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Abstract

Problems of pattern formation have been extensively studied in distributed
computing. One of this problems is the gathering problem: agents must
gather at a same position in a distributed manner. When gathering is not
possible, a close problem is the convergence problem.

In this article, we investigate the two following questions: (1) Can pro-
cesses gather when each process cannot see more that one other process at
the same time? (2) Can a gathering behavior be learned by processes?

Regarding the first point, we introduce a new model with an extremely
restricted visibility: each process can only see one other process (its clos-
est neighbor). Our goal is to see if (and to what extent) the gathering and
convergence problems can be solved in this setting. We first show that, sur-
prisingly, the problem can be solved for a small number of processes (at
most 5), but not beyond. This is due to indeterminacy in the case where
there are several “closest neighbors” for a same process. By removing this
indeterminacy with an additional hypothesis (choosing the closest neighbor
according to an order on the positions of processes), we then show that the
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problem can be solved for any number of processes. We also show that up
to one crash failure can be tolerated for the convergence problem.

Regarding the second point, we present the first experimental evidence
that a gathering behavior can be learned without explicit communication
in a partially observable environment. The learned behavior has the same
properties as a self-stabilizing distributed algorithm, as processes can gather
from any initial state (and thus tolerate any transient failure). Besides, we
show that it is possible to scale and then tolerate the brutal loss of up to 90%
of agents without significant impact on the behavior.

1 Introduction
An interesting natural phenomenon is the ability of swarms of simple individuals
to form complex and very regular patterns: swarms of fishes [78], birds [32], ants
[37]. . . They do so in a totally distributed manner, without any centralized or irre-
placeable leader. Such behaviors are a great source of inspiration for distributed
computing.

Problems of pattern formation have been extensively studied by the distributed
computing community [72, 74, 11, 2]. In order to prove mathematical results, the
model is of course simplified: the individuals (called agents, robots or processes)
are usually geometric points in a Euclidean space, operating in “look – compute –
move” cycles. A famous example is the circle formation algorithm by Suzuki and
Yamashita [74]. Another family of papers considers robots moving on a graph
(eg. [34, 39, 54]).

In particular, a pattern formation problem which has been extensively studied
is the gathering problem [4, 24, 26, 40, 57]: processes must gather at a same point
in a finite time. When gathering is impossible, a close problem is the convergence
problem [28, 7]: processes must get always closer to a same point.

This apparently simple problem can become surprisingly complex, depending
on the model and hypotheses. We give a few examples below (the list, of course,
in not exhaustive).

• Asynchronous system. A first idea is to relax the synchronicity hypothesis.
In [66, 23, 25, 29] for instance, the cycles are executed asynchronously –
e.g., the “look” operation of a robot can happen during the “move” opera-
tion of another robot. [53] studies the feasibility of asynchronous gathering
on a ring topology, depending on the level of symmetry of the initial config-
uration. [41] showed that gathering was possible in the asynchronous model
when robots have the same common orientation.

• Fault tolerance. Another idea is to make the system fault tolerant. The
faults can be transient [6, 35] or permanent [5] – e.g., when a robot stops



moving forever. [5] and [33] show several impossibility results in the case of
Byzantines failures – i.e., a robot exhibiting an arbitrary malicious behavior.
[15] proves the necessary and su�cient conditions for convergence in a 1D
space in the presence of Byzantine robots.

• Limited visibility. One can assume that robots only have a limited visi-
bility range [41, 8]. The usual hypothesis is that the robots can only see
other robots within a bounded radius. Another possible limit to visibility
are opaque robots [13, 3]: if a robot C is between two robots A and B, A
cannot see B. [14] considers a setting with both constraints simultaneously
(opacity and bounded visibility radius).

• Limited multiplicity detection. When several robots are allowed to oc-
cupy the same position, the robots may (or may not) know the multiplicity
of a given position, that is: the number of robots at this position. When total
multiplicity detection is available, a gathering strategy is, for each robot,
to move to the position with the highest multiplicity. A weaker multiplic-
ity detection hypothesis is that robots can only know if there are “one” or
“more than one” robots at a given position (global multiplicity detection)
[52, 53]. In [49, 50], this capacity is restricted to the current position (local
multiplicity detection). [31] studies gathering on a grid without multiplicity
detection.

• Fat robots. It is often assumed that robots are geometrical points, without
a volume. Some paper consider the model of “fat robots”, where robots
actually do have a volume. [3] considers the problem of gathering 4 robots
modeled as discs. [30] generalizes this result to n robots. [14] considers the
problem of gathering fat robots with a limited visibility.

In this article, we explore two new settings for the gathering problem. Basi-
cally, we ask ourselves the two following questions:

1. Can processes gather when each process cannot see more that one other
process at the same time? (In the following, we call this setting “extremely
restricted visibility”.)

2. Can a gathering behavior be learned by processes?

Gathering with extremely restricted visibility. Consider the following assump-
tion: each process can only see its closest neighbor (i.e., the closest other process),
and ignores the total number of processes. To our knowledge, no paper has yet
considered such a minimalist setting. We study to what extent the gathering and



convergence problems can be solved in this setting. We assume a synchronous
scheduler and memoryless processes that cannot communicate with messages.

There is an indeterminacy in the case where there are several “closest neigh-
bors” (i.e., two or more processes at the same distance of a given process). We
first assume that, in this situation, the closest neighbor is arbitrarily chosen by an
external adversary (worst-case scenario).

In this scenario, we show that, surprisingly, the problems can only be solved
for a small number of processes. More precisely, if n is the number of processes
and d is the number of dimensions of the Euclidean space, then the gathering
(resp. convergence) problem can be solved if and only if d = 1 or n  2 (resp.
d = 1 or n  5). Indeed, for larger values of n, there exists initial configurations
from which gathering or convergence is impossible, due to symmetry. The proof
is constructive: for the small values of n, we provide an algorithm solving the
problems. The proof is non-trivial for n = 4 and n = 5, as several families of
cases need to be considered.

Therefore, to solve the problems for larger values of n, one additional hypoth-
esis must necessarily be added. We remove the aforementioned indeterminacy by
making the choice of the closest neighbor (when there is more than one) deter-
ministic instead of arbitrary (according to an order on the positions of processes).
Then, we show that the gathering problem is always solved in at most n � 1 steps
by a simple “Move to the Middle” (MM) algorithm.

We finally consider the case of crash failures, where at most f processes lose
the ability to move. We show that the gathering (resp. convergence) problem can
only be solved when f = 0 (resp. f  1). When the convergence problem can be
solved, the MM algorithm solves it.

The technical details are presented in Section 2. Beyond this first work, we
believe that this minimalist model can be the ground for many other interesting
results.

Learning to gather. In previous works, the gathering behavior was obtained by
giving an explicit algorithm to each (correct) agent. An alternative approach is
machine learning [71], that is: automatically extracting a model from a dataset,
or from its interactions with the environment. More particularly, Reinforcement
learning [77, 73] is the specific machine learning paradigm that enables to ob-
tain a desired behavior with the simplest feedback from the environment. It is
particularly useful in network related problems [67, 12, 47]. In short, reinforce-
ment learning consists, for the program, in receiving rewards and penalties from
the environment, and learning which behavior leads to rewards and which behav-
ior leads to penalties. To our knowledge (see the state of the art in Section 3),
the question whether the agents can learn to gather with only simple rewards and



penalties from the environment (and with no other form of communication than
“seeing each other”) remains open.

