t . We can therefore prove (ii) by proving that I true on s
and N true on (s , t) implies that I ′ is true on (s , t) — an assertion expressed by the
formula I ∧ Next ⇒ I ′. We can encapsulate all this in the following proof rule,
which asserts that the truth of the two formulas above the line (the hypotheses)
implies the truth of the formula below the line (the conclusion).

Init ⇒ I
I ∧ Next ⇒ I ′

Init ∧ 2Next ⇒ 2I

(6)

A formula I satisfying the hypotheses of this rule is called an inductive invariant
of the algorithm Init ∧ 2Next . An inductive invariant is an invariant, but the
converse isn’t necessarily true. The invariant (1) of Euclid’s algorithm is not an
inductive invariant of the algorithm—for example, if M = 12 and N = 18, then
the second hypothesis equals false when x = 16 and y = x ′ = y ′ = 8. Define
InvE to equal formula (1). To prove that InvE is an invariant, we find an inductive
invariant I that implies it. The invariance of InvE then follows from the invariance
of I and the following proof rule, which asserts the obvious fact that if a state
predicate P implies a state predicate Q , then P true on all states of a behavior
implies that Q is true on all states of the behavior.

P ⇒ Q
2P ⇒ 2Q

(7)

The inductive invariant I for Euclid’s algorithm is

GCD(x , y) = GCD(M ,N )

The first hypothesis of rule (6) is trivially true. The truth of the second hypothesis
follows from the observation that for any integers a and b, an integer divides both
a and b iff it divides both a and a − b. That I implies InvE is obvious because
GCD(x , x ) equals x .

As illustrated by Euclid’s algorithm, partial correctness is an invariance prop-
erty. The Floyd/Hoare method of proving partial correctness is based on proof
rules (6) and (7), where the inductive invariant is written as a program annota-
tion [3, 7].



What an algorithm does next is determined by its current state, not by what
happened in the past. An algorithm does the right thing (for example, it termi-
nates only with the right answer) because something is true of every state—that
is, because it satisfies an invariance property. Understanding an algorithm requires
understanding that invariant. Years of experience has shown that the one reliable
method of proving the invariance of a state predicate is by finding an inductive
invariant that implies it.

4.4 Termination
For M = 12 and N = 18, the formula InitE∧2NextE is satisfied by the following
three behaviors:

1. [x ← 12, y ← 18]
2. [x ← 12, y ← 18], [x ← 12, y ← 6]
3. [x ← 12, y ← 18], [x ← 12, y ← 6], [x ← 6, y ← 6]

Those are the three behaviors that satisfy conditions SM1 and SM2. (Behavior 1
trivially satisfies SM2 because it has no steps.) We consider behavior 3 to be the
only correct one; we don’t want Euclid’s algorithm to allow behaviors 1 and 2,
which stop prematurely.

A common approach is to modify the definition of the executions of a state
machine by adding another condition to SM1 and SM2. Define a predicate N on
pairs of states to be enabled on a state s iff there is some state t such that N is true
on (s , t). The additional condition is:

SM3 The behavior does not end in a state in which the next-state predicate is
enabled.

The definition of 2Next could be modified to imply SM3. While this approach
is satisfactory for sequential algorithms that compute an answer and then stop,
we’ll see in Section 5.1 that it’s a bad idea for more general algorithms, including
concurrent ones.

Instead, we express the requirement that Euclid’s algorithm not stop before
it should by adding the requirement of weak fairness of the next-state relation—
expressed by the formula WF(NextE ). For any predicate N on pairs of states,
WF(N ) is true on a finite behavior iff the behavior doesn’t end in a state in which
N is enabled. It is true on an infinite behavior iff the behavior doesn’t end with an
infinite sequence of states such that (i) N is enabled on all states of the sequence
and (ii) N is not true on any of that sequence’s steps.

Euclid’s algorithm terminates iff it eventually reaches a state in which x = y
is true, and we saw in Section 2 that this is asserted by the property ¬2(x , y).



