DisTrRiIBUTED CompPuTING and EpucatioN CoLumN
Special Issue

BY

JUurAJ HROMKOVIC, STEFAN ScHMID

ETH Zurich (Switzerland), University of Vienna (Austria)

In this joint distributed computing and educational column, Uri Abraham
revisits the use of invariant-based proofs in teaching concurrency, comparing them
to approaches using Tarskian system executions. Based on a simple example,
he sketches the vision of a framework which allows to develop the details of an
intuitive argument leading to a mathematically sound proof.

Enjoy!

ON LAMPORT’S *“TEACHING CONCURRENCY’’

Uri Abraham
Departments of Mathematics and of Computer Sciences
Ben-Gurion University of the Negev
abraham@cs.bgu.ac.il

Abstract

In his article Teaching Concurrency Lamport stresses the importance of
invariants for the education of engineers and computer students, and presents
a short algorithm with a challenge to the reader: find an invariant with which
a certain simple property of that distributed algorithm can be proved. Our
aim is to compare the invariant proof approach to a different one which uses
Tarskian system executions rather than invariants. By comparing the details
of the two proofs for this simple algorithm we gain a better understanding
of these approaches.

1 Introduction

In his article Teaching Concurrency [3]] Leslie Lamport argues that learning about
invariants is important not only for practical reasons but also because “When you
use invariance, you are teaching not just an algorithm, but how to think about
algorithms.” To make his point, Lamport presents the following simple and yet
interesting algorithm.

1. x[i] :=1;
2. y[i] ;= x[(i— 1) mod N]
3. end.

Figure 1: The Simple Concurrent Algorithm of Lamport. The protocol for process
Dis 0<i<N.

Here N is the number of processes, po, ..., py—1. Process p; writes on register
x[i] and all other processes can read it. The registers are serial, which means that
reading and writing actions of any register are assumed to be linearly ordered in
time, and such that each read action of a register gets the value of the last write on

abraham@cs.bgu.ac.il

that register. The initial value of all registers x[i] is assume to be 0. Process p; has
y[i] as a local variable.
In his article Lamport stats the following theorem:

Theorem 1.1. After every process has stopped executing its simple protocol of
Figurell] at least one process p; has set y[i] = 1.

The short argument that Lamport gives for this claim is very convincing. Con-
sider the last process p; to execute line 1 : x[i] := 1. Then, when p; reads its
neighbor (executing line 2) it obtains the value 1 since by that time all other pro-
cesses have already writen 1 on their x[j] registers, and hence p; writes 1 on y[i]
which proves the claim.

This attractive argument is informal, and although for such a short and simple
protocol there is no reason to object to this type of arguments, for larger programs
it is necessary to provide a fuller guarantee that only mathematical proofs can
provide. Itis perhaps not immediately clear in what sense the previous argument is
informal, and it may take some time to find that the argument implicitly uses some
assumptions that need to be explicated if one wants to get a formal mathematical
proof. For example that there is a last write is such an assumption. With larger
programs one cannot be sure that an informal argument is not based on some
invalid hidden assumption or that some case was missed in the argument. An
advantage of the invariant based proof is that it leaves no hidden assumption in
its proof. It is to this sort of advantage that Lamport refers to when he writes that
“Invariance is the key to understanding concurrent systems,[. ..].” Concerning his
Simple algorithm and the correctness claim of Theorem [I.I] Lamport says “The
algorithm satisfies this property because it maintains an inductive invariant. Do
you know what that invariant is? If not, then you do not completely understand
why the algorithm satisfies this property”.

The invariant method is important in practice, in theory, and in teaching. But
convincing arguments as the one given above for the Simple algorithm are also
important because they are natural and are useful for guiding intuition and under-
standing. Our aim here is to describe the elements of a framework within which it
is possible to develop the details of the intuitive argument in a way that makes it a
mathematically sound proof.

In the following section we describe the well-established state and history ap-
proach to concurrency correctness and show an invariant for the Simple algorithm
of Figure[I|by which its correctness is proved. A short section[2.1] points to some
limitations of the invariant approach by showing how even small changes in the
Simple algorithm may be quite a challenge to that approach, but require only
minor modifications in the intuitive argument. In Section [3| Tarskian system exe-
cutions are defined and it is shown (Section) how the correctness of the Simple
algorithm of Lamport can be conducted in a mathematical way that follows and

reflects the intuitive argument. In this framework, the challenging modifications
of Section [2.1]do not pose any problem.

2 States, actions, and histories

A state is a representation of the essential features of the system at some moment.
Formally we have a collection, SysVar, of system variables, and for every v €
SysVar we have a set Type(v) which is the set of value that variable v is expected
to take. We then have the following definition. A state is a function S defined
over SysVar and such that, for every v € SysVar, S (v) € Type(v). Let States be the
collection of all states thus defined.

The notion of typeless states is also needed (but only for a short while): a
typeless state is just a function defined over SysVar without any limitations on
the possible values that a variable takes. So “Srates” refers to type-respecting
functions, and typeless-states are non-restricted functions. The need for typeless
states is clarified below.

In many cases, variables can be composed into ferms. For example, if m and
n are variables of type natural-number then the term n + m can be formed and it
aquires a value whenever m and n do. The value of variable m in state S is denoted
m’, and the value of m + n is denoted (m + n)°.

For the Simple algorithm of Figure [I|we have the following system variables.

SysVar = {x[0],...,x[N = 1],y[0],...,y[N = 1], PCy, ..., PCy_1},

where PC; is the program counter of process p;. We have Type(x[i]) = Type(y[i]) =
{0, 1}, and Type(PC;) = {1,2,3}. The meaning of PC; = k for k = 1,2, is that
pi’s next action will be an execution of the atomic instruction at line k. But the
meaning of PC; = 3 is that process p; stops and no step by p; is enabled.

