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Motto:

Caminante, son tus huellas
el camino, y nada más;
caminante, no hay camino,
se hace camino al andar.
Al andar se hace camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.
Caminante, no hay camino,
sino estelas en la mar.

Wanderer, your footsteps are
the road, and nothing more;
wanderer, there is no road,
the road is made by walking.
By walking one makes the road,
and upon glancing behind
one sees the path
that never will be trod again.
Wanderer, there is no road —
Only wakes upon the sea.

Antonio Machado: Caminante. In: “Proverbios y cantares XXIX"
[Proverbs and Songs 29], Campos de Castilla (1912); trans. Betty Jean
Craige in Selected Poems of Antonio Machado (Louisiana State Univer-
sity Press, 1979)

∗This is the accompanying paper of the eponymous talk given at the occasion of Jan van
Leeuwen’s valedictory symposium "From the world of algorithms to algorithms for the world,"
held in honour of his retirement as Professor of Informatics at Utrecht University, on 20 December
2011. The work was partially supported by RVO 67985807 and GA ČR grant No. P202/10/1333.
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Abstract

I have collaborated with Jan van Leeuwen since the beginning of the
1980s. The non-standard models of computations have been the central sub-
ject of our joint work. Among these models, we focused especially onto
realistic models of supercomputers, interactive computing, hypercomput-
ing, characterization of contemporary computing in terms of extended Tur-
ing machine paradigm, and viewing computations as unbounded processes.
This note describes the main models designed and investigated during this
period, summarizes the most important results and gives references to the
respective papers.

1 Introduction

For the first time, I met Jan van Leeuwen at the MFCS (Mathematical Foundation
of Computer Science) conference in 1981, in the High Tatras, Czechoslovakia
(nowadays Slovakia). I remember him giving an invited talk (with Mark Over-
mars) on dynamization [7]. Dynamization is the process of transforming a static
data structure into a dynamic one and in those days dynamization was a very
popular subject. In his talk, Jan mentioned examples of so-called decomposable
search problems that can be efficiently dynamized. It seemed to me that any com-
mon search problem was a decomposable one. After Jan’s lecture, before lunch,
I asked him for examples of non-decomposable search problems. After some
thinking he came with such examples — e.g., computing the median of a set, or
the diameter of a graph. After the lunch we both took part in conference excursion
— a hiking trip to the mountains — and spent most of the time in conversation. It
appeared that when compared to Jan’s universal interest in almost every aspect of
computer science, my main subject of interest has been much narrower: machine
models of computation. Fortunately for me, Jan showed a vivid interest also in
this subject. This is how, when and where our collaboration has started.

Rather than in a chronological order, it seems that a better way to describe our
collaborative research effort and the respective results would be to group our joint
works related to the same subject into clusters and to present each such cluster
separately. This will give rise to five thematic areas that are all concerned with
various complexity and later also computability aspects of modern computing. A
word of caution: when speaking about (our) motivation and the general trends in
computing at various times, the references to the related work of other authors is
almost entirely missing, because of the nature of the underlying paper. However,
in the respective papers of ours a more complete description of status-quo of the
research in time of their writing is given.
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2 A realistic model of supercomputing

Machine models of parallel computing have become a popular subject of investi-
gations in theoretical computer science in the 1980s. Those years were a golden
era of parallel computers. In real life, there existed supercomputers produced by
traditional companies such as Cray, IBM and Hewlett-Packard. In theory, the lit-
erature abounded with models of parallel computers hidden under the acronyms
and terms like PRAM, SIMDAG, MRAM, EDITRAM, recursive Turing machine,
alternating Turing machine, k-PRAM, LPRAM,MIMD-RAM, etc. The nice com-
putational property of the respective models has been that all “reasonable" models
of parallel computers were polynomially (parallel) time related thanks to the fact
that they all fulfilled the so-called Parallel Computation Thesis: whatever can be
solved in polynomially bounded space on a reasonable sequential machine model
can be solved in polynomially bounded time on a reasonable parallel machine,
and vice versa [3]. Unfortunately, in practice the real instances of parallel com-
puters behaved differently, being plagued by features that have been abstracted
from in the “idealized" models of parallel computers (e.g., the cost of data trans-
fers among the processors has been neglected). The practitioners even complained
that computer scientists were not sufficiently prepared for the advent of parallel
computers and are not able to offer reasonable remedies for the (then) critical sit-
uation with the supercomputing (cf. [26]). Facing this crisis, people started to
investigate and design the so-called realistic models of parallel computers. Our
model of Array Processing Machine (APM), which we designed in the mid-1980s
[8] seems to be the first one in the still on-going series of realistic models of paral-
lel computing. The APM was designed to closely model the architecture of exist-
ing vector- and array processors, and to provide a suitable unifying framework for
the complexity theory of parallel combinatorial and numerical algorithms. Ba-
sically, the model can be seen as a random access machine with the ability to
process arrays, i.e., blocks of memory of arbitrary length, in parallel (and hence,
using a unit cost criterion, in a constant time).

