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Abstract

A number of formalisms have been proposed to model various approaches
to reversibility and to better understand its properties and characteristics.
However, the relation between these formalisms has hardly been studied.
This paper examines the expressiveness of the causal-consistent reversibility
in process algebras CCS and π-calculus. In particular, we show, by means
of encodings, that LTSs of two reversible extensions of CCS, Reversible
CCS [1] and CCS with Keys [2], are isomorphic up to some structural trans-
formations of processes. To study different causal semantics for π-calculus,
we devise a uniform framework for reversible π-calculi that is parametric
with respect to a data structure that stores information about the extrusion
of a name. Depending on the used data structure, different causal seman-
tics can be obtained. We show that reversibility induced by our framework
when instantiated with three different data structures is causally-consistent
and prove a causal correspondence between certain causal semantics and
matching instance of the framework.

1 Introduction
Context and Motivation The interest in reversible computing is motivated by
Landauer’s observation [3] that only irreversible computation generates heat. With
the aim to reduce heat dissipation in computing machinery and thus achieve
higher density and speed, reversibility was initially studied in circuits. Nowadays,
reversible computing is examined in many different contexts, from biological and
chemical modelling [4, 5, 6, 7], program debugging and testing [8, 9, 10], quantum
computing [11], up to reliable systems where reversibility can be used to express
different transactional models [12, 13].

An important feature of a reversible system is the ability to detect the last
action of a computation. While in a sequential setting, there is only one order of
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the computation and the last action is easily detected, in the concurrent setting, the
notion of the last action is not clearly defined. For example, if we take a system
a.b | c which performs actions a, c and b, the question is, what is the correct
reversible computation? It could be the execution of the backward actions in the
opposite order of the forward steps (reversing b, c and then a) or maybe reversing
the action c as the first one followed by b and a. The definition of the last action
in a concurrent system is given by the notion of causally-consistent reversibility
for reversible CCS [1]: an action can be reversed (considered as the last one),
only if all its consequences have been reversed. Aside from causal-consistent,
there are other works considering different notions of reversibility: out-of-causal
order [6, 14, 15] and backtracking [14, 16]. In this paper, we are concentrated
on the causal-consistent reversibility in concurrent systems described via process
algebras [17], in particular: Calculus of Communicating Systems (CCS) [18] and
π-calculus [19].

In CCS, despite the fact that there is only one notion of causality, so-called
structural causality, induced by the prefixing operator ’.’ and by synchronisa-
tions, there exist two different approaches to reversibility, namely Reversible CCS
(RCCS) [1] and CCS with Communication Keys (CCSK) [2]. The calculus given
in [1] is the first reversible extension for CCS, where the main idea is to attach
memories organised as stacks to every CCS process. Then the reversible process is
of the form m . P, where m is a memory containing the information about the past
actions that process did and P is a CCS process. The second reversible calculus is
obtained by applying a general method for reversing process calculi [2], given in
a SOS [20] format, on CCS. The main ideas are to identify every action with the
unique key and to make each operator of the calculus static. In this way after the
execution, actions are not discarded but annotated with the key and preserved in
the structure of the process. Hence, there is no need for external memories. For
more than 10 years, these two approaches have evolved independently giving rise
to many extensions and results (here are just some of them [5, 21, 22, 7, 23, 24]).
The question is: are these two approaches to reversibility equivalent?

In π-calculus, differently from CCS, the possibility of creating new channel
names and treating channels as sent values generates two kinds of dependencies
between the actions: subject (structural) and the object dependency. Subject
dependency, as in CCS, is determined by the nesting of the prefixes and by synchro-
nisations. For instance, in the process ba.c(x), action c(x) structurally depends on
the action ba. On the other hand, object dependency is generated by extruding (or
opening) a name. For instance, in the process νa(ba | a(x)), the action ba extrudes
bound name a and enables the execution of action a(x). Hence, we can say that
action a(x) is object dependent on the action ba. The object dependency brings up
the particular problem of a parallel extrusion of the same name. For example, if
the considered process is νa(ba | ca | a(x)) and the output actions ba and ca are



executed both before the action a(x), the discussion is about which of the output
actions is the cause of the action a(x). In the following, we consider three different
approaches to a given problem.

The first approach, we represent by the compositional causal semantics for the
forward π-calculus given in [25]. In this case, the order of the actions is important
and only the very first action that extrudes the bound name is the cause of every
action using it. By abstracting away from the technique to keep track about the
causality, as stated in [26], this approach coincides also with [27, 26].

For the second approach we consider a compositional event structure semantics
for the forward π-calculus, introduced in [28]. Following it, the output actions that
extrude a bound name are executed concurrently and one of them is the cause of
the action a(x) but it is not necessary to know which one exactly (it is enough to be
sure that at least one of the extruders happened before the action a(x)). As argued
in [29], since we consider causal-consistent reversibility, where it is obligatory to
keep track of the causes, we will revise the semantics of [28] to obtain this feature.

The final approach is represented by a compositional semantics for the re-
versible π-calculus [22]. In this case, the action a(x) can choose as its cause one of
the outputs executed concurrently and this will be recorded into the memory of the
process. Which one is chosen is determined by the context. This causal semantics
satisfies several correctness criteria for causal models [30], what is not the case for
the other causal semantics. When taking into account just the order of the actions,
under this approach we can consider also the semantics of [31].

Contributions and Structure of the Paper In this work, we first answer to the
question about the relation between two reversible extensions of CCS. In particular,
in Section 2 we briefly recall RCCS and CCSK, while in Sections 3.1 and 3.2
we provide the encodings of CCSK into RCCS and of RCCS into CCSK and
prove their correctness in terms of the operational correspondence. The main
result, the isomorphism between labelled transition systems of CCSK and RCCS
(up to a few structural transformations on processes) is shown in Section 3.3.
Additionally, in the same section, we discussed the uniform encoding and argue
that no uniform encoding can exist since reachable RCCS processes are not closed
under the parallel composition.

Moving to π-calculus, to study different approaches to causality in the context of
reversible computation, we devise a framework for reversible π-calculi, parametric
with respect to the data structure that stores information about the extrusions of a
name. The reversibility is obtained by extending the approach of [2] to work with
π-calculus. The three approaches to causality in π-calculus (mentioned above), can
be obtained by using different data structures. Additionally, the framework adds
reversibility to the semantics defined only for the forward computations and in that
way permits different orders of the causally-consistent backward steps. In particular,



in Section 4, we show the idea behind the three causal semantics [25, 28, 22] that
we consider. The parametric framework for reversible π-calculi we present in
Section 5, by giving its syntax (Section 5.1) and operational semantics (Section 5.2).
We show how different causal semantics can be mapped into the framework in
Section 6 and prove the causal correspondence between the semantics of [25] and
matching instance of the framework. In Section 7 we show that reversibility in
the framework, when considered data structures are used, is causally-consistent.
Section 8 concludes the paper.

Origin of the Results The work presented here is based on the author’s PhD
thesis "Relative expressiveness of calculi for reversible concurrency" [29]. The
result of the isomorphism between two reversible CCS, namely RCCS [1] and
CCSK [2], is done in collaboration with Claudio A. Mezzina and Ivan Lanese and
it is the continuation of the work presented in [32]. The parametric framework for
reversible π-calculi is joint work with Claudio A. Mezzina, Nobuko Yoshida and
Iain Phillips, published in [33].

2 Reversibility in CCS
In this Section, we briefly recall the syntax of CCS [18], and its two reversible
extensions, namely RCCS [1, 21] and CCSK [2].

There is a slight difference in CCS used as a base for these two reversible
calculi. RCCS is built on the top of CCS defined with a guarded choice and it
features silent actions, while CCSK considers CCS in which unguarded choice is
allowed but it features no silent actions. Both calculi do not take into account the
recursion operator, still, it can be easily added following the guidance in [21, 2].
In this work we are focused on the reversibility mechanism, hence to have a finer
correspondence, we considered as the base of both reversible calculi, CCS used
in [1]. In what follows, we give the syntax of CCS.

Let a range over the set of actions, written A, and A = {a | a ∈ A} be the
corresponding set of co-actions. We let α, β with their decorated versions to range
over the set Actτ = Act ∪ {τ} (Act = A∪A), where τ < Act is the silent action.

