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Abstract

In connection with the development of the field of Combinatorics on
Words, we present a list of open problems and conjectures which were
stated in the context of the eleven international meetings WORDS, which
held from 1997 to 2017.
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Foreword

The first international conference WORDS was organized in 1997 in Rouen,
France. Since then, a series of eleven meetings held: in [61, 62], we provided
a summary of the contributions which were presented at the ten first of them, in
connection with the development of the field of Combinatorics on Words.

The aim of the present paper is to bring some noticeable complementary in-
formation, with two key objectives:

- Beforehand, we provide a nomenclature of some of the challenging conjec-
tures and problems which were stated at the occasion of the conferences WORDS.

- In another hand, with regards to the the state-of-the-field, we hardly wish to
continually update the present study by including the most recent advances in the
framework of the listed questions.

With regards to their corresponding scientific thematics, all the open questions
and the conjectures which were stated, refer to the classification that we intro-
duced in [61, 62]. To be more precise, according to the frequency of their presen-
tations, questions and conjectures have been classified in three main domains: the
topic of Patterns, that of Complexity and the one of Factorization. From a prac-
tical point of view, each statement is nomenclatured by referencing to its topic
and to the year of the corresponding meeting WORDS; names of speakers, bibli-
ographic references, and short introductions to the problematics are also provided.

The present document should be gradually updated: in view of this, please
contact its author; clearly, some bibliographic references, if any, would be wel-
come.



Evidently, each of the numerous results, questions and conjectures which were
presented during these eleven conferences WORDS plays a noticeable part in the
state-of-the-field. From this point of view, we wish that our study will bring some
valuable information to the researchers from the community.

1 The topic of patterns
Let Σ, A be two finite alphabets and let p ∈ Σ∗, w ∈ A∗ ∪ Aω. We say that
the word w encounters p if a non-erasing morphism h : Σ∗ −→ A∗ exists such
that w ∈ A∗h(p)(A∗ ∪ Aω); otherwise the word w avoids p or, equivalently said,
is p-free. In this context p is refered as a pattern, moreover we impose that the
morphism h satisfies h(a) = a for any letter a ∈ Σ∩A. The pattern p is k-avoidable
if an infinite word avoiding p exists over a k-letter alphabet. From this point of
view, it is well known that, on the alphabet A = {0, 1}, the infinite word of Thue-
Morse have the fundamental property that it avoids any pattern of type dXdXd,
for each letter d ∈ A and any X ∈ Σ∗.

1.1 Avoidance of patterns
In the topic, avoidance of patterns is a central question: it has inspired lots of
problems:

–WORDS 1997:
Authors: Roman Kolpakov, Gregory Kucherov and Yuri Tarannikov [58, 161–
175].
For a natural n ≥ 2, a word is nth power-free if it does not contain any nth power
of a non-empty word as a factor. Given A = {0, 1}, denote by PF(n) the corre-
sponding set of such words and set ρ(n) = lim k→∞(1

k ·min{|w|1 : w ∈ PF(n)∩ Ak})
(the minimal density of the letter 1 in the words of PF(n)).
In their paper, the authors prove that:

(∀n ≥ 3) (∃C > 0) ρ(n) ≤
1
n

+
1
n3 +

1
n4 +

C
n5 .

The mapping ρ can be extended to real arguments: given a real x ∈ R, denote
by PF(x) the set of the binary words that do not contain a factor of exponent not
smaller than x. Actually, the authors proved that ρ is discontinuous to the right in
each point of {7/3}∪ {n ∈ N|n ≥ 3}, moreover, they asked the following questions:

• Question 1.1.97.1: Does ρ has other discontinuity? What are they? Is ρ
piece-wise constant?



• Question 1.1.97.2: If a pattern is not k-avoidable, but is (k + 1)-avoidable,
what is the minimal frequency of a letter in an infinite word over k+1 letters
that avoids that pattern?

• Question 1.1.97.3: Kirby Baker, Georges F. McNulty and Walter Taylor
have shown that the pattern abXbcYcaZbaTac is 4-avoidable, but not 3-
avoidable [8]. What is the minimal proportion of the fourth letter needed to
avoid that pattern?

–WORDS 2003:
Author: James Currie [30, 7–18].
The author reviews some results concerning words avoiding pattern. He recall a
lot of open problems. Let’s begin by two purely algorithmic questions:

• Question 1.1.03.1: Is it decidable whether p is k-avoidable, given a pattern
p and an integer k?

• Question 1.1.03.2: Given a pattern p, what is the complexity of deciding
whether p is avoidable?

With regard to k-avoidability itself, three open problems were stated:

• Question 1.1.03.3: Is there a patten that is 6-avoidable but not 5-avoidable?

• Question 1.1.03.4: Is aabaacbaab 3-D0L-avoidable (i.e. is there a ternary
morphism g such that gω(a) avoids aabaacbaab)?

• Conjecture 1.1.03.5: If a pattern is k-avoidable then it is k-HD0L-avoidable
(i.e. are there morphisms f : Σ∗ −→ A∗, g : Σ∗ −→ Σ∗, with |Σ| = k such
that f (gω(a)) avoids p)?

The so-called probabilistic method is often use in tackling many problems in dis-
crete mathematics [3, 3–5]. When trying to prove that a structure with certain
properties exists, such a method consists in constructing a convenient probability
space of structures and then, in showing that the desired properties hold in this
space with a non-zero probability.

• Question 1.1.03.6: Explore the applications of the probabilistic method in
the scope of pattern avoidance.

The so-called circular words were also concerned by some conjectures:

• Conjecture 1.1.03.7: If p is k-avoidable, then there are arbitrary long
circular words on k letters that avoid p.



• Conjecture 1.1.03.8: If p is k-avoidable then there are circular words with
length |p| on k letters that avoid p.