Thus, the assertion that every behavior of Euclid’s algorithm stops is expressed
mathematically by:

InitE ∧ 2NextE ∧ WF(NextE ) ⇒ ¬2(x , y) (8)

To prove (8) we prove two things:

1. x + y is non-negative in all states of a behavior of the algorithm, which is
expressed by:

InitE ∧ 2NextE ⇒ 2(x + y ≥ 0) (9)

2. Executing a step of the algorithm from a state with x , y decreases x + y ,
which is implied by

(x , y) ∧ NextE ⇒ (x ′ + y ′) < (x + y) (10)

We’ve seen how to prove an invariance property like (9). Formula (10) follows
from the fact that (a − b) + b < a + b for any positive numbers a and b.3 Since
a non-negative integer can be decreased only a finite number of times before it
becomes non-positive, and NextE is enabled iff x , y , (9) and (10) imply (8).

Termination of any sequential algorithm is proved in this way. In general, the
formula x + y is replaced by a suitable integer-valued function on states (usually
called a variance function), and x , y is replaced by the state predicate asserting
that the next-state predicate is enabled.

5 Concurrent Algorithms
Many computer scientists seem to believe that a concurrent algorithm must be
described by a collection of state machines that communicate in some way, each
state machine representing a separate process. In fact, a concurrent algorithm is
better understood as a single state machine. I will illustrate this with a simple
example: the N -buffer producer/consumer algorithm.

5.1 The Two-Process Algorithm
In the standard description of the algorithm, a producer process sends a sequence
of messages that are received by a consumer process. Messages are transmitted
using an array of N message buffers numbered 0 through N − 1, with N > 0.

3A more rigorous proof requires showing that (x > 0) ∧ (y > 0) is an invariant of Euclid’s
algorithm.



The producer sends messages by putting them in successive buffers starting with
buffer 0, putting the i th message in buffer i −1 mod N ; and the consumer removes
messages in the same order from the buffers. The producer can put a message in
a buffer only if that buffer is empty, and the consumer can remove a message only
from a buffer that contains one.

The algorithm is described by the formula

InitPC ∧ 2NextPC ∧ FPC (11)

where InitPC is the initial-state predicate, NextPC is the next-state predicate, and
FPC is a fairness property that is false on a behavior that ends before it should. I
won’t write the complete definitions of these formulas and will just briefly discuss
NextPC and FPC .

The obvious definition of NextPC has the form

NextPC ≡ Send ∨ Rcv

where Send is true on a pair (s , t) of states iff t represents the state obtained from
s by having the producer put its next message into a buffer; and similarly Rcv
is true on a pair of states iff that pair represents the consumer removing its next
message from a buffer.

There are three obvious choices for the property FPC , leading to three different
algorithms. We might want to require that messages keep getting sent and received
forever. This is expressed by letting FPC equal WF(NextPC ). We can write the
same algorithm by letting FPC equal WF(Send )∧WF(Rcv ). These two formulas
are not equivalent, but they produce equivalent formulas (11) because this formula
is true:

InitPC ∧ 2NextPC ⇒ (WF(NextPC ) ≡ WF(Send ) ∧WF(Rcv ))

Of course, we can’t prove this formula without knowing the definitions of InitPC ,
Send , and Rcv . However, it’s possible to see from the definition of WF in Sec-
tion 4.4 that it should be true because the informal description of the algorithm
means InitPC ∧2NextPC should imply of a behavior that:

• Send or Rcv is enabled in every state. (They can both be enabled.)

• The behavior can contain at most N consecutive steps that represent the
sending of a message, and at most N consecutive steps that represent the
receiving of a message.

The second obvious choice for FPC requires that the producer should keep trying
to send messages, but the consumer may stop receiving them. This is expressed
by letting FPC equal WF(Send ). Formula (11) then allows (but doesn’t require)



a behavior to end only in a state in which all message buffers are full. The third
obvious choice is to let FPC equal WF(Rcv ), allowing behaviors to end only in
a state in which all the buffers are empty. Note that modifying the definition of
2NextPC by adding condition SM3 of Section 4.4 would make it impossible to
write the last two versions of the algorithm.

5.2 Another View of the Algorithm
Because producer/consumer is a two-process algorithm, it’s natural to write NextPC

as the disjunction Send ∨Rcv of two formulas, each describing the steps that can
be taken by one of the processes. Let’s take a closer look at those formulas. Sen-
sible definitions of Send and Rcv will have the form

Send ≡ ∃ i ∈ {0, . . . ,N − 1} . S (i )
Rcv ≡ ∃ i ∈ {0, . . . ,N − 1} .R(i )

where S (i ) describes a step in which the producer puts a message in buffer i , and
R(i ) describes a step in which the consumer removes a message from buffer i .
Define SR(i ) to equal S (i ) ∨ R(i ). Elementary logic shows that NextPC equals

∃ i ∈ {0, . . . ,N − 1} . SR(i ) (12)

Formula (12) looks like the next-state predicate of an N -process algorithm, where
the processes are numbered 0 through N −1 and SR(i ) describes steps that can be
performed by process number i . Process i can put a message into buffer i when
it’s empty, and it removes a message from that buffer when it contains one.