The syntax of CCS is defined as:

P,Q ::= 0 |
∑

i∈I αi.Pi | (P | Q) | P\a α ::= a | a | τ

The idle process is represented with 0, while a prefix (or action) can be an input
a, an output a or the silent action τ. Term

∑
i∈I αi.Pi defines the choice operator,

where Pi stands for the continuation to be executed after the action αi. We write
α.P for unary choice and α j.P j + Q where Q =

∑
i∈I\{ j} αi.Pi to highlight a specific

alternative. Parallel composition of processes P and Q is represented with P | Q,
while P\a indicates that name a is restricted to the process P (scope of the name



(RCCS Processes) R, S ::= m . P | (R | S ) | R\a
(Memories) m ::= 〈〉 | 〈k, α,Q〉 · m | 〈↑〉 · m

Figure 1: RCCS syntax

a is the process P). The restriction operator is the only binder in CCS. We write
fn(P) and bn(P) for the sets of free and bound names of a process P, respectively.
The set of all CCS processes is denoted with P.

Reversible CCS In this work we will use the representation of RCCS appeared
in [21] since it simplifies our technical development.1

In RCCS, reversibility is obtained by adding a memory to each process. Mem-
ories organised as stacks of events record all necessary information about the past
actions. Memory event representing the last executed action is positioned on the
top of the stack (on the left in the textual representation).

The syntax of RCCS is given in Figure 1. We let k, h,w, . . . to range over an
infinitive denumerable set of action keys, denoted withK (K∩Act = ∅) and we let
ActKτ = Actτ×K be the set of pairs formed by an action α and a key k. Reversible
processes are built on the top of CCS by adding a memory to each CCS process.
A term m . P represents a monitored process, where m is a memory and P is a
CCS process. Two RCCS processes can be composed in parallel via R | S , while
R\a indicates that the name a is restricted in the process R. Event 〈〉 stands for
the empty memory. A memory event 〈k, α,Q〉 keeps track of the executed action,
where elements of a triple are action α, identified with the key k and alternative
process Q, discarded with the execution of the action α. The process can split
into two parallel subprocesses what is symbolised with the event 〈↑〉. We shall
introduce the operator @2 and write m1@m2 for the memory obtained by pushing
all the elements in m1 on top of m2 (preserving their order). The set of all memories
and the set of all monitored processes are denoted with Mem and PR, respectively.

As in CCS, the restriction is the only binder in RCCS. The functions fn(·) and
bn(·) can be extended to RCCS processes and memories.

The semantics of RCCS and more details about the calculus can be found
in [1, 21, 29], for the lack of space, we just illustrate it through an example.

The particularity of the RCCS is in the following structural rules:
(Split) m . (P | Q) ≡ 〈↑〉 · m . P | 〈↑〉 · m . Q
(Res) m . P\a ≡ (m . P)\a if a < fn(m)

A monitored process with a top-level parallel composition splits into two subpro-
cesses, by applying the rule Split. The memory is duplicated and annotated with

1The first approach to reversibility in CCS was introduced in [1]. It differs from the presentation
in [21] in a way how memories and splitting of the memory through the parallel composition are
handled. As remarked in [21], the two presentations are conceptually the same.

2Operator @ is not appearing in [1, 21]. The formal definition can be found in [29].



〈↑〉. After that, the obtained monitored processes evolve independently. With the
rule Res the restriction operator can be pushed outside of the monitored process, if
the restricted name is not in the memory of a process.

We give the following example to illustrate the semantics of RCCS.

Example 1. Let us consider CCS process P = (a.b + c) | d. The initial RCCS
process is R = 〈〉 . P = 〈〉 . ((a.b + c) | d). To execute the action a, process R,
needs first to split parallel composition into two separated components by applying
structural rule Split:

〈〉 . ((a.b + c) | d) ≡ 〈↑〉 · 〈〉 . a.b + c | 〈↑〉 · 〈〉 . d

Now, action a identified by key k can be executed. Then we have:

〈↑〉 · 〈〉 . a.b + c | 〈↑〉 · 〈〉 . d
k,a
−−→ 〈k, a, c〉 · 〈↑〉 · 〈〉 . b | 〈↑〉 · 〈〉 . d = R′

The executed action a, together with the identifier k and alternative process c is
saved into the memory. Resulting process R′ is able to execute the backward action
a with the key k, by restoring the information from the memory 〈k, a, c〉.

Any RCCS process R can be thought of as a context CR built from parallel and
restriction operators. The context contains numbered holes filled by monitored
processes. Therefore, we write a RCCS process R as CR[1 7→ m1 . P1, . . . , n 7→
mn . Pn], or more compactly, as CR

i∈{1,...,n}[i 7→ mi . Pi]. If R is not relevant we may
drop it.

CCS with Communication Keys The calculus that we present here is obtained
by applying the general approach3 for reversing process calculi introduced in [2],
on the CCS version underlying RCCS. The resulting calculus, we call CCSK since
it is very close to the one in [2].

The main ideas behind the approach in [2] are to use communication keys to
uniquely identify the actions and to make all the operators of the calculus static.
Given that all operators are static, there is no loss of information, hence there is no
need to use external memory to record the past action of the process. Performed
actions are not discarded, but annotated with the keys and saved in the structure of
the process, representing its past.

The syntax of CCSK is depicted in Figure 2. The difference regarding CCS
is that the prefix α can be annotated with key k, written as α[k] and that the
alternatives in the choice operator are not discarded (Example 2). We will use the
same set of keys K as in RCCS since they have the same role in both calculi. The
set of processes from CCSK we denote with PK .

3The approach of [2] can be applied on the process calculi defined by using Structural Opera-
tional Semantics (SOS) rules [20].



(CCSK Processes) X,Y ::= 0 |
∑
i∈I

πi.Xi | (X | Y) | X\a

(CCSK Prefixes) π ::= α | α[k]

Figure 2: CCSK syntax

The restriction operator is the only binder in CCSK and functions fn(·) and
bn(·) can be extended from CCS to CCSK in an expected way.

The semantics of CCSK and more details about the calculus can be found
in [2, 29], here we just illustrate it through an example.

Example 2. Let us consider CCS process P = (a.b + c) | d from Example 1 and
execution of the action a identified with key k:

(a.b + c) | d
a[k]
−−→ (a[k].b + c) | d = X′

We can notice that the executed action a, annotated with the key k, remains in the
resulting process. The choice operator is static, hence process c is not discarded.
The process (a[k].b + c) | d can perform the same forward steps as process b | d.
The backward action removes key k from the process X′.

3 Encodings and Isomorphism between RCCS and
CCSK

In this Section, we answer on the question about the relation between two reversible
extensions of CCS. CCSK and RCCS differ in the way how information about past
actions is stored. In Section 2 we were able to see that in RCCS history information
is recorded in the memory attached to each process, while in CCSK information
about the executed actions is saved directly in the structure and distributed along
the whole process. To manage the memories in RCCS, in particular when two
processes in parallel are sharing the same memory, it is necessary to use the
structural rule. Duplicating the memory whenever applying the structural rule Split
leads to the fact that one process in CCSK can correspond to the composition of
several monitored processes in RCCS (Example 3).

We proceed by defining the two encodings and proving their correctness. More
details can be found in the PhD thesis of the author [29] and in [32] where our
preliminary results appeared.

3.1 Encoding CCSK into RCCS
Considering the differences between two reversible calculi, to encode CCSK
process into RCCS process it is necessary that encoding function inductively



JXK = JX, 〈〉K

JP,mK = m . P

Jα[k].X +
∑
j∈J

α j.P j,mK = JX, 〈k, α,
∑
j∈J

α j.P j〉 · mK

JX | Y,mK = JX, 〈↑〉 · mK | JY, 〈↑〉 · mK

JX\a,mK = JX{b/a},mK\b
if b < fn(m) ∧ (b = a ∨ b < fn(X))

Figure 3: Encoding of CCSK into RCCS

analyses the structure of the CCSK process to be able to reconstruct the final
memory of every monitored process. For each annotated prefix in CCSK process,
there is a corresponding memory event in RCCS process.

The encoding function J·K : PK → PR is defined in terms of an auxiliary
encoding function J·K : PK × Mem→ PR, which in addition takes RCCS memory
as an argument. Since two functions are easily distinguishable with the number of
argument, we will use the same notation for both.