• Conjecture 1.1.03.9: Let p be k-avoidable.

1. If the number of p-free words on k letters of length n grows exponen-
tially with n, then an integer N0 exists such that, for every n > N0,
there are circular p-free words with length n on k letters.

2. If the number of p-free words on k letters of length n grows polynomi-
ally with n, then the set of possible lengths for circular p-free words
on k letters has density 0 in the set N \ {0}.

• Question 1.1.03.10: The number of k-power-free binary words of length n
grows polynomially with n for k ≤ 7/3, but exponentially for k > 7/3 [39].
Examine analogous results for alphabets of arbitrary size.

• Conjecture 1.1.03.11: Extension of a result from [8]: the set of circular
words over {0, 1, 2, 3} avoiding the pattern abXbcYcaZbaTac has density 0
in the set N \ {0}.

Given an alphabet Σ and w ∈ Σ∗, the word w is maximal p-free if p encounters
any word in Σw ∪ wΣ. The three following conjectures were stated:

• Conjecture 1.1.03.12: Let Σ be an alphabet and let w ∈ Σ∗ be p-free. Then
w is a factor of some maximal p-free word over Σ.

Advances in problem solving:
In [11], Conjecture 1.1.03.12 was solved for a pattern of type p = Xk.

• Conjecture 1.1.03.13: Given an alphabet Σ and a pattern p, a maximal
p-free word over Σ exists.

• Conjecture 1.1.03.14: Let Σ be an alphabet, k ∈ [1, 2], and w ∈ Σ∗ be
a k-power-free word. Then, in any case, w is a factor of some maximal
k-power-free word over Σ.

–WORDS 2007:
Authors: Inna Mikhailova and Mikhail Volkov [6, 212–221].
The authors proved that every avoidable pattern can be actually avoided by an
infinite sequence of palindromes over a fixed alphabet.

• Question 1.1.07.1: Is it possible to avoid an arbitrary pattern p by an infi-
nite sequence of palindromes over each alphabet on which p is avoidable?



–WORDS 2011:
Authors: Helena Petrova and Arseny Shur [5, 168–178].
With respect to the prefix (suffix) order, any repetition-free language can be viewed
as a poset whose diagram is a tree, each node generating a subtree and being a
common prefix (suffix) of its descendants. The authors asked the three following
questions:

• Question 1.1.11.1: Does a given word generate a finite or infinite subtree?

Advances in problem solving:
- In the case of a single word, in [11] it is shown that for all k-th power-free
languages, the subtree generated by any word has at least one leaf.
- It has been shown in [20] that Question 1.1.11.1 is decidable for some power-free
languages.

• Question 1.1.11.2: Are the subtrees generated by two given words isomor-
phic?

Actually, the authors proved that, in the langage of cube-free words, arbitrarily
large finite subtrees may be generated.

• Question 1.1.11.3 ([2, Problem 1.10.9] generalized to arbitrary words):
Can words generate arbitrarily large finite subtrees?

–WORDS 2013:
Authors: Tero Harju, Mike Müller [37, 154–160], [40, 29–38].
Let u0, u1 be two words over an alphabet A, and let β ∈ {0, 1}∗, called the conduct-
ing sequence, such that |β| = |u0|+ |u1|, and such that the number of occurrences of
the letter i ∈ {0, 1} in β is the length of the word ui: |β|i = |ui|. While forming the
shuffle w = u0 �β u1 at step i (i ∈ [1, |u0| + |u1|]), the sequence β will choose the
first unused letter from u0 if β(i) = 0, or the first unused letter from u1 if β(i) = 1
that is, the ith letter of w is w(i) = uβ(i)( j), where j = card{k ∈ [1, i] | β(k) = β(i)}
(1 ≤ k ≤ i). This definition can be extended to infinite words in a natural way (one
requires that β contains infinitely many occurrences of both 0 and 1).
The authors proved that a ternary infinite square-free word exists, in such a way
that it can be shuffled with itself to produce an infinite square-free word. They
asked for the following questions:

• Question 1.1.13.1: Which square-free words u can be shuffled to obtain a
square-free word u�β u?



• Question 1.1.13.2: Which words u can be shuffled to obtain a unique
square-free word u�β u?

• Question 1.1.13.3: Which words w can be obtained in more than one way
from a single word u using different conducting sequences?

• Question 1.1.13.4: Which square-free words w are themselves shuffles of
square-free words: w = u� u?

• Question 1.1.13.5 (due to I. Petrykiewicz): For any infinite ternary square-
free word u, is there an infinite ternary square-free word w such that u =

u�β w for some infinite β?

• Question 1.1.13.6: Is there an infinite square-free word w such that w =

w�β w for some infinite β?

• Question 1.1.13.7: For each n ≥ 3, is there a square-free word u of length
n such that u�β u is square free for some β?

–WORDS 2015:
Authors: Helena Petrova and Arseny Shur [52, 223–236].
As mentionned above, the set of square-free words over a given alphabet may
be represented by a prefix tree T whose nodes are these square-free words. At
WORDS 2015 the authors stated the following conjecture:

• Conjecture 1.1.15.1: In the tree T , the size of any minimal subtree of
index n is O(log n).

1.2 The repetition threshold
The repetition threshold for k letters, commonly denoted by RT (k), is the smallest
rational number α such that there exists an infinite word whose finite factors have
exponent at most α. For instance, every power in the Thue-Morse sequence has
exponent at most 2, thus we have RT (2) = 2.
In the seventies, Françoise Dejean conjectured that, for every k > 2, the following
holds:

RT (k) =


7/4 if k = 3
7/5 if k = 4
k/k − 1 otherwise.