In paper [8] we have shown that the APM can efficiently simulate a variety of
extant models of parallel computation and vector processing. With a unit cost of
its parallel operations, the model has satisfied the above mentioned Parallel Com-
putation Thesis. However, with suitable “realistic" complexity measures taking
into account the length of the manipulated sub-arrays (an analogue of the loga-
rithmic cost measures of RAMs) this model adequately reflected the complexity
of parallel computations observed in practice on the corresponding vector and
array processors [9, 10]. The model has been used in the well-known textbook
on structural complexity [1] by Balcázar, Díaz, and Gabarró as one of the main
representatives of parallel machine models.
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3 Interactive computing

Interactive computing denotes computations reacting to the inputs from the envi-
ronment — be it from humans or other data sources (like sensors or other com-
puters). In a sense, interactive computing can be seen as a computational “dialog"
among the participating entities. In the typical case, an interactive computation
processes potentially infinite streams of inputs and produces potentially infinite
stream of outputs (reactions, behaviors). The feeling that interactive computing
presents a computation which is qualitatively different from the classical one (em-
bodied by the notion of a standard Turing machine computing a finite function) has
been with computer science at least since the advent of personal computers whose
modus operandi typically involved a lot of interaction with their environment. By
the end of the 1990s, the most visible proponent of the idea that “interaction is
more powerful than algorithms" was probably P. Wegner [24]. In his works (cf.
[24] [25]) he called for a more computational view of interactive systems, claim-
ing that they have a richer behavior than ‘algorithms’ as we know them. He even
challenged the validity of Church’s Thesis by proclaiming that Turing machines
cannot adequately model the interactive computing behavior of typical reactive
systems in practice. Wegner [25] (p. 318) writes:

“The intuition that computing corresponds to formal computability by Turing
machines . . . breaks down when the notion of what is computation is broadened
to include interaction. Though Church’s thesis is valid in the narrow sense that
Turing machines express the behavior of algorithms, the broader assertion that
algorithms precisely capture what can be computed is invalid."

Irrespective of whether this claim had been valid or not, we looked at the impli-
cations of interactiveness, from a computational view point, in [14] and [15]. The
cornerstone in these studies has been the notion of a generic interactive machine
interacting with an environment using single streams of input and output signals
over a finite alphabet. The model used ingredients from the theory of ω-automata.
Viewing the interactive machines as transducers of infinite streams of signals, we
showed that their interactive recognition and generation capabilities are identical.
From the viewpoint of computability theory we showed that interactive computing
does not lead to super-Turing computing power. One cannot say that “interaction
is more powerful than algorithms". Our conclusion was that interactive computing
merely extends our view of classically computable functions over finite domains
to computable functions (translations) defined over infinite domains. Interactive
computers simply compute something different from non-interactive ones because
they follow a different computational scenario.
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4 Extending Turing machine paradigm
The previously described investigations of interactive computing and the respec-
tive results were, at least for us, not yet quite satisfactory. We still felt that there is
something more in the contemporary computing — a computational resource that
is not captured by our models. What it could be?