We present the first experimental evidence that the answer to this question is
a�rmative: agents can indeed learn a gathering behavior. We show that agents
can learn to gather on a one-dimensional ring. The agents are rewarded for being
in a group and penalized for being isolated.

A technical di�culty lies in the “combinatorial explosion” of the number of
states. To overcome this di�culty, the agents approximate the environment by
grouping close positions into clusters: each agent only perceives an approximation
of the distribution of other agents in each cluster. This enables to keep the learning
space constant (i.e., independent of the number of agents and the size of the ring).
We show that, surprisingly, the agents manage to gather almost perfectly despite
this very rough approximation.

We then consider the problem of increasing the number of agents. A natural
belief would be that the agents have to “re-learn” to gather in this case. Inter-
estingly, we show that the learned behavior can directly apply to a much larger
number of agents – namely, if agents have learned to gather in groups of 10, we
show that they immediately know how to gather in groups of up to 100. Aside
from saving learning time, the interest of this approach is that such a group of
100 agents is inherently and deeply robust (fault-tolerant), because it can toler-
ate the loss of up to 90 agents1. We also compare the learned behavior with a
hardcoded algorithm that moves towards the barycenter of the agents. We thus
show that, even with a relatively simple learning scheme, we can reach the same
performances as this hardcoded behavior.

The technical details are presented in Section 3.

2 Gathering with extremely restricted visibility

In Section 2.1, we define the model and the problems. In Section 2.2, we charac-
terize the class of algorithms allowed by our model, and define a simple algorithm
to prove the positive results. In Section 2.3, we prove the aforementioned lower
bounds. In Section 2.4, we remove indeterminacy and show that the gathering
problem can be solved for any n. In Section 2.5, we consider the case of crash
failures.

1We do not claim that training a group of 100 agents makes it robust, but that we can easily
build a robust group of 100 agents after training a group of 10 agents (which, by the way, is less
costly).



2.1 Model and problems
Model. We consider a Euclidean space S of dimension d (d � 1). The position
of each point of S is described by d coordinates (x1, x2, . . . , xd) in a Cartesian
system. For two points A and B of coordinates (a1, . . . , ad) and (b1, . . . , bd), let
d(A, B) =

q
⌃i=d

i=1(ai � bi)2 be the distance between A and B.
Let P be a set of n processes. 8p 2 P, let Mp be the position of p in S . Let

⌦ be the set of positions occupied by the processes of P. As several processes
can share the same position, 1  |⌦|  |P|. The time is divided in discrete steps
t 2 {0, 1, 2, 3, . . . }.

If |⌦| = 1, the processes are gathered (they all have the same position). If
|⌦| � 2, 8p 2 P, let D(p) = minK2⌦�{Mp} d(Mp,K), and let N(p) be the set of
processes q such that d(Mp,Mq) = D(p). At a given time t, the closest neighbor
of a process p is a process of Np arbitrarily chosen by an external adversary. We
denote it by C(p).

We consider a synchronous execution model. At a given time t, a process p
can only see Mp and MC(p) (without global orientation), and use these two points
to compute a new position K. Then, the position of p at time t + 1 is K.

The processes are oblivious (they have no memory), mute (they cannot com-
municate) and anonymous (they cannot distinguish each other with identifiers).
Note that this model does not assume multiplicity detection (the ability to count
the processes at a same position). The processes do not know n. At t = 0, the n
processes can have any arbitrary positions.

Problems. For a given point G 2 S and a given constant ✏, we say that the
processes are (G, ✏)-gathered if, 8M 2 ⌦, d(G,M)  ✏.

An algorithm solves the convergence problem if, for any initial configuration,
there exists a point G 2 S such that, 8✏ > 0, there exists a time T such that the
processes are (G, ✏)-gathered 8t � T .

An algorithm solves the gathering problem if, for any initial configuration,
there exists a point G and a time T such that the processes are (G, 0)-gathered
8t � T .

2.2 Algorithm
In this section, we describe all possible algorithms that our model allows. Doing
so enables us to show lower bounds further – that is, showing that no algorithm
can solve some problems in our model. This is not to confuse with the MM
algorithm (a particular case, defined below), which is only used to prove positive
results.



Here, an algorithm consists in determining, for any process p, the position of
p at the next step, as a function of Mp and MC(p).

First, let us notice that, if the processes are gathered (|⌦| = 1), the processes
have no interest in moving anymore. This corresponds to the case where each
process cannot see any “closest neighbor”. Thus, we assume that any algorithm is
such that, when a process p cannot see any closest neighbor, p does not move.

Now, consider the case where the processes are not gathered (|⌦| � 2). Let p
be the current process, let D = D(p), and let ~x be the unit vector (||~x|| = 1) directed
from Mp to MC(p). There are 2 possible cases.

Case 1: d = 1. The next position of p is Mp + fx(D)~x, where fx is an arbitrary
function.

Case 2: d � 2. Let � be the axis defined by Mp and MC(p). If d � 2, as there is
no global orientation of processes (Mp can only position itself relatively to MC(p)),
the next position of p can only be determined by (1) its position on axis � and
(2) its distance to �. The di↵erence here is that, for two given parameters (1)
and (2), there are several possible positions (2 positions for d = 2, an infinity of
positions for d � 3). Thus, we assume that the next position (among these possible
positions) is arbitrarily chosen by an external adversary.

More formally, the next position of p is Mp + fx(D)~x+ fy(D)~y, where fx and fy

are arbitrary functions, and where ~y is a vector orthogonal to ~x which is arbitrarily
chosen by an external adversary.

Move to the Middle (MM) algorithm. We finally define one particular algo-
rithm to show some upper bounds. The Move to the Middle (MM) algorithm con-
sists, for each process p and at each step, in moving to the middle of the segment
defined by Mp and MC(p).

More formally, if d = 1, the MM algorithm is defined by fx(D) = D/2. If
d � 2, the MM algorithm is defined by fx(D) = D/2 and fy(D) = 0.

2.3 Lower bounds
In this section, we show the two following results.

• The gathering problem can be solved if and only if d = 1 or n  2. When it
can be solved, the MM algorithm solves it (Theorem 1).

• The convergence problem can be solved if and only if d = 1 or n  5. When
it can be solved, the MM algorithm solves it (Theorem 2).



2.3.1 Gathering problem

Let us prove Theorem 1.

Lemma 1. If d = 1, the MM algorithm solves the gathering problem.

Proof. Let us show that, if |⌦| � 2, then |⌦| decreases at the next step.
As d = 1, let x(K) be the coordinate of point K. Let (K1,K2, . . . ,Km) be the

points of ⌦ ranked such that x(K1) < x(K2) < · · · < x(Km). 8i 2 {1, . . . ,m}, let
xi = x(Ki). Then, according to the MM algorithm, the possible positions at the
next step are: (x1 + x2)/2, (x2 + x3)/2, . . . , (xm�1 + xm)/2 (at most m� 1 positions).
Thus, |⌦| decreases at the next step. Therefore, after at most n � 1 steps, we have
|⌦| = 1, and the gathering problem is solved. ⇤

Lemma 2. If d � 2 and n � 3, the gathering problem is impossible to solve.

Proof. First, consider the case d = 2. Consider an initial configuration where ⌦
contains three distinct points K1, K2 and K3 such that d(K1,K2) = d(K2,K3) =
d(K3,K1) = D.