Dejean’s conjecture was partially solved by different authors. The final proof was
completed in 2009 by James Currie and Narad Rampersad, for 15 ≤ n ≤ 26, and



independently by Michaël Rao, for 8 ≤ k ≤ 38 [17, 3010–3018].

–WORDS 2005:
Author: Pascal Ochem [16, 388–392].
A word is α-free (resp. α+-free) if it contains no factor that is an α′-power, for any
rational α′ ≥ α (α′ > α).

• Question 1.2.05.1 (stronger version of Dejean’s conjecture):

– For every k ≥ 5, there is an infinite (k/k − 1)+-free word over k letters
with letter frequency 1/k + 1.

– For every k ≥ 6, there is an infinite (k/k − 1)+-free word over k-letter
with letter frequency 1/k − 1.

Advances in problem solving:
- A partial solution, for 9 ≤ k ≤ 38, was given by Michaël Rao [17, 3010–3018].
- The conjecture has been completely solved by Rao (private communication at
WORDS 2015, see also [66]).

–WORDS 2011:
Authors: Golnaz Badkobeh and Maxime Crochemore [4, 37–43].
Starting with RT (k), the definition of FRT(k), the finite repetition threshold for
k letters, stipulates that only a finite number of factors with exponent α may
exist in the corresponding infinite word. In 2008, Jeffrey Shallit proved that
FRT(2) = 7/3. In their presentation of WORDS 2011, Golnaz Badkobeh and
Maxime Crochemore proved that FRT(3) = RT (3) = 7/4.

• Conjecture 1.2.11.1: We have FRT(4) = RT (4) = 7/5.

Advances in problem solving:
Conjecture 1.2.11.1 has been solved by Golnaz Badkobeh, Maxime Crochemore
and Michaël Rao. In addition they proved that FRT(k) = RT (k), for k ≤ 6 (private
communication at WORDS 2015).

1.3 On the number of different squares in a finite word
A natural question consists in examining the number of patterns that may appear
in a finite word. From this point of view, Aviezri S. Fraenkel and Jamie Simpson
focused on dictinct squares, defined as patterns of different shapes (not just trans-
lated of each other). At WORDS 1997, in the case of the sequence of Fibonacci
words ( fn)n≥0, they showed that the exact number of such squares is 2( fn−2 − 1),
for any integer n ≥ 5 [58, 95–106]. In [27] they proved that the number of distinct



squares in an arbitrary word of length n is bounded by 2n.

–WORDS 2005:
Author: Lucian Illie [16, 373–376].
With regards to the number of distinct squares in a word, the author provided a
refinement of 2n − O(log n); in addition, he recalled the following conjecture:

• Conjecture 1.3.05.1 (Square conjecture, due to A.S. Fraenkel and J.
Simpson, [27]): The number of different squares in a word of length n is
bounded by n.

Advances in problem solving
- In the case of a binary alphabet in [36], the authors stated a stronger conjecture
regarding the number of distinct squares in a binary word: the number of distinct
squares is upper bounded by 2k−1

2k+2n, where k is the least of the number of occur-
rences of each letter, the bound being tight.
- The best bound known so far is 11n

6 [21].

–WORDS 2015:
Authors: Florin Manea and Shinnosuke Seki [52, 160–169].
Given a word w, define its square density by:

ρsq(w) = |w|−1 · card{x2 ∈ Σ+|x2is a factor of w}.
In their contribution to WORDS 2015, the authors proved that binary words have
the largest square density; moreover, they asked the question of constructing a
“square-density" amplifier:

• Question 1.3.15.1: Can we compute a mapping f : Σ∗ −→ Σ∗ for which a
constant c > 1 exists such that, for all w ∈ Σ∗, if ρsq(w) ≥ 1 then we have
ρsq( f (w)) ≥ cρsq(w)?

1.4 The “runs" conjecture
A run may be defined as some occurrence of a repetition of exponent at least 2
that is maximal, in the sense where it cannot be extended from left or right to
obtain the same type pattern. Such objects play an important role in a lot of string
matching algorithms.

–WORDS 2009:
Authors: Maxime Crochemore, Lucian Ilie and Liviu Tinta [17, 2931–2941].
These authors showed that, given a word of length n, the number of its runs is not
greater than 1.029n. This is a noticeable step in the proof of the so-called “runs"
conjecture:



• Conjecture 1.4.09.1 (“runs" conjecture, due to Kolpakov and Kucherov,
[42]): For a binary alphabet, given word of length n the number of its runs
is bounded by n.

–WORDS 2015:
Authors: Štěpán Holub [53, 43–52].
Denote by ρ(n) the maximal number of runs in a (binary) word of length n. The
concept of “lost positions" is a recently introduced tool for counting the number
of runs in binary words. By investigating the frequency of lost positions [35, 277–
286] in prefixes of words, and by making use of an extensive computer search,
the author proved that the asymptotic density of runs in binary words is less than
183/193 ≈ 0.9482; in addition, he formulated the following conjecture:

• Conjecture 1.4.15.1: The asymptotic upper bound of ρ(n)/n is never
reached.

1.5 The prefix-suffix square completion

–WORDS 2015:
Authors: Marius Dumitran and Florin Manea [52, 147–159].
The so-called suffix-square duplication allows to derive, from a word w, any word
wx such that x is a suffix of w. The suffix-square completion, in turn, derives
from w a word wx such that w has a suffix of type yxy. Prefix-square duplication
(completion) may be defined in a similar way. In their talk at WORDS 2015,
Marius Dumitran and Florin Manea made use of such operations for generating an
infinite word that does not contain any repetition of exponent greater than 2. With
regards to combinatorics properties of words, they asked the following questions:

• Question 1.5.15.1: What is the minimum exponent of a repetion which is
avoidable by an infinite word constructed by iterated (prefix)-suffix dupli-
cation?

• Question 1.5.15.2: By applying prefix-suffix completion, can we construct
words that avoid cubes, and every word containing squares?