Is the producer/consumer algorithm a 2-process algorithm or an N -process al-
gorithm? Mathematically, it’s neither. The algorithm is the formula/property (11).
We can view that formula as a 2-process algorithm or an N -process algorithm.
Each view gives us a different way of thinking about the algorithm, enabling us to
understand it better than we could with just one view.4

Formula (4), the next-state predicate of Euclid’s algorithm, is also the disjunc-
tion of two formulas. This means we can view Euclid’s algorithm not just as a
uniprocess algorithm, but also as a 2-process algorithm. One process tries to sub-
tract y from x , which it can do only when y < x is true; the other process tries to
subtract x from y , which it can do only when x < y is true.

4I’ve ignored the fairness property, so you may be tempted to think that FPC will tell us how
many processes there are in the algorithm. It won’t. For example, the algorithm we get by letting
FPC equal WF(Send ) is also obtained by letting it equal

∀ i ∈ {0, . . . ,N − 1} .WF(S (i ))

This formula looks like the conjunction of fairness conditions on N separate processes.



All programming languages that I know of force you to think of the pro-
ducer/consumer algorithm as either a 2-process algorithm or an N -process algo-
rithm. Few algorithms are better understood by decomposing them into processes
in different ways. But describing an algorithm with a programming language can
limit our ability to understand it in other ways as well.

5.3 Safety and Liveness
What does correctness of the producer/consumer algorithm mean? Since the al-
gorithm need not terminate, it doesn’t satisfy any partial correctness condition or
termination requirement. There’s an endless variety of correctness properties that
we might want to be satisfied by algorithms that need not terminate. Here are two
that we might require of the version of the algorithm with FPC equal to WF(Rcv ).

PC1 The sequence of messages received by the consumer is a prefix of the se-
quence of messages sent by the producer.

PC2 Every message sent is eventually received.

PC1 is a safety property, which intuitively is a property asserting what may hap-
pen. PC2 is a liveness property, which intuitively is a property asserting what must
happen. Here are the precise definitions. (Remember that every sequence of states
is a behavior.)

• A safety property is one that is false on an infinite behavior iff it is false on
some finite prefix of the behavior.

• A liveness property is one which, for any finite behavior, is true for some
(possibly infinite) extension of that behavior.

It can be shown that any property is equivalent to the conjunction of a safety
property and a liveness property. For any predicate I on states and predicate A on
pairs of states, the formula I ∧ 2A is a safety property, and WF(A) is a liveness
property.

The producer/consumer algorithm satisfies property PC1 iff InitPC∧2NextPC

implies that property. The fairness condition FPC is irrelevant for safety proper-
ties. In general, for any algorithm Init ∧ 2Next ∧ F , if F is the conjunction of
formulas WF(A) and each of the predicates A implies Next , then the algorithm
satisfies a safety property iff Init ∧2Next satisfies the safety property.5

5This is why we conjoin fairness conditions rather than other kinds of liveness conditions to
Init∧2Next . If F were not of this form, the formula Init∧2Next∧F would be hard to understand
because the liveness property F could forbid steps allowed by Next .



5.3.1 Proving Safety Properties

An invariance property 2I is a safety property, and we’ve seen how to prove
them. Stating PC1 as an invariance property would require being able to express
the sequences of all messages that have been sent and received in terms of the
formula’s variables. Whether this is possible depends on the definitions of InitPC ,
Send , and Rcv . If it’s not possible, there are two ways to proceed.

The simplest approach is to add a history variable to the producer/consum-
er algorithm that records the sequences of messages sent and received, so PC1
can be expressed as an invariance property. A history variable is a simple kind
of auxiliary variable—a variable that is added to an algorithm to produce a new
algorithm that is the same as the original one if the value of the added variable is
ignored [1]. (Auxiliary variables have other uses that I won’t discuss.) In general,
any safety property can be expressed as an invariance property by adding a history
variable. However, this is often not a good approach because it encodes in an
invariance proof the kind of unreliable behavioral reasoning that invariance proofs
were developed to replace.