Let G be the gravity center of the triangle K1K2K3. Let s(1) = 2, s(2) = 3 and
s(3) = 1. 8i 2 {1, 2, 3}, let Ai and Bi be the two half-planes delimited by the axis
(KiKs(i)), such that G belongs to Bi. Let ~vi be the unit vector orthogonal to (KiKs(i))
such that the point Ki + ~vi belongs to Ai. Let ~yi = ~vi if fy(D) � 0, and ~yi = �~vi

otherwise.
Let p be a process, and let i be such that Mp = Ki. The external adversary can

choose a closest neighbor C(p) and a vector ~y such that MC(p) = Ks(i) and ~y = ~yi.
Thus, at the next step, it is always possible that⌦ contains three distinct points

also forming an equilateral triangle. The choice of vectors~y prevents the particular
case where all processes are gathered in point G. We can repeat this reasoning
endlessly. Thus, the gathering problem cannot be solved if d = 2.

Now, consider the case d > 2. The external adversary can choose the ~y vectors
such that the points of ⌦ always remain in the same plane, and their behavior is
the same as for d = 2. Thus, the gathering problem cannot be solved if d > 2. ⇤

Theorem 1. The gathering problem can be solved if and only if d = 1 or n  2.
When it can be solved, the MM algorithm solves it.

Proof. If d = 1, according to Lemma 1, the MM algorithm solves the gathering
problem. If n = 1, the gathering problem is already solved by definition. If n = 2,
the MM algorithm solves the gathering problem in at most one step. Otherwise,
if d � 2 and n � 3, according to Lemma 2, the gathering problem cannot be
solved. ⇤



2.3.2 Convergence problem

Let us prove Theorem 2.
We first introduce some definitions. For a given set of points X ✓ S , let

Dmax(X) = max{A,B}✓X d(A, B). Let ⌦(t) be the set ⌦ at time t. Let dmax(t) =
max{A,B}✓⌦(t) d(A, B) and dmin(t) = min{A,B}✓⌦(t) d(A, B). Let m(A, B) be the middle
of segment [AB]. Let ↵(K) =

p
1 � 1/(4K2).

Let R(t) = arg minG2S maxM2⌦(t) d(G,M) (the radius of the smallest enclosing
ball of all processes’ positions). Let Xi(t) be the smallest ith coordinate of a point
of ⌦(t). We say that a proposition P(t) is true infinitely often if, for any time t,
there exists a time t0 � t such that P(t) is true.

Lemma 3. If there exists a time t such that |⌦(t)|  3, the MM algorithm solves
the convergence problem.

Proof. If |⌦(t)| = 1, the processes are and remain gathered. If |⌦(t)| = 2, then
|⌦(t + 1)| = 1.

If |⌦(t)| = 3, consider the following proposition P: there exists t0 > t such that
|⌦(t0)|  2. If P is true, the gathering (and thus, convergence) problem is solved.
Now, consider the case where P is false.

Let ⌦(t) = {A, B,C}. As |⌦(t + 1)| = 3, ⌦(t + 1) = {m(A, B),m(B,C),m(C, A)}.
The center of gravity G of the triangle formed by the three points of ⌦ always
remains the same, and dmax(t) is divided by two at each step. Thus, 8✏ > 0, there
exists a time T such that the processes are (G, ✏)-gathered 8t � T . ⇤

Lemma 4. Let K � 1. If R(t)  Kdmin(t), then R(t + 1)  ↵(K)R(t).

Proof. If the processes move according to the MM algorithm, then ⌦(t + 1) ✓S
{A,B}✓⌦(t) {m(A, B)}. Let G be such that, 8M 2 ⌦(t), d(G,M)  R(t). Let A and

B be two points of S such that d(G, A) = d(G, B) = R(t) and d(A, B) = dmin(t)
(two such points A and B exist, as dmin(t)  2R(t)). Let C = m(A, B). Then,
8M 2 ⌦(t + 1), d(G,M)  d(G,C). Thus, R(t + 1)  d(G,C).

Let x = d(G,C), y = dmin(t)/2 and z = R(t). Then, z2 = x2 + y2 and x/z =p
1 � (y/z)2. As R(t)  Kdmin(t), y/z � 1/(2K) and x/z 

p
1 � 1/(4K2) = ↵(K).

Thus, R(t + 1)  d(G,C)  ↵(K)R(t). ⇤

Lemma 5. Let A, B, C, D and E be five points (some of them may be identi-
cal). Let x = d(A,D)/100. Assume d(A, B)  x, d(A,C)  x, d(A, E)  100x
and d(D, E) � 40x. Let S = {A, B,C,D, E} and S 0 =

S
{A,B}✓S {m(A, B)}. Then,

Dmax(S 0)  0.99Dmax(S ).

Proof. As d(A,D) = 100x, Dmax(S ) � 100x.
Let M1 = m(A,D), M2 = m(A, E) and M3 = m(D, E). We have d(A,M1) =

50x and d(A,M2)  50x. The maximal value of y = d(A,M3) is reached when



d(A,D) = d(A, E) = 100x and d(D, E) = 40x. In this case, with the Pythagorean
theorem, we have (100x)2 = y2 + (20x)2, and thus y  98x.

Thus, maxi2{1,2,3} d(A,Mi)  98x. Now, suppose that Dmax(S 0) > 99x. Let
M4 = m(A, B) and M5 = m(A,C). This would imply that there exists i 2 {1, 2, 3}
such that either d(Mi,M4) > 99x or d(Mi,M5) > 99x, and thus, that either
d(A, B) > x or d(A,C) > x, which is not the case. Thus, Dmax(S 0)  99x 
0.99Dmax(S ). ⇤

Lemma 6. Let t be a given time. If n = 5 and |⌦(t)| = 5, then one of the following
propositions is true:
(1) |⌦(t + 1)|  4
(2) R(t + 1)  ↵(1000)R(t)
(3) dmax(t + 1)  0.99dmax(t)

Proof. Suppose that (1) and (2) are false. According to Lemma 4, (2) being false
implies that R(t) > 1000dmin(t). Let A0 and B0 be two points of ⌦(t) such that
d(A0, B0) = dmin(t). As |⌦(t + 1)| = 5, it implies that the processes at A0 and B0

did not both move to m(A0, B0). Therefore, there is a point C of ⌦(t) such that
d(A0,C) = dmin(t) or d(B0,C) = dmin(t). If d(A0,C) = dmin(t), let A = A0 and
B = B0. Otherwise, let A = B0 and B = A0.

As R(t) > 1000dmin(t), there exists a point D0 of ⌦(t) such that d(A,D0) �
100dmin(t). Let E0 be the fifth point of ⌦(t). If d(A,D0) � d(A0, E0), let D = D0

and E = E0. Otherwise, let D = E0 and E = D0.
Finally, let x = d(A,D)/100. Thus, we have d(A, B)  x, d(A,C)  x and

d(A, E)  100x. If d(D, E) < 40x, then the processes at positions D and E
both move to m(D, E), and |⌦(t + 1)| = 4: contradiction. Thus, d(D, E) � 40x.
Let S = ⌦(t), and let S 0 =

S
{A,B}✓S {m(A, B)}. Then, according to Lemma 5,

Dmax(S 0)  0.99Dmax(S ).
As the processes move according to the MM algorithm, ⌦(t + 1) ✓ S 0, and

dmax(t + 1)  Dmax(S 0)  0.99Dmax(S ) = 0.99dmax(t). Thus, (3) is true.
Therefore, either (1) or (2) are true, or (3) is true. ⇤

Lemma 7. Let t be a given time. If |⌦(t)| = 4, then one of the following proposi-
tions is true:
(1) |⌦(t + 1)|  3
(2) R(t + 1)  ↵(1000)R(t)
(3) dmax(t + 1)  0.99dmax(t)

Proof. Suppose that (1) and (2) are false. According to Lemma 4, (2) being false
implies that R(t) > 1000dmin(t). Let A and B be two points of ⌦(t) such that
d(A, B) = dmin(t).