• Question 1.5.15.3: Starting with a single word, does the language of fi-
nite words constructed by iterating prefix-suffix square completion remains
semi-linear?

• Question 1.5.15.4: Draw studies of languages of finite words which are
constructed by iterating prefix-suffix square completion, starting with spe-
cial sets of initial words such as singleton sets, finite sets, regular sets, etc.



• Question 1.5.15.5: What is the minimum number of steps of square com-
pletion that are required to obtain a word from one of its factors?

1.6 Abelian patterns
An abelian square consists in a pattern which is obtained by applying a permuta-
tion on the letters of a square. Clearly, with every pattern, a corresponding abelian
one can be associated.
In 1992, by constructing an abelian square free word over a four-letter alphabet,
Veikko Keränen solved a famous open problem that was initially formulated by
Erdös in 1961 [26, 41]. At WORDS 2007, he presented new abelian square-free
morphisms and a powerful substitution over 4 letters [6, 190–200].

–WORDS 2003:
Author: James Currie [30, 7–18].

• Question 1.6.03.1: Which of the following patterns are avoidable in the
abelian sense?
01020312, 01020321, 01021303, 01023031, 010203013, 010213020.

• Conjecture 1.6.03.2: The number of abelian cube-free ternary words
grows exponentially with length.

Given a n-letter alphabet, define the sequence Zn recursively by: Z1 = 1 and
Zn = Zn−1nZn−1, for every n > 1.

• Conjecture 1.6.03.3: Let p be any pattern over a n-letter alphabet. Then p
is abelian avoidable iff Zn is p-free in the abelian sense.

• Question 1.6.03.4: Given pattern p and integer n, what is the complexity
of deciding whether Zn encounters p in the abelian sense?

Define respectively the abelian repetitive threshold function, and the dual abelian
repetitive threshold function on (1, 2] by:

ART(n) = inf{s : ys is avoidable on n letters in the abelian sense}
DART(r) = min{n ∈ N : yr is avoidable in the abelian sense on a n-letter

alphabet}.

• Question 1.6.03.5: What are the values of ART(n) and DART(r)?

–WORDS 2013:
Two papers were concerned by open questions:



Authors: Mari Huova and Aleksi Saarela [37, 161–168].
Two words u, v are k-abelian equivalent if, for any string of length at most k, this
word occurs as a factor in u as many times as in v. A word is a strongly k-abelian
nth-power if it is k-abelian equivalent to some nth-power. In their contribution
to WORDS 2013, the authors proved that strongly k-abelian nth-powers are un-
avoidable on any alphabet, moreover they formulated the following questions:

• Question 1.6.13.1: How many k-abelian equivalence classes of words of a
given length contain an nth power?

• Question 1.6.13.2: How many words of a given length are strongly k-
abelian nth powers?

• Question 1.6.13.3: What is the length of the longest word avoiding strongly
k-abelian nth powers?

• Question 1.6.13.4: How many words avoid strongly k-abelian nth powers?

• Question 1.6.13.5: How many words of a given length contain a strongly
k-abelian nth power?

• Question 1.6.13.6: How many words of a given length are strongly k-
abelian nth powers?

Author: Michaël Rao [40, 39–46].
Given an integer n ≥ 2, a word u is a k-abelian-n-power if we have u = u1u2 · · · un,
where ui and ui+1 are k-abelian equivalents for every i ∈ {1, · · · n − 1}.

• Question 1.6.13.7: Is there a pure morphic binary word avoiding 2-abelian
cubes?

• Question 1.6.13.8: Can we avoid abelian-cubes of the form uvw, with
|u| = |v| = |w| ≥ 2, over a binary alphabet?

• Question 1.6.13.9: Is there a natural integer k such that 2-abelian-squares
of period at least k can be avoided over a binary alphabet?

• Question 1.6.13.10: Is there a natural integer k such that abelian cubes of
period at least k can be avoided over a binary alphabet?

The so-called additive powers consist in a generalization of abelian powers: given
an alphabet Σ ⊆ N, an additive kth power is a word p1 · · · pk ∈ Σ∗ such that
|p1| = · · · = |pk| and

∑
(p1) = · · · =

∑
(pk), where

∑
(pi) stands for the sum of the



digits of the word pi (1 ≤ i ≤ k). In 2011, Cassaigne, Currie, Schaeffer and Shallit
proved that additives cubes are avoidable on {0, 1, 2, 3, 4} [18]. At WORDS 2013,
Rao asked the following question:

• Question 1.6.13.11: Are there infinite additive-cube-free words on the
following alphabets: {0, 1, 2, 3}, {0, 1, 4} and {0, 2, 5}?

–WORDS 2015:
Open questions were asked in the following contributions:

Authors: Gabriele Fici, Filippo Mignosi [52, 122–134], Gabriele Fici, Filippo
Mignosi and Jeffrey Shallit [53, 29–42].
The authors focused of the maximum number of abelian squares that a word may
contain. Actually, a word of length n which contains O(n2) distinct abelian squares
exists [43]. At Words 2015, the authors stated the following conjectures:

• Conjecture 1.6.15.1: Assume that a word with length n, and containing k
many distinct abelian-square factors, exists. Then a binary word of length n
containing at least k many distinct abelian-square factors exists.

Two abelian squares are inequivalent if their Parikh vectors are different [28].

• Conjecture 1.6.15.2 (due to T. Kosciumaka, J. Radoszewski, W. Rytter
and T. Waleń [43]): A word of length n contains Θ(n

√
n) inequivalent

abelian-squares.

Author: Michaël Rao [66].
Erdös formulated two fundamental problems:
(1) (1957,1961): Is there arbitrarily long abelian-square-free words over a finite
alphabet?
(2) (1961): Is it possible to avoid long squares over a binary alphabet?