There is one initial state here: [has all program counters at 1 (ready to execute
the first instruction) and all registers have value 0. So Io(PC;) = 1, and Iy(x[i]) = 0
for all i. The local variables y[i] of p; are set to 0.

The protocol of Figure|l|contains just two sorts of instructions: write and read
of registers. Generally, a write instruction has the form R := t where R is a register
and ¢ is a term which can be evaluated in any (typed) state. A read instruction has
the form v := R where R is a register and v a local variable of the executing
process.

A step is a description of an atomic change of the system executed by one of
the processes. A step is represented by a pair of states (S, 7): S is the state before
the execution and 7 is the resulting state. For the Simple algorithm considered
here we have just two kinds of steps: read and write.

1. An execution of an instruction R := ¢ (R a register and ¢ a term) by process
piis apair (S, 7T) where S is a state and 7" a typeless state such that:

(a) S(PC;) points to that instruction, and 7' (PC;) points to the next instruc-
tion in the program.

(b) T(R) = 15. That is, the value of register variable R in T is the result of
evaluating the term ¢ in state S'.

(c) For any state variable v other than PC; and R, T(v) = S (v).

2. An execution of an instruction v := R by process p; is a pair (S, 7)) where S
is a state and T a typeless state such that:

(a) S(PC;) points to that instruction, and 7' (PC;) points to the next instruc-
tion.

() T(v) =SR).

(c) For any variable v other than v and PC;, T(v') = S (V).

Specifically, for Lamport’s Simple algorithm the write instructions are the N
instructions at line 1: x[i] := 1, and the read instructions are the instructions at
line 2: y[i] := x[(i — 1) modN]. The notion of “next instruction” is obvious here.
The steps of p; of the Simple algorithm are as follows.

1. (1;,2;) steps are executions of the instruction x[i] := 1 of line 1.

(1;,2;) = {(S, T) €States X typeless-states | S(PC;) = 1 AT(PC;) = 2A
T(x[i]) =1AEq(S, T, PC;, x[i])}.

Here, Eq(S, T, PC;, x[i]) is the formula which says that 7(v) = S(v) holds
for every v € SysVar \ {PC;, x[i]} .

2. (2;,3;) steps are executions of the instruction y[i] := x[(i — 1) modN].

(2;,3;) = {(S, T) €States x typeless-states | S(PC;) =2 A T(PC;) = 3A
Tli]) = S(x[(i — 1) modN]) A Eq(S, T, PC;, yli])}.

The set of all steps by process p; is (1;,2;) U (2;,3;) , and the set of all steps is
Steps = U{(1;,2)) U (2;,3;)) | 0 < i < N}. There is no step (S,7T) in which
S (PC;) = 3. This indicates that p; stops when its program counter reaches line 3.

The following lemma is obvious, but in large programs it may involve an in-
tensive checking of the algorithm; going over all steps and proving that they retain
the type of every state variable.

Lemma 2.1 (Type consistency of the steps). If (S,T) is any step of the Simple
algorithm, then T € States, i.e. T is a type respecting state.

As a consequence of this lemma we may restrict our attention to type respect-
ing states and the steps are henceforth only pairs of (type respecting) states. We
will not mention again typeless states. Note, that if S is any state and i a process
index such that S (PC;) = k, where k = 1,2, then there exists a state 7 such that
(S,T)is a (k, (k + 1)) step (by py).

Definition 2.2. A history sequence is a sequence of states S, ..., such that S
is some initial state and every two adjacent states in the sequence are steps. l.e.
(S, Sk+1) € Steps.

A history sequence is a representation of some possible execution of the sys-
tem. In Lamport’s Simple algorithm, since any process can execute only two steps,
any history sequence contains < 2N steps. Moreover, a maximal history sequence
reaches a terminating state, that is a state S such that S (PC;) = 3 for every index
i. Indeed, if the last state, S, in some history sequence, is not terminating, and i
is an index such that S (PC;) # 3, then S (PC;) € {1,2} and there is a state S ;41
such that (S, Sx+1) 1s a p; step that extends the given history. Thus the last state
in a maximal history is a terminating state S,y.

An invariant of a distributed algorithm is a statement o~ such that (1) the initial
state satisfies o, and (2) for every step (S, T) if S satisfies o then T satisfies o as
well. In order to completely understand this definition we must explain what is a
statement and what it means for a state to satisfy it.

First define the atomic propositions from which all statements are built with
the help of the logical connectives. In our case, the atomic propositions are very
simple; they have the form v = a where v € SysVar is any system variable and a is
some value. For example, PCs = 2 is an atomic proposition. We prefer to present
(PCs = 2) as a single symbol, an atomic proposition, rather than a compound
equational formula.

The logical connectives are the negation symbol —, the conjunction A, dis-
junction V, and implication =. Then the propositional formulas are defined by
applying the following rules.

1. Any atomic proposition is also a propositional formula.
2. If a is a propositional formula then so is —a.

3. If @ and B are propositional formulas then so are (@ AB), @ V), and (a =).

Here is an example of a propositional formula: ((PCs = 2) = (x[5] = 1)).

Given a state S and a propositional formula o, the relation S | o which says
that S satisfies o (or o holds in S, or is true in §') can be defined by induction on
the structure of o.

1. For atomic o of the formv = a we define S £ (v = a) iff S(v) = a.

2. § E —aiff § £ a (which means that it is not the case that S E «a).

3. SEaABiffS FaandS EB. AlsoS FaVBiff S FaorS EB.
4. SEa=pBiff S EB,or S a.

For example, S F (PC; = 2 = —-PC; = 3). (The main point is that if
S (PC7) = 2 then it is not the case that S (PC7) = 3.)