As R(t) > 1000dmin(t), there exists a point D0 of ⌦(t) such that d(A,D0) �
100dmin(t). Let E0 be the fourth point of ⌦(t). If d(A,D0) � d(A0, E0), let D = D0

and E = E0. Otherwise, let D = E0 and E = D0.
Let C = A and x = d(A,D)/100. Thus, we have d(A, B)  x, d(A,C)  x and

d(A, E)  100x. If d(D, E) < 40x, then the processes at D and E (resp. A and B)
both move to m(D, E) (resp. m(A, B)), and |⌦(t + 1)| = 2: contradiction. Thus,
d(D, E) � 40x.

Let S = ⌦(t), and let S 0 =
S
{A,B}✓S {m(A, B)}. Then, according to Lemma 5,

Dmax(S 0)  0.99Dmax(S ).
As the processes move according to the MM algorithm, |⌦(t + 1)| ✓ S 0, and

dmax(t + 1)  Dmax(S 0)  0.99Dmax(S ) = 0.99dmax(t). Thus, (3) is true.
Therefore, either (1) or (2) are true, or (3) is true. ⇤

Lemma 8. At any time t, R(t + 1)  R(t).

Proof. Suppose the opposite: R(t + 1) > R(t). Let G be a point such that, 8M 2
⌦(t), d(G,M)  R(t). If, 8M 2 ⌦(t + 1), d(G,M)  R(t), then we do not have
R(t+1) > R(t). Thus, there exists a point A of⌦(t+1) such that d(G, A) > R(t). Let
B be the previous position of processes at position A. As the processes at position
B moved to A, according to the MM algorithm, there exists a point C of ⌦(t) such
that A = m(B,C). As d(G, B)  R(t) and d(G, A) > R(t), we have d(G,C) > R(t).
Thus, there exists a point C of ⌦(t) such that d(G,C) > R(t): contradiction. ⇤

Lemma 9. At any time t, dmax(t + 1)  dmax(t).

Proof. Suppose the opposite: dmax(t + 1) > dmax(t). Let A and B be two points
of ⌦(t + 1) such that d(A, B) = dmax(t + 1). According to the MM algorithm,
there exists four points A1, A2, B1 and B2 of ⌦(t) such that A = m(A1, A2) and
B = m(B1, B2).

Let L be the line containing A and B. Let A01 (resp. A02, B01 and B02) be the
projection of A1 (resp. A2, B1 and B2) on L. Then, there exists i 2 {1, 2} and
j 2 {1, 2} such that d(A0i , B

0
j) � d(A, B). Thus, d(Ai, Bj) � d(A, B) = dmax(t):

contradiction. ⇤

Lemma 10. Let n  5. Let P1(t) (resp. P2(t)) be the following proposition:
R(t + 1)  ↵(1000)R(t) (resp. dmax(t + 1)  0.99dmax(t)). Let P(t) = P1(t) _ P2(t).
If, for any time t, |⌦(t)| � 4, then P(t) is true infinitely often.

Proof. Let P⇤ be the following proposition: “|⌦(t)| = 4” is true infinitely often.
If P⇤ is false, there exists a time t0 such that 8t � t0, |⌦(t)| = 5. Thus, the

result follows, according to Lemma 6. If P⇤ is true, there exists an infinite set
T = {t1, t2, t3 . . . } such that 8t 2 T , |⌦(t)| = 4. Then, according to Lemma 7,
P(t + 1) is true 8t 2 T . Thus, the result follows. ⇤



Lemma 11. Let n  5. Suppose that, for any time t, |⌦(t)| � 4. Then, for any time
t, there exists a time t0 > t such that R(t0)  ↵(1000)R(t).

Proof. Suppose the opposite: there exists a time t0 such that, 8t > t0, R(t) >
↵(1000)R(t0).

Consider the propositions P1(t) and P2(t) of Lemma 10. Then, 8t � t0, P1(t)
is false. Thus, according to Lemma 10, it implies that P2(t) is true infinitely often.

Let t0 > t0 be such that, between time t0 and time t0, P2(t) is true at least 200
times. According to Lemma 9, for any time t, we have dmax(t + 1)  dmax(t).
Thus, dmax(t0)  0.99200dmax(t0)  dmax(t0)/4. For any time t, dmax(t) � R(t) and
dmax(t)  2R(t). Thus, R(t0)  R(t0)/2  ↵(1000)R(t0): contradiction. Thus, the
result follows. ⇤

Lemma 12. Let G be a point such that, 8M 2 ⌦(t), d(G,M)  R(t). Then,
8M 2 ⌦(t + 1), d(G,M)  R(t).

Proof. Suppose the opposite: there exists a point K of⌦(t+1) such that d(G,K) >
R(t). According to the MM algorithm, there exists two points A and B of⌦(t) such
that K = m(A, B). Then, as d(G,K) > R(t), either d(G, A) > R(t) or d(G, B) > R(t):
contradiction. Thus, the result follows. ⇤

Lemma 13. 8i 2 {1, . . . , d} and for any two instants t and t0 > t, |Xi(t0) � Xi(t)| 
2R(t).

Proof. For any point M, let xi(M) be the ith coordinate of M. Let G be a point such
as described in Lemma 12. According to Lemma 12, 8M 2 ⌦(t + 1), |xi(M) �
xi(G)|  R(t). By induction, 8t0 > t and 8M 2 ⌦(t0), |xi(M) � xi(G)|  R(t). In
particular, |Xi(t) � xi(G)|  R(t) and |Xi(t0) � xi(G)|  R(t). Thus, |Xi(t0) � Xi(t)| 
2R(t). ⇤

Lemma 14. Let (uk)k be a sequence, Let ↵ 2]0, 1[ and let N be an integer. If
8k � N, |uk+1 � uk|  ↵k, then (uk)k converges.

Proof. As ↵ 2]0, 1[, S ↵ = 1 + ↵ + ↵2 + ↵3 + . . . converges. Let ✏ > 0. Let
K = log(✏/S ↵)/ log↵ Then, ↵KS ↵ = ✏.

Let k � max(K,N) and let m > k. |um � uk|  ⌃i=m�1
i=k |ui+1 � ui|  ⌃i=m�1

i=k ↵
i 

↵kS ↵  ↵KS ↵ = ✏
Thus, (uk)k is a Cauchy sequence and it converges. ⇤

Lemma 15. Let ↵ 2]0, 1[. If, for any time t, there exists a time t0 > t such that
R(t0)  ↵R(t), then the MM algorithm solves the convergence problem.

Proof. Let t0 be an arbitrary time. 8k � 0, we define tk+1 > tk as the first time
such that R(tk+1)  ↵R(tk). By induction, 8k � 0, R(tk)  ↵kR(t0).



Let i 2 {1, . . . , d}. According to Lemma 13, 8k � 0, we have |Xi(tk+1)�Xi(tk)| 
2R(tk)  2↵kR(t0). 8k � 0, let uk = Xi(tk)/(2R(t0)). Then, 8k � 0, |uk+1 � uk|  ↵k.

According to Lemma 14, the sequence (uk)k converges and so does (Xi(tk))k.
Let Li be the limit of (Xi(tk))k, and let G be the point of coordinates (L1, L2, . . . , Ld).