R.C. Entringer, D.E. Jackson and J.A. Schatz gave a positive answer to the second
question [25]. In 2002 Mäkelä put similar questions with regards to the abelian
squares or cubes over binary or ternary alphabets [51]. In his talk at WORDS
2015, Rao presented technics for deciding whether a morphic word avoids abelian
and k-abelian repetitions: in particular, this allowed him to prove that long abelian
squares are avoidable over a ternary alphabet. Then he asked the following ques-
tions:

• Question 1.6.15.3: Can we avoid long abelian cubes over two letters?



• Question 1.6.15.4: How to decide whether a morphic word avoids (long)
abelian power?

• Question 1.6.15.5 (due to S. Mäkelä): Let h be the morphism onto
{0, 1, 3, 4}∗ defined by h(0) = 03, h(1) = 43, h(3) = 1, h(4) = 01. Is
there a morphism g : {0, 1, 3, 4}∗ −→ {0, 1}∗ such that g(h∞(0)) has no long
abelian cubes?

• Question 1.6.15.6: Find good heuristics to compute candidates for ques-
tion 1.6.15.5.

• Question 1.6.15.7: Find a morphism avoiding abelian square on four let-
ters which should be simpler than that of Keränen ?

• Question 1.6.15.8: What is the minimum k such that abelian squares of
period at least k over three letters can be avoided (2 < k < 6)?

• Question 1.6.15.9: What is the minimum k such that 2-abelian squares of
period at least k over two letters can be avoided (2 < k < 60)?

With regards to the so-called notion of templates, we refer the reader to [1]. From
this point of view, Rao and M. Rosenfeld proved that it is possible to decide
whether h∞(a) realizes t, for any primitive morphism h whose matrix has no eigen-
value of norm 1, and for any template t. They formulated the following problems:

• Question 1.6.15.10: Is there a morphism over 5 letters with two eigenval-
ues of norm smaller than 1 and an abelian-square-free fixed point?

• Question 1.6.15.11: Is there a morphism on 3 letters with one eigenvalue
of norm smaller than 1, and an abelian-cube-free fixed point?

• Question 1.6.15.12: How to decide whether eigenvalues of norm 1 may be
allowed in the result that was mentioned above?

2 Complexity issues
In the literature, with a word several notions of complexity can be associated,
the most famous one being the factor complexity: given a word w, this measure
counts the number pw(n) of different factors of length n occuring in w. The famous
characterization of Morse-Hedlund for ultimately periodic words led to introduce
the infinite Surmian words, whose complexity is pw(n) = n + 1, the best known
example of them being certainly the famous Fibonacci word [54, 55].



2.1 The recurrence quotient
The recurrence function has been introduced by M. Morse and G.A. Hedlund [55]:
given a factor u, with every non-negative integer n it associates the size Ru(n) of
the smallest window that contains every factor of length n of u.

–WORDS 1997:
Author: Julien Cassaigne [58, 3-12].
The recurrence quotient is defined as ρ(u) = lim supn→∞

Ru(n)
n .

For a sturmian sequence of slope α, denote the recurrence quotient by ρ(α); the
spectrum of values of ρ is the set S of the values taken by ρ(α) when α spans
[0, 1] \ Q.

• Question 2.1.97.1: What is the Hausdorff dimension (see e.g. [31]) of S
(or that of each of its intervals S ∩ [a, a + 1])?

• Question 2.1.97.2: Draw a study of the recurrence quotients for other
families of infinite words than sturmian words, such as words of complexity
2n + 1, or infinite words in general.

2.2 The ratio p(n)/n

Alex Heinis proved that if p(n)/n has a limit, then this limit is either equal to 1, or
highter than and equal to 2 [32, 33]).

–WORDS 2001:
Author: Ali Aberkane [60, 31-46].
By using the so-called Rauzy graphs, at WORDS 2001 the author presented char-
acterizations of the words such that the limit is 1.

• Question 2.2.01.1: Transform the preceding characterization into another
one which makes use of a finite set of substitutions associated with rules
governing their composition (i.e. S -adic system of representation).

• Question 2.2.01.2: Give a characterization of infine words whose com-
plexity satisfies limn p(n)/n = 2.

2.3 The balance function
–WORDS 2001:
Author: Boris Adamczewski [60, 47-75].
Boris Adamczewski defines the balance function by maxa∈A maxu,v∈F(w){||u|a−|v|a|}.



With regards to the so-called primitive substitutions, the author investigated the
connections between the asymptotic behavior of the balance function and the in-
cidence matrices of such substitutions. Moreover, he showed that the Thue-Morse
sequence is an example for which, the spectrum of the substitutions of order two
is different of the spectrum of the initial substitutions.

• Question 2.3.01: Give an example of sequence for which the mentionned
change of spectrum is really significant for the balance properties.

–WORDS 2013:
Author: Julien Cassaigne [37, 1–2].
A words is balanced if, for any pairs (u, v) of its factors with same length, and
for any letter a, we have ||u|a − |v|a| ≤ 1 (where |u|a stands for the number of
occurrences of the letter a in u). A classical characterization of Sturmian words is
that they are the aperiodic 1-balanced sequences. For Arnoux-Rauzy words [7],
whose complexity is (|A| − 1)n + 1, the following question can be asked (see also
[12]):

• Question 2.3.13: Give characterizations of Arnoux-Rauzy words with a
given balance.

2.4 Palindromic complexity, palindromic defect
The palindromic complexity of an (in)finite word is the function which counts the
number P(n) of different palindromes of length n that occur as factors of this word.
Given a finite word w of length n, we have P(n) ≤ n + 1 [22]: this leads to define
the corresponding palindromic defect as D(w) = n + 1 − P(n). In the case of an
infinite word u, set D(u) = sup{D(w)|w ∈ F(u)}.