Now that we have defined propositional formulas and the satisfaction relation
we can give a precise definition: a propositional formula o is an invariant when
the initial state satisfies o, and for every step (S,7) if S F o then T o. But
we soon discover that in practice the statements that we want to prove about our
states are more complex than those simple propositional formulas that we have
defined. Here are some examples that illustrate this and the ways with which we
can cope with more complex but obviously needed statements.

1. Suppose that X € Type(v) is some finite set, and consider the statement o
written as v € X. Surely o holds in state S iff §(v) € X, but we do not have
the membership relation in the language for which satisfaction was defined
and the set X itself is not a term in that language. In case X = {ay,...,a,}
we can view v € X as a shorthand forv = a; V--- Vv = a,,. For another
example, the proposition PC; = 1,2 is a shorthand for PC; = 1V PC; = 2.
Whenoisv € {ay,...,a,} then viewing o as a shorthand for a well-defined
propositional formula allows us to understand S | o in a well defined way.

2. Consider a statement of the form 3 (y[j] = 1). Assuming as we do that
variable j varies over the set of indexes {0, ..., N — 1} (process indexes) the
meaning of this statement is clear: for some j, y[j] = 1. This is exaclty
the statement that we must prove to hold in the final state of any history
sequence of Lamport’s Simple algorithm. Here too we can view this propo-
sition as a shorthand for the disjunction y[0] = 1Vy[1] = 1V---Vy[N-1] =1
(whose length depends on the number of processes N). But this translation
is quite cumbersome, would it not be more natural to define the notion of
state not as a function that assigns values to the state variables but as a struc-
ture in the model theoretic sense in which quantifications of the form 3 ¢
are allowed? In that approach, y would be a function name and j a variable
that varies over the sort of indexes, {0,..., N — 1}, so that the quantifica-
tion sentence 3j (y(j) = 1) is a well-formed first-order sentence. Viewing
states as Tarskian structure is a useful approach which is not pursued here,
since we do not want to delay too much the presentation of the required

invariant. Hence we view a statement such as 3 (y[j] = 1) as long disjunc-
tion. Likewise, a statement such as V j(PC; = 1) is a shorthand for the long
conjunction A ; ny(PC; = 1).

3. Here is an example of a statement about states that acquires its meaning
from our external knowledge of mathematics. Suppose we want to say that
there are two successive registers (in the circular array x[0], ..., x[N — 1])
that have the same value. The most natural way would be 3j (x[j] = x[j+ 1
(mod N)]). It is possible to translate this statement into a propositional
formula, for example in case N = 3 we can rewrite it as x[0] = x[1]V x[1] =
x[2] v x[2] = x[0]. But most readers, I believe, would prefer the compact
formula that relies on our understanding of what (x mod N) means.

Now the usefulness of invariants comes from the following obvious theorem.

Theorem 2.3. If o is an invariant, then for every history sequence S, ... and for
every index i in this sequence, S; | o.

Be careful however: there are statements that hold in every state of any history
sequence and yet are not invariants. For example, the statement that we have to
prove is the following implication, o,

(VjPC;=3)= @jyljl=1

which says that if all processes have stopped then there is (at least) one index
J with y[j] = 1. When we proved intuitively that after every process stops, at
least one process p; has set y[i] = 1, we proved that every state in the history
satisfies this proposition o (because only the final state in the history satisfies the
antecedent of o). And yet, o is not an invariant.

We are ready to suggest an invariant for the simple algorithm

1. Let 3 be the conjunction A,y B; where for every index j, B; is the propo-
sition

PC;=2,3 = x[j] = 1.

2. Let y be the following implication assertion:

(/\ PC; = 3] = 3jG[jl= D).
0<i<N

Theorem 2.4. The conjunction 8 Ay is an invarian

Proof. Firstly we have to prove that the initial state [, satisfies S Ay. To prove that
Iy E No<j<n Bj» We have to prove for every index j that Iy |= 8;. Since Io(PC)) = 1
for every j, Iy negates the antecedent of §;, which implies that it satisfies the
required implication. Also, I = y because I, negates the antecedent of y.

For the main part of the proof that S A7y is an invariant we take an arbitrary step
(S, T) of the Simple algorithm (by an arbitrary process p;,), assume that S | SAy
and prove that T = 8 A y. We first deal with (1,,, 2;,) steps and then with (2;,, 3;,)
steps. For each kind of step we prove that T = 8 and then that 7" = vy.

1. Case (S,T) € (1;,2;). To prove that T = B we prove separately that
T E Bi, and that T = §; for any j # iy. To prove that T' = 5;,, we note that
T E x[ip] = 1 by definition of this step. Thus 7 satisfies the consequent of
Bi, and hence T E S;,.

For j # iy we note that (1,,2;,) steps do not change any of the variables
PC;, y[jl, and x[j]. The assumption that § | § implies that § | §; and it
immediately follows that 7' = 3; as well, for 8, is built solely from PC; and
x[j]. (If for every variable v that appears in formula o, T(v) = S(v), then
TETiff S Eo.)

To prove that T = y, we note that T = PC;, = 2 and hence that T negates
the antecedent of vy.

2. Case (S,T) € (2;,3,). We first prove that T = (. Since S = B and
S(PC;) =2,S E xlip] = 1. The step (S, T) is a reading step which did not
change the value of x[ip] whichis 1, and hence T | PC;, = 2,3 = x[ip] = 1.
Thatis, T | B;,. For j # iy itis clear that T |= §; (since S | §; and this step
did not change any of the variables of 5;). So T | .

To prove that T = y we assume that T satisfies the antecedent of v, i.e.
T = Ao<icy PC; = 3. Hence for every index i # iy, S F PC; = 3, and
since S = B, S E x[i] = 1 for every i # iy. For iy, S(PC;,) = 2 and hence
S E x[ip] = 1 as well. In particular, S (x[(iy — 1) mod N]) = 1, and hence
T(lio) =1.So T = 3j (y[j1 = D).