The answer eventually came after a closed inspection of the most common
interactive system in general use — the Internet. It has been the evolution. For
a casual user of the Internet, its evolution presents an almost invisible activity,
pursued behind the scene: new sites are added to the Internet, some sites vanish,
the hardware and the software of the machines keep changing. The next impor-
tant observation was that these evolutionary changes were, in fact, external, and
hence, non-computable interventions. This insight lead straightforwardly to the
definition of the so-called interactive Turing machine with advice, cf. [17], [30].
This is a Turing machine whose architecture is changed in two ways:

• instead of an input and output tape the interactive Turing machine has an
input port and an output port allowing reading or writing potentially infinite
streams of symbols;

• the machine is enhanced by a special, so-called advice tape that, upon a
request, allows insertion of a possibly non-computable external information
that takes a form of a finite string of symbols. This string must not depend
on the concrete stream of symbols read by the machine until that time; it
can only depend on the number of those symbols.

An advice is different from an oracle also considered in the computability
theory: an oracle value can depend on the current input (cf. [6]), whereas an
advice value must not. Such machines capture the following three properties of
the modern computing systems (and especially of the Internet): (i) interactive-
ness, enabling communication with the environment, to reflect its changes, to get
feedback, etc.; (ii) evolution, enabling development over generations, and (iii) po-
tential time-unboundedness, allowing their open-ended development. Hence, the
interactive Turing machines with advice represent a non-uniform model of interac-
tive, evolving, and time-unbounded computation. (Non-uniformness is provided
by the possibly uncomputable information inserted into running computations via
the mechanism of the advice — this models the external interventions.)

A further support to this view of modern computing systems came from an-
other model — evolving automata — that we have developed in [17], [23].

The evolving automaton with a schedule is an infinite sequence of finite au-
tomata sharing the following property: each automaton in the sequence contains
a subset of states of the previous automaton in that sequence. This requirement
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captures the persistence of data in the evolving automaton over time: some infor-
mation available to the current automaton is also available to its successor. In this
way, passing of information over generations is ensured.

For an on–line delivered potentially infinite sequence of the inputs symbols
the schedule of an evolving automaton determines the switching times when the
inputs to an automaton must be redirected to the next automaton. This feature
models the (hardware) evolution. Note that at each time a computation of an
evolving automaton is performed by exactly one of its elements (one automaton),
which is a finite object.

An evolving automaton is an infinite object given by an explicit enumeration
of all its elements. There may not exist an algorithm enumerating the individ-
ual automata. Similarly, the schedule may also be non-computable. Therefore,
also evolving automata represent a non-uniform, interactive evolutionary compu-
tational model.

In [17] we have proved the computational equivalence of the evolving au-
tomata with the interactive Turing machine with advice. Based on these two mod-
els, we have formulated the following thesis [17]:

Extended Turing Machine Paradigm A computational process is any process
whose evolution over time can be captured by evolving automata or, equivalently,
by interactive Turing machines with advice.

Interactive Turing machine with advice is known to possess super-Turing com-
puting power. Namely, in [17] we showed that such machines can solve the halting
problem. In order to do so they need an advice that for each input of size n allows
to stop their computation once it runs beyond a certain maximum time. This time
is defined as the maximum, over computations over all inputs of size n and over all
machines of size n that halt on such inputs. Obviously (and unfortunately), such an
advice is uncomputable. Thus, the super-Turing computing power of evolutionary
interactive systems cannot be harnessed for practical purposes — it is only needed
to precisely capture their computational potential, where the elements of uncom-
putability enter computing via unpredictable evolution of the underlying hardware
and software.

We believe that the new paradigm represents a new understanding of com-
puting. It innovates the classical view of computing in three ways: a shift from
finite computations to potentially infinite interactive ones, a shift from rigid com-
puting systems towards systems whose architecture and functionality evolve over
time and, last but not least, an understanding that in general the latter process of
evolution happens in an unpredictable, non-uniform, non-computable way.
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5 Hypercomputing
The transition from the classical computing (embodied by classical Turing ma-
chines and captured by the Church-Turing Thesis) to the interactive one did not
bring a qualitative leap in computing: not even evolutionary interactive computing
could solve the undecidable problems. Yet, especially among the theorists, there
was an increasingly more urgent wish to find a model of computing compatible
with the sound scientific principles that could provably qualitatively outperform
the classical Turing machine. Of course, by that time, by the the beginning of
the twenty first century we (i.e., Jan and myself) knew that in a certain sense
modern computing represented, e.g., by the Internet, has had this power which,
unfortunately, could not be used for solving undecidable problems (because of the
uncomputability of the necessary advice).