The encoding functions are depicted in Figure 3. The encoding of the CCSK
process X initialises by calling JX, 〈〉K with the empty memory as a parameter. A
standard4 process P with some memory m is translated into the monitored process
m . P. The encoding of the non-standard process X is given by structural induction.
Considering the choice operator and thanks to properties of CCSK, we have that
exactly one alternative corresponds to a non-standard process (α[k].X), while the
rest of them (

∑
j∈J α j.P j) are CCS processes. The executed (annotated) action α,

together with its key k and alternative
∑

j∈J α j.P j, is translated into the memory
event 〈k, α,

∑
j∈J α j.P j〉. The encoding of the parallel composition needs to be split

into two independent encodings, while memory m is duplicated and annotated with
〈↑〉. To mimic the behaviour of the structural congruence rule Res in RCCS, the
encoding rule for restriction needs to avoid capturing free names. It is done by
replacing the name a with the new name b which is granted to not occur free by the
side conditions. If a is not occurring in the memory m, then one can choose b = a.

Example 3. Let X = b + c[k].(d[h] | P). The encoding of X can be computed as:

JXK = JX, 〈〉K = Jb + c[k].(d[h] | P), 〈〉K
= Jd[h] | P, 〈k, c, b〉 · 〈〉K
= Jd[h], 〈↑〉 · 〈k, c, b〉 · 〈〉K | JP, 〈↑〉 · 〈k, c, b〉 · 〈〉K
= J0, 〈h, d, 0〉 · 〈↑〉 · 〈k, c, b〉 · 〈〉K | 〈↑〉 · 〈k, c, b〉 · 〈〉 . P
= 〈h, d, 0〉 · 〈↑〉 · 〈k, c, b〉 · 〈〉 . 0 | 〈↑〉 · 〈k, c, b〉 · 〈〉 . P = R

4The standard process is the process without history, hence CCS process.



As we can notice CCSK process X corresponds to the composition of two monitored
processes in R.

In what follows we prove the operational correspondence of the encoding. Full
proofs and more details can be found in [29]. First, we show that by having a
reachable CCSK process X and its encoding R = JX, 〈〉K, if X does an action α in
CCSK, the same action can be done by the process R in RCCS. Resulting process
in RCCS is equal to the encoding of the resulting process in CCSK.

Theorem 1 (Forward Correctness). Let X be a reachable CCSK process and

R = JX, 〈〉K. For each CCSK transition X
α[k]
−−−→ X′ there exists a corresponding

RCCS transition R
k,α
−−→ R′ with JX′, 〈〉K = R′.

Theorem 2 (Backward Correctness). Let X be a reachable CCSK process and

R = JX, 〈〉K. For each CCSK transition X
α[k]

X′ there exists a corresponding

RCCS transition R
k,α

R′ with JX′, 〈〉K = R′.

Now we need to show the opposite direction, that every transition of the process
R = JX, 〈〉K in RCCS, can be mimic by process X in CCSK, where the resulting
process in RCCS is congruent with the encoding of the resulting process in CCSK.

Theorem 3 (Forward Completeness). Let X be a reachable CCSK process and

R = JX, 〈〉K. For each RCCS transition R
k,α
−−→ R′ there exists a corresponding CCSK

transition X
α[k]
−−−→ X′ with R′ ≡ JX′, 〈〉K.

Theorem 4 (Backward Completeness). Let X be a reachable CCSK process and

R = JX, 〈〉K. For each RCCS transition R
k,α

R′ there exists a corresponding CCSK

transition X
α[k]

X′ with R′ ≡ JX′, 〈〉K.

3.2 Encoding RCCS into CCSK
The fact that the composition of several monitored processes in RCCS might
correspond to the single process in CCSK requires that the encoding procedure
starts from the very first action that RCCS process did (the right in the textual
representation). While translating parallel components of the RCCS process sepa-
rately (local), it is required that encoding has knowledge about the whole process
(global). In this way, partially encoded processes which have the same part of
the memory will be merged (these are the processes which were split during the
forward execution by applying the rule Split).

Before defining the encoding, we need to introduce an auxiliary function and a
history context. We define a trimming function δ to remove the split events 〈↑〉 from



LR\aM = LRM\a

LCl∈L[l 7→ ml@(〈↑〉 · m) . Pl]M = Hm[Cl∈L[l 7→ Lδ(ml) . PlM]]
if 〈↑〉 < m and the top operator in C is |

Lm . PM = Hm[P]

Figure 4: Encoding of RCCS into CCSK

the memory, starting from the right side of the memory. For example, the result of
applying δ to the memory 〈↑〉 · 〈k, α,Q〉 · 〈↑〉 · 〈↑〉 · 〈〉 will be 〈↑〉 · 〈k, α,Q〉 · 〈〉. We
define the trimming function δ formally as:

Definition 1. The function δ : Mem→ Mem, is inductively defined as follows:

δ(〈〉) = 〈〉 δ(m@〈↑〉 · 〈〉) = δ(m) δ(m@〈k, α,Q〉 · 〈〉) = m@〈k, α,Q〉 · 〈〉

The history context represents the correspondence between RCCS memory without
element 〈↑〉 and the CCSK context. Formally:

Definition 2 (History Context). Given a memory m such that 〈↑〉 < m, the corre-
sponding history context Hm is defined as follows:

H〈〉 = • H〈k,α,0〉·m = Hm[α[k].•] H〈k,α,Q〉·m = Hm[α[k]. • +Q] if Q , 0

To illustrate definition above, consider RCCS process 〈h, b, 0〉 · 〈k, a,Q〉.P. History
context, of the given memory 〈h, b, 0〉 · 〈k, a,Q〉, is defined as:

H〈h,b,0〉·〈k,a,Q〉[P] = H〈k,a,Q〉[b[h].P] = H〈〉[a[k].b[h].P + Q].

Finally, the encoding function L·M : PR → PK is inductively defined on Figure 4.
Let us comment on the rules. The restriction rule is defined to push restriction
outside of the encoding. The function5 L·M analyses the memory starting from the
oldest element (right in the textual representation) and by taking the common part
m such that 〈↑〉 < m, reconstructs the CCSK structure with the history context Hm.
The first split element (〈↑〉) from the right is discarded and the rest of the memories
ml are being trimmed by function δ and kept for further encoding. Single monitored
process m . P is encoded by translating the memory m into the history context Hm.
The intuition of how encoding works is given in the following example.

Example 4. Let us take the RCCS process R (the resulting process in Example 3):
R = 〈h, d, 0〉 · 〈↑〉 · 〈k, c, b〉 · 〈〉 . 0 | 〈↑〉 · 〈k, c, b〉 · 〈〉 . P

5We would like to remark that in the second rule, since the context C is composed by parallel
and restriction operators available in both calculi, we use the same notation for the context.



Its encoding in CCSK is:

LRM = L〈h, d, 0〉 · 〈↑〉 · 〈k, c, b〉 · 〈〉 . 0 | 〈↑〉 · 〈k, c, b〉 · 〈〉 . PM
= H〈k,c,b〉·〈〉[Lδ(〈h, d, 0〉 · 〈〉) . 0M | Lδ(〈〉) . PM]
= H〈k,c,b〉·〈〉[L〈h, d, 0〉 · 〈〉 . 0M | L〈〉 . PM]
= H〈k,c,b〉·〈〉[H〈h,d,0〉·〈〉[0] | H〈〉[P]]
= H〈k,c,b〉·〈〉[d[h] | P]
= b + c[k].(d[h] | P)

In what follows, we show the correctness of the encoding in terms of the
operational correspondence. Full proofs and more details can be found in [29]. We
prove that every action done by RCCS process R can bi mimicked by its encoding
LRM in CCSK and vice versa.

Theorem 5 (Forward Correctness and Completeness). Let R and S be two reach-

able RCCS processes. There exists an RCCS transition R
k,α
−−→ S iff there exists a

CCSK transition LRM
α[k]
−−−→ LS ′M with S ≡ S ′.

Theorem 6 (Backward Correctness and Completeness). Let R and S be two reach-

able RCCS processes. There exists an RCCS transition R
k,α

S iff there exists a

CCSK transition LRM
α[k]

LS ′M with S ≡ S ′.

3.3 Isomorphism and cross-fertilisation results
In this Section, we show that the LTS of RCCS up to structural congruence and the
LTS of CCSK up to α-conversion and normal form (Definition 4), are isomorphic.
After that, we mention some cross-fertilisation results and argue about the uniform
encoding. More details can be found in [29].

We start by defining the isomorphism between two LTSs.

Definition 3 (LTS Isomorphism). Two LTSs LTS i : 〈Pi,Li,→i〉, with i ∈ {1, 2} are
isomorphic iff there exist two bijective functions γL : L1 → L2 and γP : P1 → P2

such that P1
α
−→ P2 iff γP(P1)

γL(α)
−−−→ γP(P2).

Before giving the theorem of isomorphism, we need to introduce the notion of
a normal form for CCSK processes. It is defined to push all the restrictions in the
non-standard part of a sequential process on the top-level.