R(tk) decreases exponentially with k. Then, 8✏ > 0, there exists an integer k
such that R(tk) < ✏/2. According to Lemma 8, 8t > tk, R(t) � R(tk). Therefore, the
processes are (G, ✏)-gathered 8t � tk, and the convergence problem is solved. ⇤

Lemma 16. If d = 1 or n  5, the MM algorithm solves the convergence problem.

Proof. If d = 1, according to Lemma 1, the MM algorithm solves the gathering
problem, and thus the convergence problem. Now, suppose that n  5.

Suppose that, for any time t, |⌦(t)| � 4. Then, according to Lemma 11 and
Lemma 15, the MM algorithm solves the convergence problem. Otherwise, i.e., if
|⌦(t)|  3, then according to Lemma 3, the MM algorithm solves the convergence
problem. ⇤

Lemma 17. If d � 2 and n � 6, the convergence problem is impossible to solve.

Proof. Assume the opposite: there exists an algorithm that always solves the con-
vergence problem for d � 2 and n � 6.

First, assume that ⌦ contains 3 points, as described in the proof of Lemma 2.
Consider the infinite execution described in the proof of Lemma 2. Let G be the
barycenter of these 3 points.

Let P be the following proposition: there exists a constant D such that the
distance between G and any of the 3 points of ⌦ is at most D.

If P is false, then by definition, the convergence problem cannot be solved.
We now consider the case where P is true.

If P is true, then consider the following case: ⌦ contains 6 points K1, K2, K3,
K4, K5 and K6. K1, K2 and K3 are arranged such as described in the proof of
Lemma 2, and so are K4, K5 and K6. Let G (resp G0) be the barycenter of the
triangle formed by K1, K2 and K3 (resp. K4, K5 and K6). Assume that d(G,G0) =
10D.

Now, assume that the points of the two triangles respectively follow the infinite
execution described in the proof of Lemma 2. Then, the distance between any two
of the 6 points is always at least 8D, and the convergence problem cannot be
solved. ⇤

Theorem 2. The convergence problem can be solved if and only if d = 1 or n  5.
When it can be solved, the MM algorithm solves it.

Proof. The result follows from Lemma 16 and Lemma 17. ⇤



2.4 Breaking symmetry
We showed that the problems were impossible to solve for n � 6. This is due to
particular configurations where a process p has several “closest neighbors” (i.e.,
|Np| > 1). Until now, we assumed that the actual closest neighbor C(p) of p was
chosen in Np by an external adversary.

We now assume that, whenever |Np| > 1, C(p) is chosen deterministically,
according to an order on the positions of processes. Namely, we assume that
there exists an order “<” such that any set of distinct points can be ordered from
“smallest” to “largest” (A1 < A2 < A3 < · · · < Ak).

Let L(p) be the largest element of Np, that is: 8q 2 Np � {L(p)}, Mq < ML(p).
We now assume that, for any process p, C(p) = L(p). With this new hypothesis,
we show the following result: 8n � 2, the MM algorithm solves the gathering
problem in n � 1 steps, and no algorithm can solve the gathering problem in less
that n � 1 steps (Theorem 3).

Proof

Lemma 18. 8n � 2, no algorithm can solve the gathering problem in less than
n � 1 steps.

Proof. Suppose the opposite: there exists an algorithm X solving the gathering
problem in less than n � 1 steps.

First, consider a case with two processes, initially at two distinct positions.
Then, eventually, the two processes are gathered. Let t be the first time where the
two processes are gathered. Let A and B be their position at time t � 1, and let
D = d(A, B). By symmetry, the two processes should move to m(A, B) at time t.
Thus, with algorithm X, whenever a process p is such that d(Mp,MC(p)) = D, p
moves to m(Mp,MC(p)) at the next step.

Let K(x) be the point of coordinates (x, 0, 0, . . . , 0). Now consider n processes,
a set ⌦(0) =

S
i2{0,...,n�1} {K(iD)}, and an order such that, 8x < y, K(x) < K(y).2

Let us prove the following property Pk by induction, 8k 2 {0, . . . , n � 1}:
⌦(k) =

S
i2{0,...,n�k�1}{K((i + k/2)D)}.

• P0 is true, as ⌦(0) =
S

i2{0,...,n�1}{K(iD)}.

• Suppose that Pk is true for k 2 {0, . . . , n � 2}. Then, according to algorithm
X, the processes at position K((n�k�1+k/2)D) moves to K((n�k�1+(k�
1)/2)D), and 8i 2 {0, . . . , n � k � 2}, the processes at position K((i + k/2)D)
move to K((i + (k + 1)/2)D). Thus, Pk+1 is true.

2As this is a lower bound proof, our goal here is to exhibit one particular situation where no al-
gorithm can solve the problem in less than n�1 steps. Thus, we choose a worst-case configuration
with a worst-case order.



Therefore, 8t 2 {0, . . . , n � 2}, |⌦(t)| � 2, and the processes are not gathered:
contradiction. Thus, the result follows. ⇤

We now assume that the processes move according to the MM algorithm.

Lemma 19. Let p and q be two processes. If there exists a time t where Mp = Mq,
then at any time t0 > t, Mp = Mq.

Proof. Consider the configuration at time t. According to our new hypothesis,
C(p) = C(q). Let K = m(Mp,MC(p)) = m(Mq,MC(q)). According to the MM
algorithm, p and q both move to K. Thus, at time t + 1, we still have Mp = Mq.
Thus, by induction, the result. ⇤

Lemma 20. At any time t, if the processes are not gathered, there exists two
processes p and q such that Mp , Mq, p = C(q) and q = C(p).

Proof. Let � = min{A,B}✓⌦(t) d(A, B). Let Z be the set of processes p such that
d(Mp,MC(p)) = �. Let Z0 =

S
p2Z{p,C(p)}.

Let A be the point of Z0 such that, 8M 2 Z0 � {A}, M < A. Let p be a process
at position A.

Let q be the largest element of Np, that is: 8q0 2 Np � {q}, Mq0 < Mq. By
definition, Mp , Mq. Thus, according to our new hypothesis, q = C(p).

Then, note that p is also the largest element of Nq: 8p0 2 Nq � {p}, Mp0 < Mp.
Thus, p = C(q). Thus, the result follows. ⇤

Lemma 21. At any time t, if the processes are not gathered, then |⌦(t + 1)| 
|⌦(t)| � 1.

Proof. Let p and q be the processes described in Lemma 20. Let K = m(Mp,Mq).
Then, according to Lemma 20, the processes at position Mp and Mq both move
to position K. Let X = ⌦(t) � {Mp,Mq}. According to Lemma 19, the processes
occupying the positions of X cannot move to more than |X| new positions. Thus,
|⌦(t + 1)| is at most |⌦(t)| � 1. Thus, the result follows. ⇤

Lemma 22. 8n � 2, the MM algorithm solves the gathering problem in at most
n � 1 steps.

Proof. According to Lemma 21, there exists a time t  n � 1 such that |⌦(t)| =
1. Let A be the only point of ⌦(t). Then, according to the MM algorithm, the
processes do not move from position A in the following steps. Thus, the result
follows. ⇤

Theorem 3. 8n � 2, the MM algorithm solves the gathering problem in n � 1
steps, and no algorithm can solve the gathering problem in less that n � 1 steps.

Proof. The result follows from Lemma 18 and Lemma 22. ⇤



2.5 Fault tolerance
We now consider the case of crash failures: some processes may lose the ability
to move, without the others knowing it. Let C ✓ P be the set of crashed processes
(the other processes are called “correct”), and let S c =

S
p2C{Mp} (i.e., the set of

positions occupied by crashed processes). Let f = |S c|.
We prove the two following results.