The second approach is to write a higher-level algorithm that obviously im-
plies PC1, and then prove that the producer/consumer algorithm refines that algo-
rithm. The higher-level algorithm will of course have the form Init ∧2Next ; the
proof will use an invariance property 2InvPC of the producer/consumer algorithm
and the following proof rule.

Init1 ⇒ Init2

Next1 ∧ Inv 1 ∧ Inv ′1 ⇒ Next2

Init1 ∧2Next1 ∧2Inv 1 ⇒ Init2 ∧2Next2

5.3.2 Proving Liveness Properties

Proving liveness properties like PC2 requires more than the simple counting-down
argument used to prove termination. There is no single recipe for proving all live-
ness properties. Rigorous proofs are best done by generalizing 2 to an operator
on properties, where 2P asserts of a behavior that property P is true on all suf-
fixes of that behavior. For example, 2¬2(x , y) is true on an infinite behavior iff
x = y is true on infinitely many of its states. Weak fairness can be expressed with
2, as can another important type of liveness property that I won’t discuss called
strong fairness [4].

At the heart of most liveness proofs are counting down arguments. The count-
ing down argument used to prove termination of Euclid’s algorithm is based on
the fact that there is no infinite descending sequence n1 > n2 > . . . of natural
numbers. Proving liveness properties of concurrent algorithms requires a gener-
alization to counting down on a well-ordered set, which is a set S with partial



order � containing no infinite descending sequence s1 � s2 � . . . of elements.
For example, the set of all k -tuples of natural numbers, with the lexicographical
ordering, is well ordered.

We can regard 2 as an ordinary mathematical operator on properties. For
completely formal reasoning, I find it better to use temporal logic and to regard
2 as a temporal operator. The proofs of liveness one writes in practice can be
formalized with a small number of temporal-logic axioms [9]. However, temporal
logic is a modal logic and does not obey some important laws of traditional math,
so it must be used with care. An informal approach that avoids temporal logic
may be best for undergraduates.

6 Refinement

6.1 Data Refinement
Data refinement is a traditional method of refining sequential algorithms that com-
pute an output as a function of their input [6]. An example of data refinement is
refining Euclid’s algorithm by representing the natural numbers x and y with bit
arrays ax and ay of length k .

Mathematically, a k -bit array a is a function from {0, . . . , k − 1} to {0, 1}. It
represents the natural number AtoN (a), defined by

AtoN (a) ≡
k−1∑
i=0

a(i ) · 2i

Let’s write such a bit array a as a(k − 1) . . . a(0), so AtoN (01100) equals 12 for
k = 5.

Let AlgE be the formula InitE ∧2NextE ∧WF (NextE ) that is Euclid’s algo-
rithm, and let AlgAE be an algorithm whose variables are 5-bit arrays ax and ay .
For any state s that assigns values to ax and ay , let AEtoE (s) be the state that
assigns the value AtoN (ax ) to x and AtoN (ay) to y . For example,

AEtoE ( [ax ← 01100, ay ← 10010] ) = [x ← 12, y ← 18]

We extend AEtoE to behaviors by defining

AEtoE (s1, s2, . . .) ≡ AEtoE (s1), AEtoE (s2), . . .

For example, if b is the behavior

[ax ← 01100, ay ← 10010], [ax ← 01100, ay ← 00110],
[ax ← 00110, ay ← 00110]

(13)



then AEtoE (b) equals

[x ← 12, y ← 18], [x ← 12, y ← 6], [x ← 6, y ← 6] (14)

We say that algorithm AlgAE refines algorithm AlgE under the refinement map-
ping x ← AtoN (ax ), y ← AtoN (ay) iff, for every behavior b allowed by algo-
rithm AlgAE , the behavior AEtoE (b) is allowed by algorithm AlgE . For M = 12
and N = 18, algorithm AlgE allows only the single behavior (14), so if AlgAE

refines AlgE , it will allow only the single behavior (13).
The value of the state predicate x < 2 · y on a state AEtoE (s) equals the value

of the predicate AtoN (ax ) < 2 · AtoN (bx ) on the state s . For example, both the
value of x < 2 · y on the state