Definition 4 (CCSK normal form). The normal form nf(X) of a CCSK process X
is a CCSK process Y obtained from X by applying as many times as possible the
following rewriting rules (in any context):



• α[k].(X1\a)→ (α[k].X1{
b/a})\b if b < fn(α.0) ∧ (b = a ∨ b < fn(X1))

• α[k].(X1\a) + Q→ (α[k].X1{
b/a} + Q)\b if b < fn(α.Q) ∧ (b = a ∨ b < fn(X1))

where X1 is not a standard process.

Now, we give the equivalence relations for both calculi and show the isomor-
phism between their LTSs. Looking at the RCCS processes, we will consider
structural congruence as the equivalence relation. On CCSK processes, we define
the equivalence relation ccsk

∼ as: X ccsk
∼ Y iff nf(X) =α nf(Y).

Finally, we can state our main result in this Section and show that forward LTSs
of RCCS and CCSK are isomorphic. The same is holding for the backward ones.

Theorem 7 (RCCS and CCSK are isomorphic). The forward LTS of RCCS up to
structural congruence is isomorphic to the forward LTS of CCSK up to ccsk

∼ . Both
LTSs are restricted to reachable processes. The same result holds for backward
LTSs.

It is very important to remark that the result of isomorphism between two
calculi, implies that they can be equated by any behavioural equivalence, such as
bisimilarity or trace equivalence.

The proof of isomorphism relies on the operational correspondence results for
two encodings that we presented in Sections 3.2 and 3.1. The interesting fact about
encodings is that none of them is uniform [34]. Furthermore, uniform encoding
cannot exist since reachable RCCS processes are not closed under the parallel
composition [29, Proposition 2]. Hence, there does not exist the encoding from
CCSK into RCCS which maps parallel operator of CCSK into a parallel operator
of RCCS (what is required for uniform encoding). If we consider the encoding
from RCCS into CCSK, it is not possible to state uniformity result, since terms in
the statement would not be reachable. The fact that the uniform encoding does not
exist, has no impact on our result of isomorphism.

Cross-fertilisation results The result of isomorphism between two reversible
calculi, we use to bring some properties from one calculus to the other one. Namely,
we took the Reverse Diamond Property, stating that backward transitions are con-
fluent, from CCSK and import it into RCCS. In the opposite direction, from RCCS
into CCSK, we brought Parabolic Lemma, stating that reversible computation
can be decomposed into a backward only computation followed by forward only
computation. We remark that CCSK Parabolic Lemma has been proved in the
literature [2, Lemma 5.12], still, the direct proof is more complex than importing
the result from RCCS. For more details, check [29, Section 3.5].



4 Causality and Reversibility in π-calculus
In π-calculus, Boreale and Sangiorgi in [25] separated causal dependencies between
the actions into two categories: the first one is the subject (structural) dependency
which is, as in CCS, determined by the nesting of the prefixes and by synchro-
nisations; the second one is the object (link) dependency which is generated by
extruding (or opening) a name. Different understanding of the object dependency
generates different causal semantics for π-calculus. Through the problem of a
parallel extrusion of the same name, we will give the intuition about the three
causal semantics that we considered in this work. More information about causal
semantics can be found in [25, 28, 22, 29]. The common example that we will use
is the process νa(ba | ca | a(x)) where actions are executed in the following order
ba, ca, a(x).

Causal semantics by Boreale and Sangiorgi In [25], the authors introduce a
compositional causal semantics for standard π-calculus (forward only)6. As we
mentioned above, two forms of dependencies are considered: subject and the object
dependency. To capture the subject dependency, the authors introduce a causal
term K :: A, where the set of causes K records that every action performed by A
depends on the set K. Every visible transition is bound with unique cause k. The
object causality can be detected by observing the trace (run) of the process. The
first action that extrudes a bound name will cause every further action using that
name in the subject or in the object position of the label.

Considering our common example, we will have that the first action that
extrudes bound name a is ba. The other two actions are caused by action ba since
they contain name a in object (ca) and subject (a(x)) position of a label.

Causal semantics by Crafa, Varacca and Yoshida A compositional event
structure semantics for π-calculus (forward only) is introduced in [28]. The pair
(E,X) where E is a prime event structure and X is a set of bound names, represents
a π-calculus process. The structural causality is captured by causal relation of E,
while the object one is defined through the notion of permitted configuration (the
configuration that contains the action with a bound subject and the action which
extruded the bound name). The authors define the disjunctive object causality with
the so-called inclusive approach according to which the requirement to execute an
action with a bound subject is that at least one of the extruders of a bound name
was executed previously. It is not necessary to remember the exact one.

Considering our common example and process νa(ba | ca | a(x)), we are

6Causal semantics introduced in [25] is defined for a polyadic π-calculus, with an early input
semantics. In this work, to have a direct correspondence with our framework, we adapt it to work
with monadic π-calculus and late input semantics.



interested in the permitted configuration {ba, ca, a(x)}. From it, we can notice that
one of the actions ba and ca is the cause of the action a(x), but we do not know
which one exactly.

Causal semantics for reversible π-calculus by Cristescu, Krivine and Varacca
The first compositional reversible semantics for π-calculus Rπ, is introduced in [22].
The reversibility is obtained by adapting the approach given in [1, 21] to π-calculus.
Therefore, the memory recording the information about the past actions is added
to every process. The reversible process is represented by the term m . P, where
memory m is a stack of events and P is the process itself. There are two types of
memory events: the event recording the executed action π, its unique identifier i
and the contextual cause7 k, written as 〈i, k, π〉; and the event symbolising that the
process split during its computation, written as 〈↑〉 (as in RCCS, before executing
in parallel, the structural rule needs to be applied). The indexed restriction νaΓ,
behaves as the classical π-calculus restriction when set Γ is empty, otherwise, it
represents the memory and keeps track about the extruders of the name a. As we
will see, the indexed restriction νaΓ was the inspiration for our parametric indexed
restriction νa∆. The significance of the semantics given in [22] is in the several
correctness criteria for causal models [30] which it satisfies, what is not the case
for the other causal semantics considered in our work.

In our common example, we have that the action a(x) chooses as its cause one
of the concurrent actions ba and ca.

5 Parametric Framework for Reversible π-Calculi

A general approach to reverse CCS-like calculi defined through SOS rules is given
in [2]. Here, we expand this idea and adapt it to a more complex setting, π-calculus.
Let us start from CCSK, for instance, if we consider the process P = a.Q1 | a.Q2

the synchronisation between parallel components of the process P is:

a.Q1 | a.Q2
τ[i]
−−→ a[i].Q1 | a[i].Q2

As we highlighted in Section 2, prefixes are not discarded, but annotated with the
key i and used only for the backward steps.

By moving to the π-calculus, possibility of creating new channel names and
treating channels as sent values is enabled. For instance, we could adapt the process
P to π-calculus, and have the computation:

a(x).Q1 | ab.Q2
i:τ
−→ a(x)[i].Q1{

bi
/x} | ab[i].Q2

7Contextual cause is used to keep track of the causalities imposed by the extrusions. More
information can be found in [22].



X, Y ::= P | b
j
a j1[i,K].X | b j(x)[i,K].X | X | Y | νa∆(X)

P, Q ::= 0 | ba.P | b(x).P | P | Q | νa(P)

Figure 5: Syntax of the framework

In the input subprocess it is necessary to apply the substitution {b
i
/x} on the contin-

uation Q1. Variable x is substituted by the name b decorated with the key i of the
executed action. In this way decoration on the name keeps track of the substitution.

By choosing to keep the history information of the process statically, as in [2]
there is no necessity of using the structural rule Split8 of Rπ [22].

To be able to capture causalities in π-calculus, the framework has to keep track
of the extruders of a name. As in [22] this can be done by using the indexed
restrictions and contextual causes. For instance in the computation

νa (ba | a(x).P)
i:b〈νa〉
−−−−→ νa{i}(ba[i] | a(x).P)

j:a(x)
−−−−→ νa{i}(ba[i] | a(x)[ j, i].P)

after the execution of the action i : b〈νa〉, restriction νa becomes the memory νa{i}
where the index i symbolises that name a is extruded by the action identified with i.
In the resulting process, the name a is free and the input action on the channel a
is enabled. Since the first action extruded the name a, in the process a(x)[ j, i].P,
identifier i is saved as the contextual cause of the action a(x).