–WORDS 2005:
Authors: Peter Baláži, Zuzana Maskóvá and Edita Pelantovà [16, 266-275].
The authors provide an estimate of P(n) for uniformly recurrent words; denoting
by p(n) the classical factor complexity, this estimation is based on the equation:
P(n) + P(n + 1) = p(n + 1) − p(n) + 2.

• Question 2.4.05: Describe the structure of the Rauzy graphs of words
reaching the mentioned supremum.

–WORDS 2017:
Authors: Edita Pelantovà and Štěpán Starosta [14, 59–71].
A morphism ψ is of Class P if we have ψ(a) = ppa for any letter a, where p, pa are



both (possibly empty) palindromes; morphisms of Class P′ are defined as being
conjugate of morphisms of Class P. Recall that, given a morphism, with fixed
point u, their common corresponding language consists in the set of all finite
factors of u. The main motivation for studying the preceding morphisms lays
upon the following conjecture:

• Conjecture 2.4.17.1 (Zero defect conjecture, due to Blondin-Massé, Br-
lek, Garon and Labbé, [13]): Let u be an aperiodic fixed point of a
primitive morphism whose language is closed under reversal. Then either
we have D(u) = 0 or we have D(u) = +∞.

A counterexample was given in [10]; however, in [46] the authors proved that the
conjecture is true for some special class of the so-called marked morphism, which
were defined as follows:

Given a morphism h, it is marked if two morphisms h1, h2 exist, both being
conjugate to h, such that the set of the first (last) letters of the images of letters by
h1 (h2) is the whole alphabet.

With regards to the general case, the authors suggest that a refinement of Con-
jecture 2.4.17.1 could be valid.

Words with zero palindromic defect are usually called rich words: with regards to
this notion, some open problems were put in the presentation:

• Question 2.4.17.2: What is the number of rich words of a given length?

• Question 2.4.17.3: Can we decide whether two rich words are factors of a
common rich word?

• Conjecture 2.4.17.4 (Class P conjecture, due to A. Hof, O. Knill and
B. Simon, [34]): Let u be a fixed point of a primitive morphism. If u
has infinitely many palindomic factors (u is palindromic, for short), then a
morphism of class P′ exists, whose fixed point has the same language as the
word u.

Advances in problems solving:
- Conjecture 2.4.17.4 was solved in the binary case ([67]).
- In [44], the authors proved that a ternary word w exists such that, it is a palin-
dromic fixed point of a primitive morphism, although it is neither fixed by any
morphism of class P′.
- The conjecture has been confirmed for the so-called marked morphisms [45].
- In [56], the conjecture has been confirmed for morphisms fixing a coding of a
non-degenerate exchange of 3 intervals.



• Conjecture 2.4.17.5: Let u be a fixed point of a primitive morphism. Then
the language of u is closed under reversal if and only if u is palindromic.

Advances in problems solving:
Conjecture 2.4.17.5 is true for marked morphisms [45].

2.5 Sets of sequences of a given complexity
The famous Arnoux-Rauzy words consist in a generalization of Sturmian se-
quences on a three-letter alphabet: they are in fact those of infinite sequences
of complexity 2n + 1 that satisfy the following condition: exactly one left and one
right factor exist for each length [7]. For any letter frequency, sequences of factor
complexity 2n + 1 can be constructed by making use of coding some 3-interval
exchange transformation. As shown in [68], such sequences are unbalanced and
the question of finding balanced ternary sequences of complexity 2n + 1 for all
letter frequency remains open.

–WORDS 2017:
Authors: Julien Cassaigne, Sébastien Labbé, and Julien Leroy [14, 144–156].
In 2015, based on the structure of Arnoux-Rauzy graphs, Julien Cassaigne intro-
duced on R3

≥0 a bidimensional continued fraction algorithm, such as:
FC(x1, x2, x3) = (x1 − x3, x3, x2) if x1 ≥ x3

FC(x1, x2, x3) = (x2, x1, x3 − x1) otherwise.
Some important properties of FC were described at WORDS 2017: in particular
the associated substitutions lead to obtain S -adic words with complexity 2n + 1
(S stands for a set of morphisms).

• Question 2.5.17: Can we find an analogue of FC in dimension d ≥ 4,
generating S -adic sequences with complexity (d − 1)n + 1 for almost every
vector of letter frequencies?

2.6 Abelian complexity
Let A = {a1, · · · , aq} be an alphabet and w ∈ A∗. Recall that the Parikh vector of w
is ψ(w) = (|w|a1 , · · · , |w|aq) [63]. Given an infinite word u, denote by Ψn(u) the set
of such vectors for the factors of length n of u. The abelian complexity of u is the
application onto N that is defined by ρab(n) = |Ψn(u)|. Denote by |u|v the number
of occurrences of a given word v as a factor of u. Given a positive integer `, two
words x and y are `-abelian equivalent if |x|v = |y|v for all words v of length |v| ≤ `.



–WORDS 2017:
Authors: Idrissa Kaboré, Boukaré Kientéga [14, 132–143].
The so-called ternary Thue-Morse word is the infinite word t3 which is generated
by the morphism µ3 defined by µ3(0) = 012, µ3(1) = 120, µ3(2) = 201. The
authors studied some properties of this words; in particular they proved that t3
satisfies the following conjecture:

• Conjecture 2.6.17 (due to A. Parreau, M. Rigo, E. Rowland and E. Van-
domme [64]): Any k-automatic word admits a `-abelian complexity func-
tion which is k-automatic.

3 Factorization of words. Equations

Some further important information can be obtained by decomposing a word into
a convenient sequence of consecutive factors: w = w1 · · ·wn.