O

The following is a reformulation of Theorem I.T]in the invariant-based frame-
work. As we argued, any execution of the Simple algorithm reaches a final state,

I'This invariant is due to Lorin Hochstein, https://stackoverflow.com/questions/24989756/what-
is-the-inductive-invariant-of-the-simple-concurrent-program. It is much simpler than the invariant
that I have had in mind before seeing Hochstein’s.

a state in which A (;.y PC; = 3 holds. The invariant holds in that state as it holds
in any state of the execution. Hence the following theorem implies that y[j] = 1
holds for some j in the final state.

Theorem 2.5. The following formula holds in every state.
yA[N PCi= 3) = 3j0lj] =).
0<i<N

Proof. This is obvious since (/\o<;.y PC; = 3) is the antecedent of y and 3 (y[j] =
1) is its consequent. m|

An attentive reader may have noticed that the particular functioni — ((i — 1)
mod N) plays no role in the proof that 8 A y is an invariant, and we can replace
it with an arbitrary function F from the index set [0, ..., N) to itself. Thus line 2
of the algorithm (i.e. y[i] := x[(i — 1) mod N]) can be changed to y[i] := x[F(i)]
and the correctness proof remains (almost) the same. So, from now on, Lamport’s
Simple Algorithm refers to the following code.

1. x[i] :=1;
2. yli] := x[F ()]
3. end.

Figure 2: Lamport’s Simple algorithm with an arbitrary function F from the index
set [0, ..., N) to itself instead of the functioni — ((i — 1) mod N).

2.1 Challenges to the invariant approach

The intuitive argument of Lamport for Theorem [I.1]is flexible in the sense that
it can easily be adapted to other communication modes, such as message passing
and regular registers. The invariant-based approach, so it seems, does not display
such a measure of adaptability. We shall consider two example which show that
adaptation of the intuitive argument to the message-passing and to the regular-
register modes of communication is indeed easy. For the invariant-based proof,
however, arguing about regular registers seems to be a challenge.

For the first example, assume that in addition to the N processes po, . .., Pn—1,
we have a certain number of relay stations L, ..., L; (normally K is smaller than
N). There are message channels connecting every process to every relay, and
we assume that messages arrive in order and are never lost. There is however
a temporal gap between the time a message is sent and the time it reaches its
destination. Every relay L has for every 0 < i < N a local variable V} with initial

value 0. The idea in this arrangement is to implement for each p; a register R; on
which p; can write and every process can read as in the following scheme. To write
a message m on R; process p; sends m to every relay and waits for a confirmation
message. When relay L receives m from p; it writes m on V' and sends back a
confirmation. To read register R;, process p; sends a request to some relay, L, and
waits to get an answer from L of the the local value kept at V. Process p; may
also ask a relay for the sequence V%, ..., Vlf,_l of all local values. If after awhile
p; does not get an answer (perhaps L is very busy or the channel is slow) p; may
try to get an answer from another relay. This scheme makes it harder to write a
value, but it ofers a greater flexibility for the readers.

The variant of Lamport’s Simple algorithm that we consider is the following.
Each process p;, in the first phase of the algorithm, writes a certain value (say 1
or some nonzero value that depends on i) on register R; by sending messages and
waiting for confirmations from all relays. Then, in the second phase, it sends a
reading request to some relay L (or possibly to a small number of them), asking
to get the values of all registers that L has locally kept.

We claim that there is at least one process pj, that gets in its execution an
answer containing all the value that the N processes have sent (i.e. no initial value
is in that answer). Indeed, for every process j consider the messages sent in the
first phase of p; and their confirmations, and let 7; be the moment of the last
confirmation arrival to p;. Then let j, be the index with maximal T';,. We claim
that every relay L has received by moment 7', first phase messages from every
pi. Indeed, as T; < T, process p; has by moment T';; received confirmation from
every L which ensures that the message of p; has reached L. Hence, when pj
executes its second phase, any answers that it obtains from any relay L contains
only non-initial values.

The second modification that we consider is the usage of regular registers in-
stead of serial ones. This is our main example, which accompanies our discussion
and introduction of new concepts. We ask if the Simple algorithm of Figure [2]is
still correct with this replacement of serial with regular registers. Before giving a
positive answer we need a definition of regularity, a notion introduced and defined
by Lamport [4] in order to investigate the situation where read and write operation
executions can be concurrent. (Two events e¢; and e, are said to be concurrent if
they are incomparable in the precedence relation ordering <, that is neither e; < e,
nor e, < ey.)

Definition 2.6. Register R is regular if (1) there is a specific (serial) process that
can write on R (we say that R is a single-writer register), (2) there is an initial
write on R (which precedes every read and every other write event on that reg-
ister), and (3) a read of R (by any process) returns a value v that satisfies the
following requirement. If the read is not concurrent with any write on R, then v is

the value of the last write on R that precedes the read, but if the read is concur-
rent with one or any number of write events, then either v is the value of the last
write on R that precedes the read or else v is the value of some write event that is
concurrent with the read.

It would be difficult to give an invariant based proof even to the simplest al-
gorithm in case the registers are regular, but the intuitive argument of Section [I]
applies almost verbatim in that case. Indeed, suppose that the temporal extension
of every read/write event is represented by an interval (of rational numbers for
example), and let begin(e) and end(e) denote the left and right end points of the
interval of event e. Since the number of processes is finite, the number of execu-
tions of line 1 (i.e., x[i] := 1) is finite and among these executions let w be one
with end(w) maximal. Suppose that p;, is the process that executes w, and let r
be the read event by p;, that corresponds to the execution of line 2, y[ip] := x[j]
where j = F(ip) (F an arbitrary function from the index set to itself). Now, if e,
is the execution of line 1 by p;, then we have the following temporal relations:
end(e;) < end(w) < begin(r). Hence e; < r. That is, the write by p; on x[J]
precedes the read of that register by p;,, and since there are just two write events
on x[j] (the initial of value 0 and e; of value 1) it follows from the definition of
regular registers that r returns the value 1 that was written by p; on x[].