5.1 Syntax of the framework
In this Section, we present the syntax of the framework. We let N , K and V
be the denumerable infinite mutually disjoint sets of names, keys and variables,
respectively. The symbol ∗ is a distinguished key such that K∗ = K ∪ {∗}. We let
a, b, c range over set N , i, j, k range over set K and x, y range over setV.

The syntax of the framework is depicted in Figure 5. P,Q productions represent
the π-calculus processes. The idle process is denoted with 0. The name a can be
sent over a channel b and it is represented by the output prefixed process ba.P. The
input prefixed process b(x).P indicates the possibility of receiving some name over
the channel b and bounding it to the variable x. Parallel and restriction operator are
represented with P | Q and νa(P), respectively.

Productions X,Y represent reversible processes and they are defined on the top
of π-calculus processes. Similarly as in CCSK, executed actions are not discarded,
but annotated and preserved in the structure of a process, representing its history.
A reversible process P is a π-calculus process P decorated with the instantiators
(the behaviours of the processes P and P are the same). We use the instantiators to
keep track of the substitutions. With the past output, we call the prefix b

j
a j1[i,K]

8The rule Split is not associative and as a consequence has that equivalent processes performing
the same action may become non-equivalent processes (shown in [35]).



stating that the output action identified by key i was executed and its contextual
cause was K ⊆ K∗. The past input given with prefix b j(x)[i,K] is representing the
input action (with the key i and the contextual cause set K), executed in the past.
We shall use notation b∗ and K = {∗} to specify that name b has no instantiator and
that executed action is not caused by any other action. Two reversible processes
can be composed in parallel as X | Y . Following [22], we use the restriction νa∆

decorated with the memory ∆ to record the extruders of the name a. νa∆ will act
as a π-calculus restriction operator νa when ∆ is empty (we will give the precise
definition in the further text). The set of reversible processes is denoted by X.

Now we define the notion of history and general contexts. A history con-
text represents the past prefixes of a process. For instance, the process X =

b
∗

a∗[i,K].c∗a∗[i′,K′].P can be written as X = H[P], where H = b
∗

a∗[i,K].c∗a∗[i′,K′].
A general context is defined on the top of the history context and it is composed
from parallel and restriction operators. For instance, the process Z | Y | X can be
written as C[X] where C = Z | Y . Formally:

Definition 5 (History and General context). History contexts H and general contexts
C are reversible processes defined by the following grammar:

H ::= H | π[i,K].H C ::= H | X | C | νa∆(C)

In the framework, there are two constructs with binders: νa∆(X) when ∆ is
empty, in which the scope of the name a is process X; and b(x).P in which scope
of the variable x is process P. We denote with bn(X) and fn(X) sets of bound and
free names of the process X.

Data structure ∆ The framework is parametric with respect to the data structure
∆ and in what follows, we give the operation defined on it.

Definition 6. ∆ is a data structure with the following defined operations:

(i) init : ∆→ ∆ initialises the data structure

(ii) empty : ∆→ bool predicate telling whether ∆ is empty

(iii) + : ∆ × K → ∆ operation adding a key to ∆

(iv) #i : ∆ × K → ∆ operation removing a key from ∆

(v) ∈: ∆ × K → bool predicate telling whether a key belongs to ∆

The three instances of the data structure ∆ that we use are: sets, sets indexed
with an element and sets indexed with a set.

Set. If the data structure is a set Γ, then it contains the keys of the actions that
extruded a bound name (i.e. Γ ⊆ K).

Definition 7 (Operations on a set). The operations on a set Γ are defined as:



(i) init(Γ) = ∅ (iv) #i is defined as the identity Γ#i = Γ

(ii) empty(Γ) = true, when Γ = ∅ (v) i ∈ Γ the key i belongs to the set Γ

(iii) + is the addition of elements to a set

Indexed set. If the data structure is an indexed set Γw, then Γ is a set containing
keys of the actions that extruded a bound name (Γ ⊆ K) and w is the key of the
very first action that extruded a bound name. If no extruder of a bound name is
executed, we write w = ∗.

Definition 8 (Operations on an indexed set). The operations on an indexed set Γw

are defined as:
(i) init(Γw) = ∅∗ (ii) empty(Γw) = true, when Γ = ∅ ∧ w = ∗

(iii) operation + is defined as: Γw + i =

(Γ ∪ {i})i, when w = ∗

(Γ ∪ {i})w, when w , ∗

(iv) operation #i is defined inductively as:

(X | Y)#i = X#i | Y#i (H[X])#i = H[X#i] (P)#i = P
(νaΓi X)#i = νaΓ∗X#i (νaΓw X)#i = νaΓw X#i

(v) i ∈ Γw the key i belongs to the set Γ, regardless of w

The data structure is initialised with init(Γw) = ∅∗ what implies that empty(Γw) =

true. If w = ∗, the + operator adds the key i to the set Γ and on the place of w,
otherwise the + adds the key i just to the set Γ. For instance, after adding key i3

to the {i1, i2}∗ we obtain {i1, i2, i3}i3 . The operation #i is defined to substitute the
value of w in Γw with element ∗, when w = i. For instance, the result of applying
operation #i on {i, i1}i is {i, i1}∗. The operation ∈ is defined on the set Γ, regardless
the index w. For instance, the key i belongs to the indexed set {i1, i}i1 .

Set indexed with a set. If the data structure is a set indexed with the other
set ΓΩ, then Γ is the same is in previous cases, while Ω ∈ K∗ is a set which
contains keys of the actions which extruded bound name and are not part of the
communications. When there is no any key in Ω, we write Ω = {∗}.

Definition 9 (Operations on a set indexed with a set). The operations on a set
indexed with a set (ΓΩ) are defined as:

(i) init(ΓΩ) = ∅{∗} (ii) empty(ΓΩ) = true, when Γ = ∅ ∧ Ω = {∗}

(iii) operation + is defined as: (ΓΩ) + i = (Γ ∪ {i})(Ω∪{i})

(iv) #i is defined inductively as:
(X | Y)#i = X#i | Y#i (νaΓΩ

X)#i = νaΓΩ\{i}X#i

(H[X])#i = H[X#i] (P)#i = P
(v) i ∈ ΓΩ the key i belongs to the set Γ, regardless of Ω



We initialise the data structure with init(ΓΩ) = ∅{∗}. The + operator adds the key
into both sets Γ and Ω. For example, the key i added into the data structure {i1, i2}{i2}

results in {i1, i2, i}{i2,i}. With the operation #i key i is removed from the set Ω. For
example, operation #i applied to the data structure {i1, i}{i1,i} gives {i1, i}{i1} (key i is
deleted from Ω = {i2, i}). The operation ∈ is defined on the set Γ, regardless to the
set Ω. For instance, the key i belongs to {i1, i}{i1}.

5.2 Operational semantics of the framework

We define the grammar of the labels on the transition t : X
µ
−→ Y as:

µ ::= (i,K, j) : α α ::= ba | b(x) | b〈νa∆〉 | τ

where the triple (i,K, j) consists of the key i which uniquely identifies the action α,
the contextual cause set K ⊆ K∗ and the instantiator j ∈ K∗ of the action α. The
possible executions for the action α are: the input and the output on the channel
b, symbolised with b(x) and ba, respectively; the τ-action; the action b〈νa∆〉

representing the bound output from the π-calculus when ∆ is empty, otherwise
b〈νa∆〉 stands for free output decorated with a memory ∆. With the following
definition, we give the operational semantics of the framework where the set of the
all possible labels is L = K ×K∗ × K∗ ×A.

Definition 10 (Operational Semantics). The operational semantics of the reversible
framework is given as a pair of two LTSs defined on the same set of reversible pro-
cesses and set of labels: a forward LTS (X,L,−→→) and a backward LTS (X,L, ).
We define −→=−→→ ∪ , where −→→ is the least transition relation induced by the
rules in Figures 6 and 7; and is the least transition relation induced by the
rules in Figure 8.

To have a direct access to the set of keys in a given process, we define the
function key(·) as:

Definition 11 (Process keys). The set of communication keys of a process X,
written key(X), is inductively defined as follows:

key(X | Y) = key(X) ∪ key(Y) key(π[i,K].X) = {i} ∪ key(X)
key(νa∆(X)) = key(X) key(P) = ∅

A key i is fresh in a process X, written fresh(i, X) if i < key(X).

The semantics of the framework is defined with a late input semantics. We
divide the forward rules into two groups depending on whether they are common
to all instances of the framework or they are parametric with respect to ∆.