3.1 F -factorization

The so-called F -factorization has been introduced in [38]; it corresponds to the
case where the preceding sequence (w1, · · · ,wn) satisfies some given property F ,
which is formally defined as follows:
Let I = {1, · · · , k} and Σ be two disjoint alphabets. Set F = (L, L1, · · · , Lk), with
L ⊆ I∗ and L1, · · · , Lk ⊆ Σ∗. We say that the sequence of factors (wi, · · · ,wn)
is a F -factorization if for all j ∈ [1, n] we have w j ∈ Li j and i1 · · · in ∈ L. The
factorization F is regular (context-free) if the languages L, L1, · · · , Lk are regular
(context-free).

–WORDS 1997:
Authors: Juhani Karhumäki, Wojciech Plandowski and Wojciech Rytter [58,
123–133].
Three fundamental properties of F -factorizations were examined, namely com-
pleteness, uniqueness and synchronization.

• Question 3.1.97.1: Find efficient algorithms for the polynomial time solv-
able problems which were discussed in the paper.

• Question 3.1.97.2: Given a word, can its minimal and maximal regular
F -factorization (in the sense of the length of the sequence of indices) be
found in polynomial time?



• Question 3.1.97.3: Could better algorithms be designed for the problems
discussed in the paper if, in regular F -factorizations, only finite languages
are considered?

• Question 3.1.97.4: Is the completeness or the uniqueness undecidable,
when context-free F -factorizations are given by deterministic automata or
by linear context-free grammars?

• Question 3.1.97.5: What is the complexity of the problem of determin-
ing whether a regular F -factorization possesses synchronization property,
when the parameters of the synchronization are not given? What about this
problem for context-free F -factorizations?

3.2 Periodicity
With the preceding notation, if for an integer n ≥ 2, all the words w1, · · · ,wn−1

are equal, the word wn being one of their prefixes, we say that the length of w1 is
a period of w.

–WORDS 2007:
Author: Kalle Saari [6, 273-279].
The author proved that the least period of a non-empty factor of the infinite Fi-
bonacci word is a Fibonacci number. With regards to Sturmian words of a given
slope, say α, the set Π(α) is defined as follows:

Let [d0 = 0, d1 = 1, d2, d3, · · · ] the continued fraction expansion of α.
Set q1 = q0 = 1, qn+1 = dn+1qn + qn−1 (n ≥ 1) and :

Π(α) =
⋃
n≥0

{iqn + qn−1 : i = 0, 1, · · · , dn}

• Conjecture 3.2.07: Let t denote a Sturmian word with slope α. If a word
is a nonempty factor of t, then its least period belongs to Π(α).

3.3 Quasiperiodicity
A word w is quasiperiodic if another word x exists such that any position in w
falls within an occurrence of x as a factor of w (informally, w may be completely
“covered" by some set of occurrences of the factor x).

–WORDS 2013:
Authors: Florence Levé and Gwenaël Richomme [37, 181–192].
A morphism is strongly (resp. weakly) quasiperiodic if it maps any (at least one)



non-quasiperiodic word to some quasiperiodic word. The authors provided algo-
rithms for deciding whether a morphism is strongly quasiperiodic on finite and
infinite words; in addition, they put the following questions:

• Question 3.3.13.1: Given a morphism f and a letter a such that a is the
initial letter of f (a), is it decidable that f ω(a) is quasiperiodic?

• Conjecture 3.3.13.2: Let f be an morphism generating a quasiperiodic
infinite word. If f (a) is not a power of a then f is weakly quasiperiodic on
any infinite word.

The authors define weakly quasiperiodic morphisms as those that map at least one
non-quasiperiodic word to a quasiperiodic one (some partial answers are given in
the paper).

• Question 3.3.13.3: Can we decide whether given a morphism, it is weakly
quasiperiodic on finite (infinite) words?

3.4 Defect effect and independent systems of equations
The combinatorial rank of a set of words X, that we denote by r(X), is the small-
est number of words needed to express all strings of X as products of those
words [57]. As a direct consequence of the famous theorem of defect [47, 50,
23, 48], if X is not a code (that is, if the words of X satisfy a nontrivial equation)
then we have r(X) ≤ |X| − 1.

–WORDS 1999:
Authors: Juhani Karhumäki and Ján Maňuch [59, 81–97].
Unformally, the so-called X-factorization of a bi-infinite word w consists in any
sequence of words from X yielding w as their product. The authors stated the three
following problems, which are connected to the famous critical factorization the-
orem [48, Chap. 8]:

• Question 3.4.99.1: Let X be a finite set of words, and w be a non-periodic
bi-infinite word. Assume that w possesses k disjoint X-factorizations, with
k ≤ |X|. Is it true that we have r(X) ≤ |X| − k + 1?

• Question 3.4.99.2: Let X be a code, and let w be a bi-infinite word. As-
sume that for k ≤ |X|, w possesses k disjoint X-factorizations, such that at
least one of them is non-periodic. Is it true that we have r(X) ≤ |X| − k + 1?

• Question 3.4.99.3: Denote by p(w) the smallest period of an word w ∈ Σ+.
Let X ⊆ Σ+ satisfying p(x) < p(w) for all x ∈ X. Is it true that w has at most
|X| + 1 − r(X) disjoint X-factorizations?



–WORDS 2001:
Authors: Tero Harju and Dirk Nowotka [60, 139–172].
Defect effect is strongly connected to independent systems of equations. Given an
equation in three variables, say x, y, z, a solution α is non-periodic if α(x), α(y), α(z)
are not powers of the same word [48, Chapt. 9]. A system of equations is inde-
pendent if it is not equivalent to any of its proper subsets. An equation is balanced
if the number of occurrences of each variable on the left- and the right-hand side
is the same. In their presentation at WORDS 2001, the authors proved that every
independent system of equations in three variables, with at least two equations
and a non-periodic solution, actually consists in a balanced equation. They asked
the following question, which was actually implicitely raised in 1983 by Culik II
and Karhumäki [19]:

• Question 3.4.01: Does an independent system of three equations in three
variables with a non-period solution exists?