These challenging examples suggest that there could be some value in search-
ing for formal mathematical proofs that follow the intuitive and informal argu-
ments. Such proofs would convey a greater assurance in the correctness of the
protocol than that of the intuitive argument, but would share some of its bene-
fits. In particular, we expect that such proofs will be more flexible in adapting
themselves to different communication frames.

The plan for the rest of the paper is to present a mathematical framework that
allows proofs of properties of distributed algorithms that do not search for invari-
ants but rather follow the intuitive arguments that are based on investigations of
temporal relations between the events of the distributed system. In the following
section the notion of system executions as Tarskian structures is introduced and
used to define regular registers. Then in Section 4] we characterize those system
executions that arise as executions of the Simple algorithm of Lamport when the
registers employed are assumed to be regular, and we prove the required prop-
erty of these executions. Namely that whenever all processes terminate there is
some index i for which y[i] = 1. That proof resembles in its shape and flavor
the intuitive correctness argument that was given above. Section [5|concludes the
article.

3 Tarskian System executions

We shall be interested here in a very specific kind of structures which we call mo-
ment based system executions (or system executions for short, borrowing the term
introduced by Lamport [4]). A system execution is an abstract representation of
some execution of a system that consists of concurrently executing processes; it is
one execution out of the manifold of all possible executions. So that a proof that
a certain property holds in all system executions is a proof that the protocols that
the processes employ ensure that property. As structures in the model theoretic
sense, these are interpretation of some logical language in which the properties
that interest us can be formulated. System executions are “many sorted” struc-
tures, which means that the universe of each structure is a union of its different
sorts (types of elements): events, data etc. Our structures are moment based which
means that one of the sorts of its members is the sort Moment which represents
time. We can take the natural numbers or the rational numbers as our Moment
sort, but it makes sense to leave this sort as some unspecified linear ordering, and
to determine a specific ordering only if needed.

When specifying a logical language, the term signature refers to the collection
of (non-logical) symbols that the language employs.

Definition 3.1. A moment based system execution signature is a collection of sym-
bols that contains the following items (and possibly more).

1. There are three kinds of sorts: Event, Atemportal, and Moment. Event and
Atemportal are disjoint, and Moment is a subsort of Atemportal. The idea
is that an event is located in time, it has a beginning and an end which are
moments. A moment is atemporal in the sense that it is an instant of time not
something that instants of time can characterize. Another atemporal sort can
be, for example, the sort of values of messages or the sort of register values.

2. There is a binary relation symbol < defined on Moment. We also write x <y
as a shorthand of x < y vV x = y. For moments ¢, t,, relation #; < t, means
that ¢, is earlier than 7,.

3. There are two function symbols begin and end from Event into Moment. We
think of event e as extended in time and its temporal extension is represented
by the interval [begin(e), end(e)) where begin(e) < end(e).

4. There are possibly other predicates, functions, and constants in the signa-
ture. These depend on the particular application for which the language is
designed.

The following (moment based) signature will be used in our proof for the
Simple algorithm of Lamport.

Definition 3.2. The Ly, signature consists of the following symbols.

1.

The sorts are Event, Moment, Index, Data, and Address. (Members of
sort Event are the read and write events; Data = {0, 1} which is the sort
of values read and written; Index which is the set of indexes of the pro-
cesses (0,...,N — 1 in our case); and Address which is the sort of registers.
Sorts can be used as predicates in the language: we can write, for example,
Moment(t) to say that variable ¢ is a moment.

The set of logical variablef] are part of the signature. For many-sorted
signatures it is convenient to have specific variables for every sort. For
example, we shall use e, f, g, h and r and w (possibly with indexes) to vary
over the Event sort; i,j are Index variables, t, s are Moment variables, the
letter a (with indexes) is an Address variable and so on.

. The language has constants (names of objects). Here we have 0 and 1 to

denote the Data values. We also have a special “undefined” constant L.

. We have two unary predicates, read and write over the events. There is

also a binary predicate init(w, a) (to say that w is the initial write event on
address a. And there is a binary predicate < on the Moment sort. (Namely
the “earlier than” relation.)

. The function symbols are the following.

(a) begin,end : Event — Moment. (For every event e, the (left-closed
right-open) temporal interval [begin(e), end(e)) is the extension of e.)

(b) register : Event — Address. (Every read/write event e is associated
with the register, register(e), from which/to which it reads or writes.)

(c) pid : Event — Index U {L}. For every event e, pid(e) € Index is the
(index of the) process that executes e. Thus, pid(e) = L indicates that
it is the system, not any of the p; processes, that executed e. We shall
use pid(e) = L to say that e is the initial write event on register(e).

(d) x : Index — Address. (For every index i, x(i) is the register denoted
x[7] in the protocol.)

(e) val : Event — Data. (The intention is that if write(e) (or read(e)) then
val(e) is the value written (respectively returned) by event e.)

Logical variables are used in formulas as “place holders” and for quantification; they are
different from system variables and program variables.

(f) p : Event — Event U {1} is the “return” function defined over the read
events and returning write events (so if write(e), then p(e) = L indi-
cates that p is not defined on write events). The role of p is explained
later when regular registers are defined. (Roughly speaking, for every
read event r, p(r) is that write event whose value was returned by r.)