Common rules, which are independent of the data structure, are given in
Figure 6. In rules Out1 and In1, executed actions are preserved in the structure of



(Out1) b
j
a j1 .P

(i,K, j):ba
−−−−−−→→ b

j
a j1 [i,K].P (In1) b j(x).P

(i,K, j):b(x)
−−−−−−−→→ b j(x)[i,K].P

(Ind)
X

(i,K, j):α
−−−−−−→→ X′ α = ba ∨ α = b(x) ∧ fresh(i, H[X])

H[X]
(i,K, j):α
−−−−−−→→ H[X′]

(Par)
X

(i,K, j):α
−−−−−−→→ X′ i < Y bn(α) ∩ fn(Y) = ∅

X | Y
(i,K, j):α
−−−−−−→→ X′ | Y

(Com)
X

(i,K, j):ba
−−−−−−→→ X′ Y

(i,K′, j′):b(x)
−−−−−−−−−→→ Y ′ K =∗ j′ ∧ K′ =∗ j

X | Y
(i,∗,∗):τ
−−−−−→→ X′ | Y ′{a

i
/x}

Figure 6: Common rules for all instances of the framework.

the process and annotated with the memory [i,K], where i is the fresh key linked
to the executed action and K is its cause set. The rule Ind allows a prefixed process
H[X] to perform a forward step if process X can do it. In the rule Par the action α
can be executed only under the condition that key i is not used by other processes in
parallel (condition i < Y guarantees uniqueness of the keys). The synchronisation
between two processes is possible through the rule Com if the side condition is
satisfied. K =∗ j stands for: K = j or ∗ ∈ K or j = ∗; for instance, if K = {∗, i1} and
j = i2, equality holds since ∗ ∈ K. This condition is necessary only to capture the
causal semantics of [22], while it holds by default for other semantics since ∗ ∈ K
will be always true. The substitution needs to be applied in the process Y ′ where
every occurrence of variable x ∈ fn(Y ′) is substituted with the name a decorated
with the key i of the executed action. Decoration i in ai is called instaniator and it
is used to remember that the substitution happened during the action with the key i.
The instaniators do not define the names, for instance having the reversible process
b

j
a∗.P | b j′(x).P′, the communication between two processes in parallel is allowed

even if they do not have the same instantiators on the channel b.
In order to have better intuition about the rules presented above, we give the

following example.

Example 5. Let X = b
∗

a∗.d
∗

e∗ | d∗(x).xc∗ be a reversible process. First we can
execute the output action ba with the key i, and we have:

b
∗

a∗.d
∗

e∗ | d∗(x).xc∗
(i,∗,∗):ba
−−−−−−→→ b

∗

a∗[i, ∗].d
∗

e∗ | d∗(x).xc∗

After that, two processes can communicate over the channel d and we have:

b
∗
a∗[i, ∗].d

∗
e∗

(i′,∗,∗):de
−−−−−−−→→ b

∗
a∗[i, ∗].d

∗
e∗[i′, ∗] d∗(x).xc∗

(i,∗,∗):d(x)
−−−−−−−−→→ d∗(x)[i′∗].xc∗

b
∗
a∗[i, ∗].d

∗
e∗ | d∗(x).xc∗

(i′,∗,∗):τ
−−−−−−→→ b

∗
a∗[i, ∗].d

∗
e∗[i′, ∗] | d∗(x)[i′, ∗].ei′c∗



(Cause Ref)
X

(i,K, j):α
−−−−−−→→ X′ a ∈ sub(α) empty(∆) , true Cause(∆,K,K′)

νa∆(X)
(i,K′, j):α
−−−−−−→→ νa∆(X′[K′/K]@i)

(Open)
X

(i,K, j):α
−−−−−−→→ X′ α = ba ∨ α = b〈νa∆′〉 Update(∆,K,K′)

νa∆(X)
(i,K′, j):b〈νa∆〉
−−−−−−−−−−→→ νa∆+i(X′[K′/K]@i)

(Close)
X

(i,K, j):b〈νa∆〉
−−−−−−−−−→→ X′ Y

(i,K′, j′):b(x)
−−−−−−−−−→→ Y ′ K =∗ j′ ∧ K′ =∗ j

X | Y
(i,∗,∗):τ
−−−−−→→ νa∆(X′#i | Y

′{a
i
/x})

(Res)
X

(i,K, j):α
−−−−−−→→ X′ a < α

νa∆(X)
(i,K, j):α
−−−−−−→→ νa∆(X′)

Figure 7: Parametric rules

The communication was possible since in process b
∗

a∗[i, ∗].d
∗

e∗ we have that
j = ∗ and K = {∗} and in process d∗(x).xc∗ we have j′ = ∗ and K′ = {∗}, hence
premiss of the rule Com is satisfied. We can notice that during the synchronisation,
variable x was substituted with the received name e decorated with the key i′.

Parametric rules are depicted in Figure 7. Depending on the data structure that
is used, a different mechanism for choosing contextual cause needs to be applied.
This is the reason why we introduce two new predicates Cause(·) and Update(·).
Intuitively, predicates define how contextual cause is chosen from the memory ∆.
Hence Cause(·) and Update(·) need to be implemented differently when different
data structures are used. The precise definitions for predicates is given in Section 6
when we show how to map considered causal semantics into the framework.

Whenever action α, with a ∈ α is passing the restriction νa∆, the check if the
contextual cause set needs to be modified is obligatory. For this to happen there are
two possibilities: if name a ∈ sub j(α) and empty(∆) = f alse, then rule Cause Ref
is applied, otherwise if name a ∈ ob j(α), rule is Open is used. The predicate
Cause(∆,K,K′) of rule Cause Ref gives the definition of the new cause set K′

and ensures that contextual cause set K will be substituted with K′. To update
the cause in the resulting processes of rules Cause Ref and Open, we define the
contextual cause update operation on the process X, written as X[K′/K]@i. It updates
the contextual cause K of the action identified by i with the new cause K′. Formal
definition can be found in [29]. Restricted name can be sent out to the environment
(extruded) by applying the rule Open which adds the key i into the memory ∆ to
record that it was the key of the extrusion. The predicate Update(∆,K,K′) defines
a new cause set K′. The communication between two processes, when the action
b〈νa∆〉 is involved, is done with the rule Close. The operator #i is defined on



(Out1•) b
j
a j1 [i,K].P

(i,K, j):ba
b

j
a j1 .P (In1•) b j(x)[i,K].P

(i,K, j):b(x)
b j(x).P

(Ind•)
X′

(i,K, j):α
X α = ba ∨ α = b(x) ∧ fresh(i, H[X])

H[X′]
(i,K, j):α

H[X]
(Par•)

X′
(i,K, j):α

X i < Y

X′ | Y
(i,K, j):α

X | Y

(Res•)
X′

(i,K, j):α
Xa < α

νa∆(X′)
(i,K, j):α

νa∆(X)
(Com•)

X′
(i,K, j):ba

X Y ′
(i,K′, j′):b(x)

Y K =∗ j′ ∧ K′ =∗ j

X′ | Y ′
(i,∗,∗):τ

X | Y{x/ai }

(Open•)
X′

(i,K, j):α
X α = ba ∨ α = b〈νa∆′〉 Update(∆,K,K′)

νa∆+i(X′)
(i,K′, j):b〈νa∆〉

νa∆(X)

(Cause Ref•)
X′

(i,K, j):α
X a ∈ sub(α) empty(∆) , true Cause(∆,K,K′)

νa∆(X′)
(i,K′, j):α

νa∆(X)

(Close•)
X′

(i,K, j):b〈νa∆〉

X Y ′
(i,K′, j′):b(x)

Y K =∗ j′ ∧ K′ =∗ j

νa∆(X′ | Y ′)
(i,∗,∗):τ

X | Y{x/ai }

Figure 8: Backward rules.

each data structure (Section 5.1) to delete from the data structure ∆, the keys of
the actions that extruded restricted name but are part of synchronisations. It is
necessary since in the semantics of [25, 28], τ-actions do not impose contextual
causality. Rule Res, we define in the usual way. The examples how parametric
rules work are given in Section 6.

Backward rules are symmetric to the forward ones and we present them in
Figure 8. In order to have a better understanding of the backward rules, we shall
give the following example.