However, within relativistic theoretical black-hole physics, in the so-called
Malament-Hogarth spacetime, the physicists have shown the existence of two dif-
ferent trajectories, T1 and T2, respectively, coming out from the same point, having
the following property. The journey along T1 takes an infinite time, whereas for
a traveller along T2 only finite time will elapse. Now, letM be a classical Turing
machine performing a possibly non-halting computation. Then, we letM follow
trajectory T1 while a person waiting for the result ofM’s computation (called the
observer) will follow trajectory T2. In our Universe, rotating black holes are the
candidates for a Malament-Hogarth spacetime. The above schema of computation
could be implemented as follows. Trajectory T1 will be the orbit around the black
hole (outside the event horizon) while T2 will be the trajectory of the observer
falling towards the black hole. The physical property of the black holes and that
of their environment allows the falling observer to receive signals from the orbit-
ing computer. As soon as the observer reaches the black hole inner horizon, the
so-called Malement-Hogarth event will occur, i.e., forM infinite time will elapse.
If no signal is obtained by the observer until that time, the computation ofM did
not halt in finite time. The schema of computation is in Fig 1.

The existence of the Malament-Hogarth spacetime follows from the theory,
but has not been confirmed empirically.

In 2002 we learned about the possibility of black hole computing from the
paper by Etesi and Németi [2] and soon afterwards we explored the computa-
tional limits and features of their relativistic computers. Consequently, in [28]
we defined the so-called relativistic Turing machine R as a specific determinis-
tic multitape Turing machine with a separate input tape. Among its states tree
is a non-empty subset or relativistic and signal states, respectively. There are
two kinds of signal states: the positive, and the negative ones. Upon entering a
relativistic state, a relativistic phase of the computation will start. A specific com-
putation is launched answering the question “continuing the computation from the
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Figure 1: The schema of the black hole computing

current configuration c, will R halt in a finite time?" If so, then in the next step
R enters a positive signal state; otherwise, it enters a negative state. Afterwards,
in both cases the computation can proceed classically, starting from configuration
c. A computation of R can contain but a finite number of alternations between
classical and relativistic phases of computation.

Our paper [28] has complemented the study in [2] where only some conse-
quences for computability theory are discussed. We showed that relativistic com-
puting has precisely the power of recognizing the Δ2−sets of the Arithmetical Hi-
erarchy [4]. If the underlying physical theory is accepted, this would lift the bar-
rier of recursiveness “in nature" to the Δ2−level, i.e. without violating any feasible
thought experiments in the general relativity theory. We also gave a complexity-
theoretic characterization of relativistic computing in terms of Turing machines
with advice mentioned in Section 4.

Our result has proved a kind of duality between infinite relativistic and non-
uniform finite computations. This can be seen as a further evidence for the emerg-
ing central role of non-uniform computation models in capturing the information
processing capabilities in natural systems, as formulated in [15]. The result com-
plements the existing set of examples of such kinds of models, including evolu-
tionary interactive systems, the Internet, artificial living systems, social systems,
and amorphous computing systems (cf. [17],[30]), by systems operating by the
principles of the general relativity theory. The result is also interesting in the
context of (theoretical) physics or philosophy.
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6 Computations as unbounded processes
In our forthcoming effort to further characterize the nature of contemporary com-
putations, by the end of 2009 we realized that our quite general characterizations
via the extended Turing paradigm abstracted from another important property of
current computational systems. This is the fact that majority of these systems are
multi-processor systems. As a rule, such a typical system runs uninterruptedly and
consists of a (not necessarily a static) set of alternatively running communicating
processes. Control goes from process to process and, whenever a process has its
turn, the process computes until it executes an instruction that explicitly transfers
control to another process.