(g) F : Index — Index. In the simple algorithm of Figure|[I| F(i)isi— 1
(mod N), but any function from the index set and into the index set
works as well when line 2 of that algorithm is changed into

yli] = x[F@D)].

We prefer this slight generalization of the algorithm which is in Figure

2l

The Ly language is the set of (first-order) formulas that can be obtained with
the symbols of the signature Lg;,,, and the logical symbols: V (forall), 3 (there
exists), A (conjunction), V (disjunction), = (implication), < (bi-implication), and
- (negation).

It is useful to enlarge our language with definable predicates. For example, for
event variables e, e,, formula

PREC(ey, e;) = end(e;) < begin(e,) (D)

says that event e, precedes event e,. Abusing notation, we shall henceforth write
e < e, instead of PREC(e, ¢;). We write ¢; < e, fore; < e, Ve = e,.

Note that since we decided that variable i varies over Index values, instead of
writing (Vi € Index) ¢ (or Vi(Index(i) = ¢)) we can write Yigp.

Whenever we have a logical language signature, a class of structures (Tarskian
structures) that interpret this signature is defined. An interpreting structure M con-
sists of a universe |M| of members of the structure which is the union of the inter-
pretations in M of the diverse sorts of the signature. Any sort S is interpreted in M
as a set SM C |M|. And every predicate P and function symbol G are interpreted
in M as a relation P and function GM over the members of the structure. These
relations and functions have to respect the types that the signature determines for
them.

In our case the interpreting structures, called moment based system execution
interpret the language Ly, and in details we have the following definition.

Definition 3.3. M is a moment based system execution that interprets the signa-
ture Ly, defined above when the following holds.

1. The univers |M| of the structure is the disjoint union of the sets that interpret
the sorts.

M| = Event™ U Moment™ U Index™ U Data™ U Address™ U {1 ™).

2. Moment™ = N is the set of natural numbers and <™ is its natural linear
ordering’|

3. For some N € N, Index™ = {0,...,N — 1} is the set of the first N natural
numbers. And Data™ = {0,1). Sort Event is interpreted as an arbitrary
nonempty set Event™.

4. For every e € Event", begin(e) < end(e) holds in M.

5. A precedence relation < is defined on the events as follows: for every e, and
e in Event™,
e < ey iff end™(ey) < begin™(e,). 2)

So we use the same symbol, <, for two purposes. m; < m, denotes that
moment m, is before moment m,, and e; < e, denotes that event e, is earlier
than event e,.

6. The interpretations of the predicates and functions of Lgiypi. respect their
sorts. For example, predicate write is interpreted as a subset write” of
Event™, and the function p is interpreted as an arbitrary function p™ from
Event™ to Event™. Likewise, x™ is a function, x™ : Index™ — Address™.

An arbitrary interpretation of the Ly, language is devoid of interest since
there is no reason to expect that it resembles an execution of the simple algorithm
or that it has any meaningful relevance. We need to further specify the structures
in order to make them useful. This further specification can be done by writing a
sentence ¢ in the Ly, language which expresses a required property. Then, the
manifold of all interpretations that satisfy ¢ (i.e. models of ¢) yields a univocal
expression of the intended meaning of that property. As an example of properties
that can be expressed in the Ly, language consider the following which we first
express in mathematical English.

Every register x[i] has exactly two write events: 3)
the initial write and the write by process p;.

There is more than one way to formally write this proposition. In the following
approach we first write a formula a(w, i) which says that w is a write event on
register x[i].

a(w, i) = write(w) A register(w) = x(i).

31t is not strictly necessary to interpret Moment as the set of natural numbers, but doing so saves
us some work since the finiteness conditions (i.e. that every event is preceded by a finite number of
events) already follows from this choice since the temporal extensions assigned to different events
are different.

Recall that x is a function symbol in Ly, and x(i) is a term that denotes an
address. So we write in this formula x(i) rather than x[i] because x[i] is appropriate
when writing a code.

Formula init(w, i) says that w is the (unique) initial write on register x[i]. In
words, it says that w is a write event on register x[i] with value 0, that pid(w) = L,
and that for every event e (read or write) that acts on x[i], if pid(e) = L thene = w,
and if pid(e) # L, thenw < e.

The required formal rendering of (3)) is then:

Vidwg, wy (init(wg, x(0)) A a(wy, i) A pidiwy) =i Aval(wy) = 1A
Ywla(w,i) > w=wy Vw=w)).

4

3.1 Regular registers

In his influential paper [4] Lamport defines a regular register as a safe registelﬂ
in which a read that overlaps a write obtains either the old or the new value.
We already gave in section [2.1] a definition of regularity which is similar to the
definition given in textbooks and articles that use this concept. Here we want to
give a definition of regularity by writing an appropriate sentence in Ly, p,. In
fact, we want to write a formula reg(a, i) (where a is an address variable, and i
is an Index variable) which says that a is a single-writer regular register whose
owner (writer) is the process p;. reg(a,i) is the conjunction of the following four
formulas which are expressed here in English rather than in L, .

1. Every event on address a is either a write event or else a read event.

2. Any write event on address a is by process p;, except for the initial write
event on a. (Since all write events on a are by process p; (except for the
initial write on @), and since every process is serial it follows that the write
events on a are linearly ordered in time. That is, for all events w; and wy, if
write(wy) A write(w,) then wi < wy V wy < wy.)

3. Finally, the heart of regularity of register address a is the following formula
expressed by means of the return function p.

For every read event r of address a, p(r) is a write event on that register,
with the same value and such that the following two properties hold:

(@) =(r < p(r),

(b) Yw (write(w) A register(w) = a — —(p(r) < w < r)).

(&)

“Le. a read not concurrent with a write gets the correct value.