• The gathering problem can only be solved when f = 0 (Theorem 4).

• The convergence problem can be solved if and only if f  1. When f  1,
the MM algorithm solves it (Theorem 5).

Proof

We say that a process p is attracted if there exists a sequence of processes (p1, . . . ,
pm) such that p = p1, pm 2 C, and 8i 2 {1, . . . ,m � 1}, C(pi) = pi+1. A
loop is a sequence of correct processes (p1, . . . , pm) such that C(pm) = p1 and,
8i 2 {1, . . . ,m � 1}, C(pi) = pi+1. A pair is a loop with 2 processes. Let
⌦0 =

S
p2P�C{Mp} (i.e., the set of positions occupied by correct processes). Let

⌦0(t) be the state of ⌦0 at time t.

Lemma 23. Consider an algorithm for which there exists w such that fx(w) = w
and fy(w) = 0. Then, this algorithm cannot solve the gathering nor the conver-
gence problem.

Proof. Assume the opposite. Consider a situation where ⌦ = {A, B}, with d(A, B)
= w. Then, according to the algorithm, the processes at position A and B switch
their positions endlessly, and neither converge nor gather: contradiction. Thus,
the result follows. ⇤

Theorem 4. The gathering problem can only be solved when f = 0.

Proof. If f � 2, by definition, the processes cannot be gathered. Now, suppose
f = 1.

Suppose the opposite of the claim: there exists an algorithm solving the gath-
ering problem when f = 1. Let P be the following proposition: there exists two
points A and B such that all crashed processes are in position A, and all correct
processes are in position B.

Consider an initial configuration where P is true. As the algorithm solves the
gathering problem, according to Lemma 23, the next position of correct processes
cannot be A. Thus, P is still true at the next time step, with a di↵erent point B.

Therefore, by induction, P is always true, and the processes are never gathered:
contradiction. Thus, the result follows. ⇤



Lemma 24. If there exists a process p which is not attracted, then there exists a
loop.

Proof. Suppose the opposite: there is no loop. Let p1 = p. 8i 2 {1, . . . , n}, let
pi+1 = C(pi). We prove the following property Pi by induction, 8i 2 {1, . . . , n+1}:
(p1, . . . , pi) are i distinct processes.

• P1 is true.

• Suppose that Pi is true for some i 2 {1, . . . , n}. As there is no loop, we
cannot have pi+1 2 {p1, . . . , pi}. Thus, Pi+1 is true.

Thus, Pn+1 is true, and there are n + 1 distinct processes: contradiction. Thus,
the result follows. ⇤

Lemma 25. All loops are pairs.

Proof. Let (p1, . . . , pm) be a loop. Let � = mini2{1,...,m} d(Mpi ,MC(pi)). Let Z be
the set of processes of {p1, . . . , pm} such that d(Mpi ,MC(pi)) = �. Let Z0 =

S
p2Z

{p,C(p)}.
Let p be the process such that, 8q 2 Z0 such that Mp , Mq, Mp > Mq. Let

q = C(p). As C(q) is the closest neighbor of p, C(q) 2 Z0. Then, according to the
definition of p, C(q) = p.

Therefore, (p1, . . . , pm) is either (p, q) or (q, p). Thus, the result follows. ⇤

Lemma 26. If there exists a pair, then |⌦0(t + 1)|  |⌦0(t) � 1|.

Proof. According to the algorithm, two processes at the same position at time
t are at the same position at time t + 1. Let (p, q) be a pair. Then, according
to the algorithm, the processes at positions Mp and Mq move to m(Mp,Mq), and
|⌦0(t + 1)|  |⌦0(t) � 1|. ⇤

Lemma 27. There exists a time tA such that, for any time t � tA, all correct
processes are attracted.

Proof. Suppose the opposite. Then, after a finite number of time steps, at least
one correct process is not attracted. Thus, according to Lemma 24, there exists a
loop. According to Lemma 25, this loop is a pair. Then, according to Lemma 26,
|⌦0| decreases.

We can repeat this reasoning n + 1 times, and we then have |⌦0| < 0: contra-
diction. Thus, the result follows. ⇤

Lemma 28. Suppose f = 1. Let p be an attracted process, and let L be the
distance between p and the crashed processes. Then, d(Mp,MC(p)) � L/n.



Proof. Suppose the opposite: d(Mp,MC(p)) < L/n. As p is attracted, there exists
a sequence of processes (p1, . . . , pm) such that p = p1, pm 2 C, and 8i 2 {1, . . . ,
m � 1}, C(pi) = pi+1.
8i 2 {1, . . . ,m � 2}, we have d(Mpi ,Mpi+1) � d(Mpi+1 ,Mpi+2). Indeed, sup-

pose the opposite. Then, C(pi+1) = pi+2, d(Mpi+1 ,MC(pi+1)) > d(Mpi+1 ,Mpi), and
C(pi+1) is not a closest neighbor of pi+1: contradiction. Thus, d(Mpi ,Mpi+1) �
d(Mpi+1 ,Mpi+2).

Thus, 8i 2 {1, . . . ,m � 1}, d(pi, pi+1) < L/n. Therefore, d(p1, pm)  (m �
1)L/n < L: contradiction. Thus, the result follows. ⇤

Lemma 29. Let f = 1, and let X be the position of crashed processes. Let L =
maxp2P d(X,Mp). Let L(t) be the value of L at time t. Suppose that all correct
processes are attracted. Then, for any time t, L(t + 1)  k(n)L(t), where k(n) =p

1 � 1/(2n)2.

Proof. At time t + 1, let p be a process such that d(X,Mp) = L(t + 1). Let K be
the position of p at t + 1. Then, according to the algorithm, at time t, there exists
two processes q and r at position A and B such that K = m(A, B).

Let L0 = max(d(X, A), d(X, B)). Let q0 2 {q, r} be such that d(X,Mq0) = L0.
Then, according to Lemma 28, d(Mq0 ,MC(q0)) � L0/n. Let r0 be the other process
of {q, r}. Then, the position of r maximizing d(X,K) is such that d(X,Mr0) = L0.

Therefore, according to the Pythagorean theorem, (L(t + 1))2 is at most L02 �
(L0/(2n))2, and L(t + 1)  k(n)L0  k(n)L(t). Thus, the result follows. ⇤

Lemma 30. If f = 1, the MM algorithm solves the convergence problem.

Proof. According to Lemma 27, there exists a time tA after which all correct pro-
cesses are attracted. We now suppose that t � tA. Let ✏ > 0. Let X be the position
of crashed processes, and let L = maxp2P d(X,Mp). As k(n) =

p
1 � 1/(2n)2 < 1,

let M be such that k(n)ML < ✏. Then, according to Lemma 29, at time tA + M, all
processes are at distance at most ✏ from X. Thus, the result follows. ⇤

Theorem 5. The convergence problem can be solved if and only if f  1. When
f  1, the MM algorithm solves it.

Proof. When f � 2, there exists at least two crashed processes that will stay at
the same position forever. Thus, the convergence problem cannot be solved.

When f  1, according to Lemma 30, the MM algorithm solves the conver-
gence problem. Thus, the result follows. ⇤

2.6 Future works
This first work can be the basis for many extensions. For instance, we could
consider a more general scheduler (e.g. asynchronous). We could investigate how



resilient this model is to crash or Byzantine failures. We could also consider the
case of voluminous processes, that cannot be reduced to one geometrical point.