Example 6. We consider the resulting process from Example 5 end its backward
executions. First we need to reverse the communication on the channel d:

b
∗

a∗[i, ∗].d
∗

e∗[i′, ∗] | d∗(x)[i′, ∗].ei′c∗
(i′,∗,∗):τ

b
∗

a∗[i, ∗].d
∗

e∗ | d∗(x).x∗c∗

We can notice that in the resulting process, prefixes d
∗

e∗ and d∗(x) are not annotated
anymore (the annotation [i′, ∗] is discarded during the backward step) and the
substitution is reversed, hence name ei′ is substituted with variable x. Now we can
reverse the action ba:

b
∗

a∗[i, ∗].d
∗

e∗ | d∗(x).x∗c∗
(i,∗,∗):ba

b
∗

a∗.d
∗

e∗ | d∗(x).x∗c∗

and the obtained process is exactly process X from Example 5.



6 Mapping causal semantics
In this Section, we give the definitions for predicates in Figure 7 and use them to
capture three different causal semantics [22, 25, 28] with our framework.

Reversible semantics for the π-calculus In Section 4 we gave a hint about the
compositional semantics for the reversible π-calculus introduced in [22]. To be
able to capture the behaviour of this semantics we shall use the set Γ as a data
structure ∆. Any of the keys contained in Γ can be a cause for some action using the
extruded name in the subject position. For example, in the process νa{i1,i2}(Y | a(x)),
the contextual cause of the action a(x) can be i1 or i2.

To define the causality in their semantics, authors of [22] use the notion of
the instantiation relation defined on the process memory. Here we adapt their
definition to the framework and define it on the past prefixes. For instance in the
process b∗(x)[i1,K1].ai1c∗[i2,K2].Y actions i1 and i2 are in instantiation relation,
since action i1 instantiated the name a. We can notice it in past prefix ai1c∗[i2,K2]
where name a is decorated with the key i1. This means that during the action
(which was a communication) identified by i1, name a substituted the variable x.

Definition 12 (Instantiation relation on the framework). Two keys i1 and i2 such
that i1, i2 ∈ key(X) and X = C[b j1(x)[i1,K1].Y] with Y = C′[π[i2,K2].Z] where
j2 ∈ sub j(π) , are in instantiation relation, denoted with i1  X i2, if j2 = i1. If
i1  X i2 holds, we will write K1  X K2.

We would like to remark that actions in [22] can be caused only through the
subject of the label, hence contextual cause set K is a singleton. Now we can give
the final definition necessary to obtain the Rπ causality in the framework.

Definition 13 (Rπ causality). To capture Rπ causality, data structure is instantiated
with the set Γ and the predicates from Figure 7 are defined as:

1. Cause(Γ,K,K′) stands for K′ = K or ∃K′ ∈ Γ K  X K′;

2. Update(Γ,K,K′) stands for K′ = K.

In the rule Open, predicate Update(Γ,K,K′) is just saying that there is no difference
between causes K and K′. The predicate Cause(Γ,K,K′), is used in the rule
Cause Ref and it defines how the new contextual cause K′ is chosen. To illustrate
how the Rπ causality is captured by the framework, we give the following example.
More examples can be found in [29].

Example 7. Let us consider the process X = νa∅(b
∗

a∗ | c∗a∗ | a∗(x)) where we a
have parallel extrusion of the same name a. By extruding the name a with the rule
Open twice, on the channels b and c, we obtain a process:

νa{i1,i2}(b
∗

a∗[i1, ∗] | c
∗a∗[i2, ∗] | a∗(x))



We can notice that keys i1 and i2 are added to the set Γ. The rule Cause Ref is
used for the execution of the action a(x) which can choose its cause from the set
{i1, i2}. By choosing, for example, i2 as a cause, we obtain the process:

νa{i1,i2}(b
∗

a[i1, ∗] | c
∗a[i2, ∗] | a∗(x)[i3, i2])

In the memory [i3, i2] we can see that the action identified with the key i3 needs
to be reversed before the action with the key i2. Process b

∗

a[i1, ∗] can execute a
backward step at any time with the rule Open•.

Boreale and Sangiorgi causal semantics We give the intuition about a compo-
sitional causal semantics for forward π-calculus [25] in Section 4. In [29, 33], we
revised causal semantics of [25], where we did not take into account a replication
operator and we define it with late (rather than early, as it was originally given)
semantics. To capture the behaviour of this semantics we shall use indexed set Γw

as the data structure ∆. The cause of the action using the extruded name will be
exactly w. For instance in the process νa{i1,i2}i1 (Y | a(x)) the contextual cause of the
action a(x) is i1.

To capture the notion of causality obtained from the revised semantics of [25],
we give definitions for the predicates in Figure 7.

Definition 14 (Boreale and Sangiorgi causal semantics). To capture Borale and
Sangiorgi causality, the data structure ∆ is instantiated with indexed set Γw and
the predicates from Figure 7 are defined as:

1. Cause(Γw,K,K′) stands for K′ = K ∪ {w}

2. Update(Γw,K,K′) stands for K′ = K ∪ {w}

The predicates Cause(·) and Update(·) define the new cause set K′ by adding w to
the old set of causes K. The reason for this is that actions could be caused through
the subject and object position of the label (detailed explanation given in [29]).

We would like to remark that the silent actions do not exhibit or impose
contextual causes, despite our original intent [36] to modify the semantics of [25].

The following example illustrates how framework capture causality of [25].

Example 8. Consider the process X = νa∅∗(b
∗

a∗ | c∗a∗ | a∗(x)). By extruding the
name a over the channel b (rule Open is applied), we obtain the process:

νa{i1}i1 (b
∗

a∗[i1, ∗] | c
∗a∗ | a∗(x))

We can notice that w = i1. By executing the actions ca with the rule Open and a(x)
with the rule Cause Ref, predicates on the rules Update(·) and Cause(·) ensure
that i1 = w will be added to cause sets. We obtain the process:

νa{i1,i2}i1 (b
∗

a∗[i1, ∗] | c
∗a∗[i2, {i1, ∗}] | a∗(x)[i3, {i1, ∗}])



In the memories [i2, {i1, ∗}] and [i3, {i1, ∗}] we can notice that the executed actions
are caused by the action i1 (the first action) and for this reason the action i1 needs
to be reversed as the last one. The actions i2 and i3 can be reversed in any order.

After the illustration, we prove a causal correspondence between Boreale
and Sangiorgi’s late semantics and our framework when the data structure ∆ is
instantiated with the indexed set Γw. For the lack of space, we give just an idea of the
proof, for more details look [33, 29]. First, we prove the structural correspondence
between two calculi by showing that the trace started from the same π-calculus
process in one calculus, can be mimicked in the other one while resulting processes
translated into π-calculus are the same. After that, we prove the following theorem,
where we include the object causality.

Theorem 8 (Causal correspondence). The reflexive and transitive closure of causal-
ity introduced in [25] coincides with the causality of the framework when ∆ = Γw.

Crafa, Varacca and Yoshida causal semantics Event structure semantics for
forward π-calculus [28] has been briefly revised in Section 4. The authors definition
of the disjunctive object causality has as a consequence the feature where events
do not have a unique causal history. In [30] it is argued that this type of causality
cannot be expressed when are considered processes with contexts.

In our framework, we consider that reversibility is causally-consistent, hence
the detection of the causes is fundamental. Otherwise by executing backward
actions, one could reach the state that is not consistent9. For this reason, we
consider some possibilities for keeping track of the causes. One of the options
would be to choose one of the possible extruders as a cause. In that case, we
would obtain a notion of causality that is similar to causality given in [22]. Another
option, that we decided to follow, is to record all extruders of the certain name that
happened before the action with a restricted name in the subject position. Since we
do not know the exact extruder that caused the action with the bound subject, we
record the whole set of them happened in the past. To obtain this behaviour we use
set indexed with a set ΓΩ as the data structure ∆. The cause of the action using an
extruded name is the set Ω. For example, in the process νa{i1,i2,i3}{i1 ,i3}(Y | a(x)) the
contextual cause of the action a(x) is Ω = {i1, i3}.

Now we give the final definition necessary to obtain a revised causality notion
of [28] (where we keep track of the extruders) in the framework.

Definition 15 (Revised Crafa, Varacca and Yoshida causal semantics). If an in-
dexed set ΓΩ is chosen as a data structure for a memory ∆, the predicates in
Figure 7 are defined as:

9Not consistent state is the state where the action that extruded restricted name is reversed,
while action using that name in the subject position is not.



1. Cause(ΓΩ,K,K′) stands for K′ = K ∪Ω

2. Update(ΓΩ,K,K′) stands for K′ = K

In the predicate Cause(ΓΩ,K,K′), the new cause K′ gathers all extrusions, which
are not part of the synchronisations, executed previously.

We illustrate the mechanism given above with the following example.