It is not difficult to check that this definition of regularity by means of the return
function p is equivalent to the one given in Definition

4 Correctness of the Simple algorithm for regular
registers

Suppose we disregard concurrency issues, and assume no properties whatsoever
for the registers that the processes use. In such a system, the solipsistic processes
obtain arbitrary values in their read actions, and the write actions have no effect at
all. We say that such a system is non-restricted because there is no restriction on
the behavior of the communication objects that the processes use. In the first part
of this section we ask what can still be deduced from the program code in such a
case of non-restricted executions? Surely very little, but in the second part we will
see that this minute information suffices, together with the specification of regular
registers that was given in section [3.1] to conclude the correctness of Lamport’s
Simple algorithm for regular registers. The point in this maneuver is to obtain a
correctness proof that does not need complex invariants when regular registers are
used because the issue of regularity is separated from the issue of representing the
semantics of distributed protocol executions.

Consider the code of p; again (but now with an arbitrary function F as in

Figure[2])
1. x[i] :=1;
2. yli] := x[F(@i)]
3. end.

Even without knowing anything about the registers x[i] and their properties
we can say at least this: each process p; contains two events that are executed one
after the other, a write event on register x[i] of value 1 and then a read of register
x[F(i)] which returns an arbitrary value in {0, 1} and assigns this value to variable
y[i]. Even without any information about the possible ways in which such write
and read events are executed, it is quite obvious that the code dictates the existence
of these two events.

How can we prove that indeed this is the case that each p; has these two events?
The reader may feel that this statement is so obvious that it needs no proof, and
this indeed may be true in our case, but for longer protocols one must have a
way to handle such proofs. We must have a framework that relates the code of
pi to the set of events that it generates in non-restricted executions. Note that the
properties that we want to prove involve no interleaving of actions since no action
of one process can have any effect on the actions of another process in case of
non-restricted executions. In other words, we can think of a system in which p;

runs alone; its write actions have no effect and its read actions return arbitrary
values that the system somehow randomly furnishes. It would still be true in such
a system that p; contains only two events as stated above. For that reason we
expect the proof to be rather simple, and even if it involves the usage of invariants,
these invariants must be as simple as invariants of algorithms designed for a single
process. However, we shall not develop such a required framework in this short
papeIE], and ask the reader to agree that any non-restricted execution of Lamport’s
Simple algorithm satisfies the minimal requirements embodied in the following
definition.

Definition 4.1. A moment-based system-execution structure that interprets the
Lyimpie language is said to be a non-restricted system-execution of Lamport’s Sim-
ple algorithm if it satisfies the following sentence. For every indexi (0 <i < N)

Aw,r(w < r Awrite(w) A read(r) A pid(w) = pid(r) =i A
val(w) = 1 Aval(r) € Data A register(w) = x(i)A (6)
register(r) = x(F(i)) A Ve(pid(e) =i = (e = w V e =r))).

In words, formula (6] says that for every process index i there are a write event w
and a read event r, both by p; (i.e. with their pid equal to i) with w of value 1 and
an unspecified value of r in Data = {0, 1}, such that w is a write on register x(i)
and r a read of register x(F'(i)), and such that every event e in p; is either w or r.

Definition 4.2. We say that M is a system-execution of Lamport’s Simple algo-
rithm if M is a moment-based system-execution that satisfies the conjunction of
two properties expressed in the Ly, language:

1. the non-restricted properties of ((6)),

2. the statement Vi (reg(x(i),i) which says that for every i € Index, register
x(i) is a regular single writer register of process p,. (See section[3.1|for the
definition of reg(x(i), i).)

Theorem 4.3. Let M be any system execution of Lamport’s Simple algorithm with
regular registers, then there is an index i such that the read event by process p;
obtains the value 1 in its read of register x(F (i)fl

Proof. Let’s write down in details an enumeration of our assumptions, so that
every step in the proof can be justified by one of the assumptions.

3 A forthcoming paper “Kishon’s Poker game” will elaborate on this issue.
®Since any serial register is a fortiori regular, a proof of the theorem for regular registers estab-
lishes it for serial registers as well.

1. Properties of non-restricted executions.

(a) For every i € Index there are two events in p;: w(i) and r(i) such that
w(i) is a write of value 1 on register x(i), and r(i) is a read of register

x(F(i)).
(b) Every event e such that pid(e) = i is either w(i) or r(i). (I.e. p; contains
no events other than w(i) and r(i).)

2. All addresses x(i) are regular registers. Properties of the regular registers

x(1).

(a) No event is both a read and a write event.

(b) Any write event on address x(i) is by process p;, except for the initial
write event on x(i) which is denoted init(i). The value of this initial
write is 0 and it precedes any read event and non-initial write event.

(c) If r is a read of register x(i), then p(r) is a write on register x(i) such
that the following hold.

val(r) = val(p(r)) A =(r < p(r))A
Yw(write(w) A register(w) = x(i) — =(p(r) <w <))

(7)

The proof of our theorem relies on the assumed finiteness of the set Index,
which implies the following property.

Suppose that m is a definable function which maps every i € Index to
some moment m(i) € Moment. Then there is some index i; such that
m(i) < m(iy) for every i € Index.

Using this property the proof proceed as follows. For every index i € Index let
init(i), w(i) and r(i) be as described above. That is, init(i) is the initial write
event on register x(i) (of value 0), w(i) is the write of value 1 by process p; on
register x(i), and r(i) is the read of register x(F(i)) with value val(r(i)). Then
define m(i) = end(w(i)). (That is, m(i) is the right-end of the temporal interval of
the write event w(i).) The function i — m(i) is definable, and hence there is by the
finiteness property an index iy such that

m(i) < m(ip) for every i € Index. (8)

We shall prove that r(ip) is a read of value l We have the following ordering
relations and their consequences.