3 Learning to gather
In Section 3.1, we give a state of the art of reinforcement learning in multi-agent
systems w.r.t. the gathering problem. In Section 3.2, we present the Q-learning
technique (with eligibility trace), then a precise formulation of the gathering prob-
lem in a Q-learning framework. In particular, we describe which state and actions
are used to model the gathering problem in Q-learning. In Section 3.3, we explicit
the numerical parameters used to implement our model. For pedagogical reasons,
we first present results for a default setting; then, we show that the learned behav-
iors can be reused with more agents.

3.1 State of the art
Reinforcement learning [73, 46] consists in taking simple feedback from the envi-
ronment to guide learning. The general idea is to associate rewards and penalties
to past situations in order to learn how to act in future ones. The principle di↵ers
from that of supervised learning [42, 46] by the nature of the feedback. In super-
vised learning, an agent is taught how to perform precisely on several examples.
In reinforcement learning, the agent only gets an appreciation feedback from the
environment. For instance, in dog training, dogs are rewarded when doing correct
actions and punished when behaving badly. The advantage here is the possibility
to have a feedback in situations where the correct behavior is unknown. Several
successful AI approaches use reinforcement learning, one spectacular example
being the performance of AlphaGo [70] defeating the world Go champion Lee
Sedol.

So far, reinforcement learning has mainly been used in situations with only
one learning agent (single-agent systems), with important results [44, 38, 43, 48,
60, 68].

Multi-agent systems involve numerous independent agents interacting with
each other. Many works on multi-agent reinforcement learning consider problems
where only 2 or 3 agents are involved [10, 16, 27, 59, 65, 76, 80]. Some deal with
competitive games (e.g. zero-sum games) [1], where agents are rewarded at the
expense of others. Other tackle collaborative problems, but the reward is global
and centralized [75]. The algorithm proposed in [21] achieves convergence, safety
and targeted optimality against memory-bounded adversaries in arbitrary repeated
games. [63] presents the first general framework for intelligent agents to learn to
teach in a multiagent environment.



The domain of evolutionary robotics [36] studies how the behavior of agents
can evolve through “natural selection” mechanisms, with [18] or without [56]
communication. In this paper, we focus on behaviors than can be learned “within
a lifetime”, through rewards and punishments.

In general, communication mechanisms are used to share information among
agents [17, 51, 55, 62, 67, 69, 81] in order to increase the learning speed. Still, in
some cases, communication between independent agents is di�cult, impossible,
or at least very costly [79, 9]. In these situations, it might be useful to devise a
learning process that does not rely on communication.

Yet, so far, very few approaches considered a genuinely distributed setting
where each agent is rewarded individually, and where agents do not communicate.
In [61], the problem and the constraints are similar to our work, but the rewards
are given for taking an action instead of reaching a state. Consequently, the final
behavior is predetermined by the model itself. In [19], even if the constraints are
similar (cooperative task, no communication and individual rewards), the problem
tackled is fundamentally di↵erent: the task only requires the cooperation of agents
by groups of two (not of all agents simultaneously).

3.2 Model

3.2.1 Q-learning

As recalled in the previous section, the goal of reinforcement learning is to make
agents learn a behavior from reward-based feedback. In this paper, we work with
a widely used reinforcement learning technique called Q-learning [77, 73, 80, 51,
20, 38]. More specifically, we use Q-learning with eligibility trace [58, 73] as
explained in what follows.

Q-learning was initially devised for single agent problems. Here, we consider
a multi-agent system where each agent has it own learning process. We describe
in the following the learning model of one agent taken independently.

Let A be a set of actions, and let S be a set of states (representing all the
situations in which the agent can be). The sets A and S contain a finite number of
elements. In each state s, the agent may chose between di↵erent actions a 2 A.
Each action a leads to a state s0, in which the agent receives either a positive
reward, a negative reward or no reward at all. The objective of Q-learning is to
compute the cumulative expected reward for visiting a given state. Intuitively,
this is materialized by the fact that learning, in Q-learning, is all about updating
the Q-value using the mismatch between the previous Q-value and the observed
reward.

Let ⇡ : S ! A be the policy function of an agent – i.e., a function returning an
action to take in each state.



Let X⇡,s0
t be the state in which the agent is after t steps, starting from state s0

and following the policy ⇡. In particular, X⇡,s0 = s.
Let r : S ! R be the reward function associating a reward to each state.
The cumulative expected reward over a period I = ~0,N� of state s is

X

t2I
E(�tr(X⇡,st ))

where � 2 [0, 1] is a discount parameter modulating the importance of long term
rewards. The long term rewards become more and more important when � is close
from 1.

When predicting the best transition from one state to another (by taking a given
action) is di�cult or impossible, it is useful to compute a cumulative expected
reward of a couple (s, a).

Under the assumption that each couple (s, a) is visited an infinite number of
time, it is possible, following the law of large numbers, to estimate without bias
the expected cumulative reward by sampling [77], i.e by trying state-action cou-
ples and building an estimator of the expected reward. We denote this estimator
Q(s, a), and call it the Q-value of the state-action couple (s, a). The following
formula is the usual update rule to compute an estimator of the Q-value.

Qt+1(s, a) = (1 � ⌘)Qt(s, a) + ⌘(r(Xt + 1) + �max
a0

(Qt(s, a0)))

if action a is taken in state s at step t.

Qt+1(s0, a0) = Qt(s0, a0)

otherwise.
Here, ⌘ is a parameter called the learning rate that modulates the importance

of new rewards over old knowledge. Qt is the estimate of the cumulative expected
reward after t samples.

A complementary approach to get better estimations of Q-values with fewer
samples is to use eligibility trace [58, 73]. The idea is to keep trace of older
couples (s, a) until a reward is given, and to propagate a discounted reward to the
couples (s, a) that led to the reward several steps later. Formally, for each state s,
a value (eligibility) et(s) is attributed. e is initialized at e0(s) = 0 for every state s
then updated as follows:

if st = s,
et+1(s) = �� ⇤ et(s) + 1

otherwise,
et+1(s) = �� ⇤ et(s).



Using the eligibility trace, Q-values are updated by the scaling of the update
rule described above with eligibility values. The factor �� used in the update of
the eligibility acts as a discount in time: older visited states get less reward than
recent visited states.

In addition to update rules for learning, we need a policy for choosing actions.
An ✏-greedy policy ⇡ is a stochastic policy such that: (1) with probability (1 � ✏),
⇡(s) = a when (s, a) yields the highest expected cumulative reward from state
s, and (2) with probability ✏, a random action is chosen in A. The parameter ✏
is called the exploration rate and modulates the trade-o↵ between exploration of
new and unknown states (to obtain new information) and exploitation of current
information (to sample valuable states more precisely and thus be rewarded).

3.2.2 Setting

We consider a ring topology. This is a simple topology for a bounded space that
avoids non-realistic borders e↵ects (i.e no need to "manually" replace an agent in
the middle of the states-space if the agent reaches the border in the case of a square
for example). There are n positions {0, . . . , n � 1}. 8k 2 {0, . . . , n � 2}, positions k
and k+1 are adjacent, and positions n�1 and 0 are also adjacent. Each agent has a
given position on the ring. This space has only one dimension, but our results may
be extended to higher dimension spaces by applying the approach independently
on each dimension.

The time is divided into discrete steps 1, 2, 3, . . .. At the beginning of a given
step t, an agent is at a given position. The possible actions are: go left (i.e. increase
position), go right (i.e. decrease position) or do not move.

The current state of each agent is determined by the relative positions of other
agents. However, we cannot associate a state to each combination of position of
other agents, because of “combinatorial explosion”. Thus, in order to limit the
maximal number of states, each agent perceives an approximation of the positions
of other agents. Besides, a state must not depend on the number of agents, in order
to have a scalable model and to tolerate the loss of agents.