[x ← AtoN (10010), y ← AtoN (01100)]

and the value of AtoN (ax ) < 2 · AtoN (bx ) on the state

[ax ← 10010, ay ← 01100]

equal 18 < 2·12 (which equals true). In general, the value of any state predicate I
on AEtoE (s) is the same as the value on s of the formula obtained by substituting
AtoN (ax ) for x and AtoN (ay) for y in I . Mathematicians have no standard
notation for such a formula obtained by substitutions; I’ll write it

I with x ← AtoN (ax ), y ← AtoN (ay) (15)

So, the value of I on AEtoE (s) equals the value of formula (15) on s . Similarly,
the value of the algorithm/formula AlgE on a behavior AEtoE (b) is the same as
the value of

AlgE with x ← AtoN (ax ), y ← AtoN (ay) (16)

on the behavior b. We said above that AlgAE refines AlgE under the refinement
mapping described by this with clause iff, for any behavior b satisfying AlgAE ,
the behavior AEtoE (b) satisfies AlgE . We’ve just seen that the latter condition is
equivalent to b satisfying (16). Therefore, AlgAE refines AlgE under this refine-
ment mapping iff AlgAE implies (16). In general, we have:

Definition Algorithm Alg1 implements algorithm Alg2 under the re-
finement mapping v 1 ← e1, . . . vn ← en iff this formula is true:

Alg1 ⇒ (Alg2 with v 1 ← e1, . . . , vn ← en)



“The brainwashing done by years of C programming” may lead one to think that
there is little difference between the expression x ′ = x −y in the next-state relation
(4) of Euclid’s algorithm and the C assignment statement x = x-y. However,
expanding the definition of AlgE shows that formula (16) is an algorithm whose
next-state predicate contains the expression

(x ′ = x − y) with x ← AtoN (ax ), y ← AtoN (ay)

which equals

k−1∑
i=0

ax ′(i ) · 2i =

k−1∑
i=0

ax (i ) · 2i −

k−1∑
i=0

ay(i ) · 2i

No programming language allows you to write anything resembling this formula.
Data refinement is described by substitution, which is a fundamental operation

of mathematics. It cannot be properly understood in terms of the limited kinds of
substitution provided by programming languages.

6.2 Step Refinement
Another kind of refinement is step refinement, in which a single step of a high-
level algorithm is refined by multiple steps of a lower-level algorithm. Let’s con-
sider a very simple example.

Suppose we want to write a formula/algorithm/property representing a clock
that displays the hour and minute, ignoring the relation between the display and
physical time. We could write a formula AlgHM containing the variables hr and
min that represent the hour and minute displays. A behavior satisfying AlgHM

would contain this subsequence of three states:

[hr ← 4, min ← 58] , [hr ← 4, min ← 59] , [hr ← 5, min ← 0]

Suppose we also write a formula AlgHMS describing a clock that represents the
hour, minute, and second displays with variables hr , min, and sec.

If we ask for a clock that displays hours and minutes, without explicitly saying
that it does not display seconds, then our request is satisfied by a clock display-
ing hours, minutes, and seconds. In mathematics, writing a formula like AlgHM

containing the variables hr and min doesn’t imply that there is no variable sec.
The formula simply says nothing about sec or any other variable besides hr and
min. Therefore, the formula/property AlgHM should be satisfied by the algo-
rithm/property AlgHMS . In other words, every behavior satisfying AlgHMS should
also satisfy AlgHM . However, the way I’ve been writing our algorithms, a behav-
ior satisfying AlgHMS takes 60 steps to go from a state with hr = 4 and min = 59



to one with hr = 5 and min = 0, while a behavior satisfying AlgHM does it in a
single step. Therefore, I haven’t been writing algorithms the way they should be
written. Writing them properly requires a closer look at how mathematics is used
to describe the world.

I defined a state to be an assignment of values to variables, and in the examples
I’ve taken the variables to be the ones in the algorithm. Since writing the formula
AlgHM doesn’t preclude the existence of variables other than hr and min, for what
we are doing to make sense mathematically, a state should be an assignment of
values to all possible variables. (Mathematicians assume that there are an infinite
number of possible variables.) The formula AlgHM is not an assertion about a
universe consisting only of an hour-minute clock described by the variables hr
and min. It’s an assertion about a universe containing an hour-minute clock—a
universe that might also contain Euclid’s algorithm and the producer/consumer
algorithm. A behavior represents a possible “execution” of this entire universe.
The behavior satisfies formula AlgHM iff it represents a universe in which the
hour-minute clock is operating correctly. If AlgPC is a specification of the pro-
ducer/consumer algorithm, then a behavior satisfies AlgHM ∧ AlgPC iff it repre-
sents a universe in which both the hour-minute clock and the producer/consumer
algorithm are operating correctly.