Abstracting further, the work of the multi-process systems can be seen as in
interplay between red and green set of processes, where the control occasionally
passes from red to green processes, or vice versa, as dictated by the processes
themselves. Using the Turing machine model as the basic underlying architec-
ture, this approach has lead straightforwardly to the notion of red-green Turing
machines. A red-green Turing machine is formally almost identical with the clas-
sical model of Turing machines. The only difference is that in red-green Turing
machines the set of states is decomposed into two disjoint subsets: the set of green
states, and the set of red states, respectively. There are no halting states. A com-
putation of a red-green Turing machine proceeds as in the classical case, changing
between green and red states in accordance with the transition function. The mo-
ment of state color changing is called mind change. A formal language is said
to be recognized just in case when on the inputs from that language the machine
computations “stabilize" in green states, i.e., from a certain time on, the machine
keeps entering only green states. Similarly, a language is said to be accepted if
and only if the inputs from that language are recognized, and the computations on
the inputs outside that language eventually stabilize in red states.

In [21] we have investigated various aspects of red-green computations from
the viewpoint of the computability theory. E.g., we showed that the computational
power of red-green Turing machines increases with the number of mind changes
allowed (their computational power increases along the so-called Ershov hierar-
chy, cf. [4]) and for any finite number of mind changes red-green Turing machines
recognize languages in Σ2 and accept languages from Δ2. In fact, computations of
red-green Turing machines exactly characterize the latter two classes. This, to-
gether with the similar results achieved with the help of other machine or logical
models of unbounded computation, suggests that, thanks to their simplicity and
mathematical elegance, the red-green Turing machines can serve as a bridging
model among the various alternative models of potential infinite computations.
For instance, in [21] we proved that red-green Turing machines can elegantly and
straightforwardly be simulated by relativistic Turing machines mentioned in Sec-
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tion 5. This indicates relation to hypercomputing. A non-deterministic model of
red-green Turing achiness can be defined as well. Interestingly, it appears that
w.r.t. the number of mind changes, nondeterministic model is demonstrably more
powerful than the deterministic one. The first results have been very promising
and encouraging.

The work on this subject is in its beginning. The preliminary results were an-
nounced by Jan in February 2010 at the Workshop ‘Philosophy of the Information
and Computing Sciences’ in Leiden [19]. The present state of the research and
the results achieved up to now are in [21]. Finally, the red-green Turing machines
have also been in the center of our contribution to the book dedicated to a cente-
nary celebration of the life and work of Alan Turing. Namely, in 2011 we have
“discovered" that the notion of computation as unbounded process as we distin-
guished it can be traced back to the discussion of so-called automatic machines
(or: a-machines) in Turing’s fundamental 1936 paper [5]. Whereas the vocabu-
lary and notational style were different, we have argued that the non-terminating
version of, what Turing called, circular a-machines, coincide quite precisely with
our notion of red-green computation. Thus, our latest study [22] seems to fill a
gap that has existed since then.

7 Conclusion
Usually, people do not distinguish cooperation from collaboration, and indeed,
Webster dictionary defines these two words almost identically. But for the man-
agement specialists these two words represent different ways of joint work. When
cooperating, people take coordinated decisions in order to achieve common goals
(or benefits), whereas possible ways for achieving the goals are usually known in
advance. Cooperation is based on a mutual trust and typically takes the form of
a relatively short-term project, with little risk. When collaborating, people work
together (co-labor) on solving the problems that are dynamically stated by the
participants. The ways of solving the problems are not known beforehand. Col-
laboration is based on a mutual respect and typically is a long-term, on-going,
open ended creative project with high risks as far as progress is concerned. The
joint work of Jan and myself has definitively been the case of collaboration (albeit
a minimal one in terms of participants and maximal one in terms of its duration).

Like the “caminante" from Machado’s poem, at the beginning of our collabo-
rative endeavor, little had we known how it would work, what problems we would
address, and where it would lead us. Retrospectively, we see that our long joint
journey has been a quest for understanding computation. Do we understand com-
putation today? Well, certainly more than at the beginning of our collaboration.
Our current understanding of computing is expressed by the extended Turing ma-
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chine paradigm which represents an important shift in our thinking about compu-
tations.

Nevertheless, our recent findings around the red-green Turing machines indi-
cate that there is still a long way ahead of us.
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