Example 9. Let us consider the process X = νa∅{∗}(b
∗

a∗ | c∗a∗ | a∗(x)). By
extruding the name a on the channels b and c (by applying rule Open), we obtain
the process:

νa{i1,i2}{∗,i1 ,i2}(b
∗

a∗[i1, ∗] | c
∗a∗[i2, ∗] | a∗(x))

As we can notice, keys i1 and i2 are added in the data structure ΓΩ in both sets. The
cause set of the action a(x) will be the whole set {∗, i1, i2}. By executing the input
action we obtain process:

νa{i1,i2}{∗,i1 ,i2}(b
∗

a[i1, ∗] | c
∗a[i2, ∗] | a∗(x)[i3, {∗, i1, i2}])

From the reversible point of view, action a(x) needs to be reversed as the first
one (we can notice it in the memory [i3, {∗, i1, i2}]). The other two actions can be
reversed in any order.

7 Properties of the framework
In this Section, we show that the framework satisfies typical properties for reversible
calculi [1, 2, 22, 35]. We start by proving that the framework is a conservative
extension of standard π-calculus. After that, we show that reversibility in our
framework, when instantiated with three considered data structures, is causally-
consistent. All proofs, together with more examples and detailed explanations can
be found in [33, 29].

Correspondence with the π-calculus To show the correspondence between
framework and π-calculus, we first define an erasing function ϕ which generates a
π-calculus process from a reversible process X, by deleting all the past information.

Definition 16 (Erasing function). The function ϕ : X → P that maps reversible
processes to the π-calculus, is inductively defined as follows:

ϕ(X | Y) = ϕ(X) | ϕ(Y) ϕ(b
j
a j′ .P) = ba.ϕ(P)

ϕ(νa∆(X)) = ϕ(X) if empty(∆) = f alse ϕ(b j(x).P) = b(x).ϕ(P)
ϕ(νa∆(X)) = νa ϕ(X) if empty(∆) = true ϕ(0) = 0
ϕ(H[X]) = ϕ(X)



The erasing function can be extended to labels as:

ϕ((i,K, j) : α) = ϕ(α) ϕ(ba) = ba

ϕ(b〈νa∆〉) = b〈νa〉 when empty(∆) = true ϕ(b(x)) = b(x)

ϕ(b〈νa∆〉) = ba when empty(∆) = f alse ϕ(τ) = τ

Now we shall show that there is a forward operational correspondence between
a reversible process X and ϕ(X). We prove the statement saying that every forward
move of a reversible process X can be mimicked by π-calculus and opposite. Using
that we show that the relation between a process X and its corresponding π term P
is a strong bisimulation [19, Definition 2.2.1].

Lemma 1. The relation given by (X, ϕ(X)), for all reachable processes X, is a
strong bisimulation.

The main properties of the framework In what follows we show that our
framework enjoys fundamental properties for reversible calculi: Loop Lemma,
Square Lemma and Causal-consistency Theorem. Most of the proof outlines and
terminology are adapted from [1, 22] with more complex discussions due to the
generality of the framework. For the lack of space, more details and the proofs
can be found in [29]. We initiate by showing the property declaring that every
transition (reduction step) can be undone.

Lemma 2 (Loop Lemma). For every reachable process X and forward transition

t : X
µ
−→→ Y there exists a backward transition t′ : Y

µ
X, and conversely.

By exploiting the symmetry of the rules, we define a reverse transition of a
transition t : X

µ
−→→ Y , written t•, as a transition with the same label and the opposite

direction t• : Y
µ

X, and vice versa ((t•)• = t).
In what follows, we define the causality relation on our framework considering

the three data structures that we are using. As the reversibility in our framework is
causally consistent, it is the fundamental part of the framework. First, we specify
the structural dependencies between two actions, defined on the past prefixes. For
example, in a reversible process X = ba[i,K].cd[i′,K′] the past prefix with key i′

structurally depends on the past prefix with key i. Formally, we have:

Definition 17 (Structural cause). For every two keys i1 and i2 such that i1, i2 ∈

key(X), we say that the past prefix with the key i1 is a structural cause of the past
prefix with the key i2 in the process X, written as i1 @X i2 if X = C[π[i1,K1].Y] and
i2 ∈ key(Y).

We extend this definition on the transitions.



Definition 18 (Structural causality). Transition t1 : X
(i1,K1, j1):α1
−−−−−−−−→ X′ is a structural

cause of transition t2 : X′
(i2,K2, j2):α2
−−−−−−−−→ X′′, written t1 @ t2, if i1 @X′′ i2, or i2 @X i1 if

the transitions are backward. Structural causality, denoted with v, is obtained as
the reflexive and transitive closure of @.

Following [22], we use the contextual cause set K (in [22] the K is a key k,
not a set) to keep track of the object causality (causality imposed by extrusions).
The object causality has been illustrated through the examples given in Section 6,
when we show how to map different causal semantics into the framework. More
examples can be found in [29]. Here we give the formal definition.

Definition 19 (Object causality). Transition t1 : X
(i1,K1, j1):α1
−−−−−−−−→ X′ is an object cause

of transition t2 : X′
(i2,K2, j2):α2
−−−−−−−−→ X′′, written t1 < t2, if i1 ∈ K2 or i2 ∈ K1 (for the

backward transition) and t1 , t•2. Object causality, denoted with�, is obtained as
the reflexive and transitive closure of <.

Once having defined object and subject causality we can state the causality
relation on the framework.

Definition 20 (Causality relation and concurrency). The causality relation ≺ is the
reflexive and transitive closure of structural and object causality: ≺ = (v ∪ �)∗.
Two transitions are concurrent if they are not causally related.

By having established the notion of concurrent transitions, we prove that
they can be permuted, where commutation of transitions is preserved up to the
label equivalence10 defined as the least equivalence relation satisfying: (i,K, j) :
b〈νa∆〉 =λ (i,K, j) : b〈νa∆′〉 for all i, j,K, a, b and ∆,∆′ ⊆ K .

Lemma 3 (Square Lemma). If t1 : X
µ1
−→ Y and t2 : Y

µ2
−→ Z are two concurrent

transitions, there exist t′2 : X
µ′2
−→ Y1 and t′1 : Y1

µ′1
−→ Z where µi =λ µ

′
i .

Following the standard notation we write t2 = t′2/t1 to state that t2 is a residual of t′2
after t1. Coinitial transitions have the same source, cofinal the same target, and they
are composable if the target of one is the source of the other transition. A trace
t1; t2 is a sequence of pairwise composable transitions and ε is the empty trace.

With the next theorem, we show the correctness of our framework declaring
that the reversibility induced by it is causally-consistent. To be able to state the
theorem, we first give the notion of the equivalence that we use. It is introduced
in [1] as an adaptation of equivalence between traces introduced in [37, 38] which
additionally deletes from the trace the transitions executed in both directions.

10Label equivalence is necessary since actions bring information about ∆ into the labels. By
permuting the transitions, the content of ∆ is changing. More information can be found in [22].



Definition 21 (Equivalence up-to permutation). Equivalence up-to permutation, ∼,
is the least equivalence relation on the traces, satisfying:

t1; (t2/t1) ∼ t2; (t1/t2) t; t• ∼ ε
Theorem 9 (Causal-consistency). Two traces are coinitial and cofinal if and only
if they are equivalent up-to permutation.

8 Conclusion
In this work, we studied the relations between different models (represented via
process algebra) for reversible concurrent computations and provided a common
framework in which different causal models can be compared.

Concerning CCS, we showed the isomorphism between LTSs of RCCS [1]
and CCSK [2] which relies on two encodings. An explanation of this result is the
existence of one causality notion in CCS. As the future work, we are interested in
the further analysis of the relations between the reversible calculi, with the aim
to define the classes of calculi to which the CCSK approach can be applied. The
other direction is to exploit our result about the isomorphism and to integrate the
irreversible actions into CCSK. Having in mind work on transactions in RCCS [12],
we believe that CCSK with irreversible actions can be used to describe transactions.

In π-calculus, we developed the parametric framework for reversible π-calculi,
able to express different notions of causality. Three different data structures used in
the framework lead to the causal semantics given in [22, 25, 28], where we revised
the semantics of [28] to be able to keep track about the causes. Additionally, the
framework adds reversibility to the semantics where it was not defined originally.
We show that reversibility in the framework, when considered data structures are
used, is causally-consistent and prove the causal correspondence with the semantics
of [25]. Actually, we are working on proving the causal correspondence between
Rπ causality [22] and the matching instance of the framework. As the future
work, we would like to explore the causal bisimulation that can be defined on the
framework, starting from already existing ones given in [39, 40, 25].
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