It’s obviously absurd for a specification of the hour-minute clock to require
that, in a state with hr = 4 and min = 59, the next state of the entire universe
must be one with hr = 5 and min = 0. It should allow multiple successive states
with hr = 4 and min = 59 to precede a state with hr = 5 and min = 0 — perhaps
trillions of them. This means that the next-state predicate for the hour-minute
clock should have the form

TickHM ∨ (hr ′ = hr ∧min ′ = min) (17)

where TickHM describes how hr and min can change. Steps that leave hr and
min unchanged (allowed by the second disjunct) are called stuttering steps of the
algorithm. Steps allowed by AlgHMS that change only sec are stuttering steps of
AlgHM , allowed by the next-state predicate (17). Therefore, AlgHMS will imply
AlgHM .

All the formulas representing algorithms that we’ve written need to be modi-
fied to allow stuttering steps. Let’s write formula (17) as [Tick ]〈hr ,min 〉. We can
then change the safety part (5) of Euclid’s algorithm to InitE ∧2[NextE ]〈x ,y 〉 and
the safety part of the producer/consumer algorithm (11) to InitPC∧2[NextPC ]〈 ...〉,
where “. . .” is the list of all the algorithm’s variables.

The next-state predicate (17) allows behaviors that, from some point on, con-
tain only stuttering steps of the clock. Such a behavior represents one in which
the clock stops. Since the entire universe need never stop, termination of any al-
gorithm is represented by infinite stuttering. We can therefore simplify the math-



ematics by considering only infinite behaviors. Termination is still disallowed by
fairness properties. The fairness condition WF(TickHM ) asserts that the hour-
minute clock never stops, assuming that TickHM does not allow steps that leave
both hr and min unchanged.

In general, stuttering steps allow step refinement in which one step of a higher-
level version of an algorithm is implemented by multiple steps of a lower-level
version. One of those lower-level steps allows the higher-level step; the rest allow
stuttering steps of the higher-level algorithm.

6.3 Proving Correctness by Refinement
As we have seen in Section 5.3.1, a correctness property of an algorithm is often
best expressed as a higher-level algorithm. Proving correctness then means prov-
ing that the original algorithm refines the higher-level one. This usually involves
both data refinement and step refinement. For example, an algorithm that refines
Euclid’s algorithm by representing integers with bit strings might refine a step of
Euclid’s algorithm with a sequence of steps that read or modify only a single bit
at a time. The refinement mapping must be defined so that only one of those steps
refines a step of Euclid’s algorithm that modifies x or y . The rest must refine
stuttering steps.

I expect that this kind of refinement sounds like magic to most readers, who
won’t believe that it can work in practice. Seeing that it is a straightforward,
natural way to reason about algorithms requires working out examples, which I
will not attempt here. I will simply report that among the refinement proofs I have
written is a machine-checked correctness proof [11] of the consensus algorithm at
the heart of a subtle fault-tolerant distributed algorithm by Castro and Liskov [2]
that uses 3F + 1 processes, up to F of which may be malicious (Byzantine).
The proof shows that the Castro-Liskov consensus algorithm refines a version of
the 2F + 1 process Paxos consensus algorithm that tolerates F benignly faulty
processes [10]. Steps of malicious processes, as well as many steps taken by the
good processes to prevent malicious ones from causing an incorrect execution of
Paxos, refine stuttering steps of the Paxos algorithm. I found that viewing the
Castro-Liskov algorithm as a refinement of Paxos was the best way to understand
it.

7 Conclusion
Algorithms are usually described with programming languages or languages based
on programming-language concepts. The mathematical approach presented here
can be viewed as describing algorithms semantically. It may seem impractical to



people used to thinking in terms of programming languages, whose semantics are
so complicated. But programming languages are complicated because programs
can be very large and must be executed efficiently. Algorithms are much smaller
than programs, and they don’t have to be executed efficiently.6 This makes it prac-
tical to describe them in the much simpler and infinitely more expressive language
of mathematics.