–WORDS 2005:
Authors: Štěpán Holub and Juha Kortelainen [16, 363–372].
The authors studied the infinite system (S ) of words equations :

{x0ui
1x1ui

2x2 · · · ui
mxm = y0vi

1y1vi
2y2 · · · vi

nyn : i ≥ 0}

They stated the following questions:

• Question 3.4.05.1: Is there a positive integer k such that the system (S ) is
equivalent to one of its subsystems induced by k equations?

• Question 3.4.05.2: Is the system {ui
1 = vi

1vi
2 · · · v

i
n : i ≥ 0} equivalent to

one of its subsystems induced by three equations?

3.5 The Post Correspondence Problem
The famous Post Correspondence Problem (PCP for short) consists in asking,
given two morphisms h, g, whether or not the equation h(x) = g(x) has a solution
distinct of the empty word.
In the most general case, it is well known that this problem is undecidable [65]. In
another hand, many studies were devoted to special cases of instances (eg. [24]).

–WORDS 2005:
Authors: Vesa Halava, Tero Harju, Juhani Karhumäki and Michel Latteux [16,
355-352].



The authors start from the following definitions: a morphism h is marked if for
any pair of different letters a, b, the initial letters of the words h(a) and h(b) are
different; two words u, v are comparable (denoted by u ./ v) is either u is a prefix
of v, or v is a prefix of u. With such notions, special types of instances (h, g) may
be defined: in particular (h, g) is called a unique equality continuation instance
if, for any word u and any pair of different letters a, b, both the two conditions
h(ua) ./ g(ua) and h(ub) ./ g(ub) imply h(u) = g(u),

At WORDS 2005, the authors put the two following questions:

• Question 3.5.05.1: Is PCP decidable for unique equality continuation in-
stances?

• Question 3.5.05.2: Is it decidable whether or not an instance of PCP satis-
fies the property of unique equality continuation instances?

3.6 The Palindromic Length

The so-called palindromic length of a word x is defined as the smallest number n
such that x can be written as the concatenation of n palindromes.

–WORDS 2017:
Author: Aleksi Saarela [14, 203–213].
At WORDS 2017, the author firstly reminded the following conjecture:

• Conjecture 3.6.17.1 (due to Frid, Puzynina and Zamboni, [29, p. 738]):
Every aperiodic infinite word has factors of arbitrarily high palindromic
length.

Then, he proved that this conjecture is in fact equivalent to the following one:

• Conjecture 3.6.17.1a: Every aperiodic infinite word has prefixes of arbi-
trarily high palindromic length.

Next, he put the two following questions:

• Question 3.6.17.2: Are there words such that all of their prefixes have
palindromic length at most n, but some of their factors have palindromic
length 2n?

• Question 3.6.17.3: In the binary case, give an improvement of the result
of Lemma 10 in the paper.



In a classical way, the free monoid Σ∗ can be extended to a free group, namely
(Σ ∪ Σ−1)∗. This leads to introduce the so-called FG-palindromes and the FG-
palindromic length of a word. As an example the palindromic length of the word
abca is 4, however this word is the product of three FG-palindromes: abca =

aba · a−2 · aca. Actually, Aleksi Saarela proved that the FG-palindromic length
of a word can be much smaller that its palindromic length itself. This led him to
state the following questions:

• Question 3.6.17.4: Does an aperiodic infinite word exists such that the
FG-palindromic lengths of its factors are bounded by a constant?

• Question 3.6.17.5 (due to V.G. Bardakov, V. Shpilrain and V. Tolstykh [9,
Problem 2, p. 576]): Find an algorithm for computing the FG-palindromic
length.

3.7 Permutation on Words

They are lots of manners to construct permutations onto A∗, the best-known of
them being automorphism or anti-automorphisms.

–WORDS 2017:
Authors: Niccolò Castruonovo, Robert Cori and Sébastien Labbé [14, 240–251].
Let A = {a, b}, and An = {w ∈ A∗ : |w|a = n, |w|b = n + 1} (|w|a denotes the number
of occurrences of the letter a in w). At WORDS 2017, the authors proved that
any word in A∗ may be factorized as u1bu2b · · · upbwavqavq−1 · · · av1, where w and
ui, v j are Dyck words (1 ≤ i ≤ p, 1 ≤ i ≤ q). Let j = |u1bu2b · · · upb|, and θ be the
morphism that is generated by θ(a) = b, θ(b) = a. Consider the map Γn onto An

which, with each word w = w1 · · ·w2n+1 (wi ∈ A, 1 ≤ i ≤ 2n + 1), associates the
word θ(w1 · · ·w j−1)bθ(w j+1 · · ·w2n+1).
The permutation Γn has particularly interesting combinatorial properties. In par-
ticular it can be extended into a permutation of A∗ itself, as indicated in the fol-
lowing:
With the preceding notation let w = u1bu2b · · · upbtavqavq−1 · · · av1. If p > q
(q < p) then call pivot each of the p − q (q − p) occurrences of b appearing just
after (before) the words up−q+1, up−q+2, · · · , up (vq−p+1, vq−p+2, · · · , vq); if p = q
there are no pivots. The word Γ(w) is obtained by substituting θ(c) to c for each
occurrence of c ∈ {a, b} that is not a pivot.

• Conjecture 3.7.17: The cycles of Γ containing words of odd lengths are
also of odd lengths. Those containing words of even lengths, with an odd
number of occurrences of a, are also of even lengths. Those containing



words of even lengths, with an even number of occurrences of a, may have
either odd or even length.
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