"It is easier to prove this by yourself than to read it. That’s the problem with too formal proofs.

1. For every index j, init(j) < w(j) < r(j).

2. In particular for j = F(iy), init(j) < w(j) < r(j).

3. By maximality of m(iy), end(w(j)) = m(j) < m(iy).

4. But w(iy) < r(ip), and hence m(iy) = end(w(iy)) < begin(r(ip)).

5. Hence m(j) < begin(r(ip)), which implies that w(j) < r(ip). (See equation

@.
6. Thus we have init(j) < w(j) < r(ip).

7. But init(j) and w(j) are the only write events on register x(j). (Use 2(b) and
1(b): by 2(b) the write events on x(j) are init(j) and a write by p;; by 1(b),
the write by p; can only be w(j) because r(j) is not a write event.)

8. Since F(iy) = J, r(ip) is aread of register x(j) (by 1(a)). Since x(j) is regular,
equations (5]) imply that

val(r(ip)) = val(p(r(ip))).

Being a write on register x(j), p(r(iy))) is either init(j) or w(j). But it cannot
be init(i) (by the second line of (7)). Hence w(j) = p(r(i)), and so 1 =
val(w(j)) = val(r(ip)).

9. So there is a read event of register x(F'(ip)) by p;, of value 1, and this con-
cludes the proof of Theorem[4.3]

5 Conclusion

The Simple algorithm of Lamport in his short and thought provoking article [5]]
serves here as a platform to present an approach to concurrency that is different
from the one that is usually taught in courses and textbooks. The correctness
proof in this approach is not concerned with invariants but rather relies on two
kinds of properties from the conjunction of which the desired correctness con-
clusions follow. The first is said to be non-restricted because it does not restrict
the behavior of the communication devices that the processes use, and it specifies
the system execution as a disjoint union of processes that run in isolation from
each other. The second kind of properties is the specification of the communica-
tion devices that are used (regular registers in our case). The thesis proposed in

[1] and [2] is that, in general, correctness proofs of distributed system can be ob-
tained by investigating the conjunction of these two kinds of properties. In the first
one, properties of communication devices are ignored, and in the second the code
of the executing process is irrelevant. So, unlike the state-step-history approach
which looks for invariants with which the correctness can be established, we have
here a clear separation between the two aspects of the system: the meaning of its
programs and the specification of its communication devices.

The approach to correctness proofs of distributed algorithms in which proper-
ties of Tarskian system executions are used has some merit which comparison with
the invariant-based approach may highlight. The most notable one is in obtaining
a formal proof that resembles the intuitive arguments with which the investiga-
tor understands the distributed algorithm and its correctness. This understanding
allows a greater flexibility in applying the ideas of the algorithm to similar algo-
rithms and in extending its range of applications. There certainly are advantages
of the invariant-based approach: it is based on relatively simpler concepts and
many tools were developed that facilitate its applications (especially to large scale
systems). In my experience with distributed algorithms, there are cases in which
their Tarskian abstract modeling brought about a clearer correctness proof, but
there are cases in which the invariants revealed something about the program that
is not evident from its intuitive analysis and its mathematical explication.

But think about the developer of a system who has found a suitable invari-
ant which establishes the correctness of some distributed algorithm. Would this
invariant help the programmer in answering the question about extending the al-
gorithm to work with regular registers or with messages? Probably not, probably
an intuitive argument would be more useful in reaching a positive answer or a
negative counterexample. But intuitive arguments may be misleading and a good
education of the programmer, one that contains Tarskian structures in its syllabus,
can help in reshaping intuitive arguments as trustworthy mathematical proofs.

It is by nature of the invariant approach that the semantics of a concurrent
program and the specification of communication devices that it uses are encom-
passed in a single framework, that of global states, steps, and histories. Indeed, a
global state records the values of the registers, and a writing-step represents the
atomic change that the write action brings about. Thus serial registers are easily
represented in a framework that takes care at once of both the specification of se-
rial registers and the semantics of distributed program executions. It is possibly
because of this naturalness of dual representation in one framework that the im-
pression was created that this must always be the case, and the paradigm that the
semantics of distributed code and specification of communication devices should
be lumped in the same concept of state-step-history was accepted. But this is not
necessarily so; a separation between the semantics of the communication devices
and the program semantics is possible, and even desired I think in cases that it

simplifies the correctness proofs and makes them more natural. Such a separation
was exemplified in the second part of our paper which deals with regular registers.

I believe that with further experience, time will bring a deeper understanding
of the different possibilities for modeling concurrent systems and proving their
properties. Different approaches will then be available to choose from for each
particular application. An education of a computer scientist or engineer could
benefit from a program that includes (in addition to learning about invariants of
course) opennings to other proof methods in general and to the possible usage of
Tarskian structures in particular.

References

[1] U. Abraham. On interprocess communication and the implementation of multi-
writer atomic registers. Theoretical Computer Science, 149(2): 257-298, 1995.

[2] U. Abraham. Models for Concurrency. (Algebra, Logic and Applications, Vol. 11).
CRC Press (Gordon and Breach, Taylor and Francis), 1999.

[3] L. Hochstein. https://stackoverflow.com/questions/24989756/what-is-the-inductive-
invariant-of-the-simple-concurrent-program.

[4] L. Lamport. On interprocess communication, Part I: Basic formalism, Part II: Algo-
rithms. Distributed Computing, 1(2): 77-85 and 86-101, 1986.

[5] L. Lamport. Teaching concurrency. ACM SIGACT News (Distrib. Comput. Col-
umn). 40(1): 58-62, 2009.

	Introduction
	States, actions, and histories
	Challenges to the invariant approach

	Tarskian System executions
	Regular registers

	Correctness of the Simple algorithm for regular registers
	Conclusion