The informal mathematics I have used has not been rigorous. For example,
GCD(x , y) = GCD(M ,N ) is not really an inductive invariant of Euclid’s algo-
rithm. To make it inductive, we must conjoin the assertion that x and y are in-
tegers. A completely rigorous exposition might be inappropriate for undergradu-
ates. However, their professors should understand how to reason rigorously about
algorithms.

A simple formal basis for mathematics, developed about a century ago and
commonly accepted by mathematicians today, is first-order logic and (untyped)
set theory. To my knowledge, this is an adequate formalization of the mathematics
used by scientists and engineers. (It has been found inadequate for formalizing the
long, complicated proofs mathematicians can write.) Many computer scientists
feel that types are necessary for rigor. Besides adding unnecessary complexity,
types can introduce problems for mathematical reasoning that become evident
only when one tries to provide a formal semantics for the language being used—
something textbook writers rarely do.

The ideas put forth here are embodied in the TLA+ specification language [8]
mentioned in the introduction. TLA+ is a formal language with tools that include
a model checker and a proof checker. It was designed for describing concurrent
algorithms, including high-level designs of distributed systems. Any attempt to
formalize mathematics in a practical language requires choices of notation and
underlying formalism that will not please everyone. Moreover, languages and
tools that are better than TLA+ for other application domains should be possible.
But TLA+ demonstrates that the approach described here is useful in engineering
practice [12].

Today, programming is generally equated with coding. It’s hard to convince
students who want to write code that they should learn to think mathematically,
above the code level, about what they’re doing. Perhaps the following observation
will give them pause. It’s quite likely that during their lifetime, machine learning
will completely change the nature of programming. The programming languages
they are now using will seem as quaint as Cobol, and the coding skills they are
learning will be of little use. But mathematics will remain the queen of science,
and the ability to think mathematically will always be useful.

6Tools for checking an algorithm may have to execute it, but the execution need not be as
efficient as that of a program implementing the algorithm.



References
[1] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoret-

ical Computer Science, 82(2):253–284, May 1991.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the Third Symposium on Operating Systems Design and Implementation,
pages 173–186. ACM, 1999.

[3] R. W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium
on Applied Math., Vol. 19, pages 19–32. American Mathematical Society, 1967.

[4] Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer-
Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[5] Eric C. R. Hehner. Predicative programming. Communications of the ACM,
27(2):134–151, February 1984.

[6] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

[7] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–583, October 1969.

[8] Leslie Lamport. TLA—temporal logic of actions. A web page, a link to
which can be found at URL http://lamport.org. The page can also be found
by searching the Web for the 21-letter string formed by concatenating uid and
lamporttlahomepage.

[9] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[10] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[11] Leslie Lamport. Byzantizing paxos. In David Peleg, editor, Distributed Comput-
ing: 25th International Symposium, DISC 2011, volume 6950 of Lecture Notes in
Computer Science, pages 211–224. Springer-Verlag, 2011.

[12] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. How amazon web services uses formal methods. Communica-
tions of the ACM, 58(4):66–73, April 2015.

[13] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, November
1977.

[14] Eric Verhulst, Raymond T. Boute, José Miguel Sampaio Faria, Bernard H. C. Sputh,
and Vitaliy Mezhuyev. Formal Development of a Network-Centric RTOS. Springer,
New York, 2011.


	Introduction
	Model, Definitions, and Preliminaries
	Summary of Prior Research
	Research Until 2016
	Recent Results

	Overview of Classical MST Algorithms
	The Gallager-Humblet-Spira (GHS) algorithm
	One phase of GHS

	The Pipeline Algorithm
	Analysis

	The Garay-Kutten-Peleg (GKP) Algorithm
	First part: Controlled-GHS Algorithm
	Second part: Pipeline algorithm


	Toward Singular Optimality: Round- and Message-Optimal Distributed MST Algorithms
	A Randomized Singularly-Optimal Algorithm
	Phase 1: When D is O(n):
	Phase 2: When D and the Number of Fragments are Large:
	Phase 3: When the Cluster Radius is D:

	Deterministic Singularly-Optimal Algorithms

	Time and Message Lower Bounds
	Conclusion and Open Problems
	Processes and Concurrent Objects
	Strong Consistency Conditions
	Causal Consistency on Read/Write Objects (Causal Memory)
	Causal Consistency for any Object
	Conclusion