Thus, our state model is the following. The space is divided into groups of
close positions called sectors. Each agent does not perceive the exact number of
agents per sector, but the fraction of the total population in each sector. A state
is given by the knowledge of the fractions of the total population in each sector
with a precision of 10% (i.e. the possible values are multiples of 10%, rounded so
that the sum of the fractions equals 100%). The choice of 10% precision here is
an arbitrary value to reduce computational cost, this value can be optimized as an
hyper-parameter.

The delimitation of the sectors is not absolute but relative to the position of
each agent: each agent has its own sector delimitation centered around itself.



Figure 1: Default sector delimitation (on a ring of size 13). The Central sector
contains 3 positions centered around 0 (i.e., the position of the current agent).
Near sectors contain two positions each, adjacent to the Central sector. Same for
Far sectors and the Opposite sector.

This delimitation is set to 6 sectors (as for the precision value of 10% described
above, this choice can be left as an hyper-parameter, but optimizing it is out of the
scope of this work). The first sector is centered around the agent position (its size
corresponds to the size of the neighborhood where we expect the other agents to
gather). This sector is the Central sector. The agents in the central sector of a given
agent are called its neighbors. Two more sectors are adjacent to the central sector,
the Near Right and Near Left sectors. The Far left and Far Right are a second
layer after the near sectors. Finally, the Opposite sector is the sector diametrically
opposed to the Central one. The exact size of each sector is a parameter of the
problem, as well as the number of agents and the number of positions.

An example of sectors delimitation is given in Figure 1, for a ring of size 13.

3.2.3 Rewards

Each agent is rewarded if it has a large enough number of neighbors (i.e., more
than a certain fraction of the total population is in its central sector). Each agent
is penalized if it has not enough neighbors (i.e., less than a certain fraction of the
population is in its central sector).



3.2.4 Learning process

The learning phase is organized as follows:

• The initial positions of agents are random, following a uniform distribution.

• At each step, each agent decides where to go with a ✏-greedy policy.

• When all the decisions are taken, all the agents move simultaneously.

• After moving, they consider their environment, get rewards and update their
Q-values with respect to these rewards.

• The learning phase is subdivided in cycles of several steps. At the end of
each cycle, the position of agents is reset to random positions. This ensure
that the environment is diverse enough to learn a robust behavior. After
position reset, the agents can move again for another cycle.

The duration of a cycle is set proportional to the size of the ring (e.g. 5 times
the size of the ring) in order to give enough time to the agents to gather: this
time depends on the distance they have to travel, and this distance depends on the
size of the ring. To update Q-values, Q-learning with eligibility traces is used.
Eligibility traces are reset at the end of each cycle, and each time, a reward is
given to an agent.

3.2.5 Problem

Intuitively, the goal is to make the agents learn a gathering behavior, that is: within
a reasonable time in a same cycle, the agents become (and remain) reasonably
close to each other. This criteria is voluntarily informal, and its satisfaction will
be evaluated with several metrics in the next section.

More precisely, the problem consists in computing, for each agent, a value
Q(s, a) for each couple state-action (s, a). This value indicates which action a
to take in state s in order to increase the likelihood of obtaining a reward. For
instance, the description given in subsection A states that, with probability 1 � ✏,
action a is chosen if it maximizes Q(s, a) among all possible actions from state s.

Our objective is to verify experimentally that the Q-values learned in this fash-
ion lead to an e�cient gathering of the agents, i.e, that reinforcement learning,
with rewards being given to actions that improve an agents’ neighbourhood situa-
tion, lead to e�cient gathering behaviours at the level of the group.



Figure 2: Time needed to form a group from random initial positions for 10 agents
on a ring of size 13. Each point is the mean over 5 cycles of the average time to
form a group (in the following, we simply say “average over X cycles”).

3.3 Results
We consider a ring of size 13, with a sector division such as described in Figure 1.
A group exists if at least one agent has more than 80% of the population as neigh-
bors. An agent is given a reward of value 100 if the fraction of neighbors is more
than 80% of the population, and a penalty of value �5 if it is 10% or less.

The exploration rate is ✏ = 0.1, the learning rate is ⌘ = 0.1 and the discount
factor is � = 0.95. The duration of a cycle is 65 steps (around 5 times the size of
the ring), and the duration of the learning phase is 5000 cycles.

3.3.1 Results for 10 agents

We first consider a population of 10 agents. To assess the quality of the learned
behavior, we compute several metrics. We first consider the time needed to form
a group from random initial positions, and see how it evolves during the learn-



Figure 3: Maximum and minimum number of neighbors, in percent of the total
population, during learning, for 10 agents on a ring of size 13. Maximum is black
squares and minimum is white triangles. The dashed line is the minimum number
of neighbors needed to be considered in the group: 80% of the total number of
agents. Each point is an average over 325 steps, including time before creation of
the first group.



Figure 4: Evolution over time of the number of neighbors at each position of the
ring during a cycle. Larger dots represent a higher number of neighbors. Positions
where agents are considered to be in the group are in black, others in white.



Figure 5: Time needed to form a group from random initial position for 10 agents
on a ring of size 13. Each point is an average over 75 cycles. Learning phase is
75 000 cycles long.



Figure 6: Maximum and minimum number of neighbors, during learning, for 10
agents on a ring of size 13. Maximum is black squares and minimum is white
triangles. The dashed line is the minimum number of neighbors needed to be
considered in the group (i.e. 80% of the total number of agents). Each point is
an average over 75 cycles (4875 steps), including time before creation of the first
group. The learning phase is 75 000 cycles long.



ing phase. Then, to ensure that groups are not only formed but also maintained,
we observe the evolution of the number of neighbors among the population. To
evaluate the learning qualitatively, we look at the exact behavior of agents at the
beginning, middle and end of the learning phase. Finally, we study the impact of
a longer learning phase.

Time to form a group. Figure 2 shows the time that agents need to gather and
form the first group (i.e., at least one agent is rewarded), starting from random
initial positions. We observe that this time decreases during the learning phase
and stabilizes around 10 steps.

Number of neighbors. Figure 3 shows the minimal and maximal number of
neighbors over all agents. When the maximal number of neighbors is above 80%,
it means that a group exists. When the minimal number of neighbors is above
10%, it means that no agent is isolated; when it is above 80%, it means that all
agents are in the group. We observe that the agents learn, not only to gather, but
also to maintain the group and avoid being isolated. Indeed, the maximum number
of neighbors is higher than 80% of the total number of agents, and the minimum
is higher than 10%. We also observe that the minimum number of neighbors is
close to 80% at the end of the learning phase. It means that even the agents that
are not always in the group are often in it.

Note that these average values include the iterations starting from the begin-
ning of each cycle, where the agents are not yet gathered (i.e. around 10 iterations
at the end of the learning phase).

Qualitative evolution. Figure 4 contains three plots that show the qualitative
evolution of the learning for three cycles, at the beginning, middle and end of the
learning phase.

In the first figure (beginning of the learning phase), we observe that the agents
are quite uniformly distributed: the circles are white and small, indicating few
neighbors and no significant group formation.

In the second figure (middle of the learning phase), we observe that the agents
converge to a same position, forming a group in approximately 10 steps. The large
black circle indicate that at least 80% of the total number of agents are neighbors
of the position, i.e. that a group exists. We can see that this group is maintained
after its formation until the end of the cycle. We also observe that the group itself
is slowly moving during the cycle, while being maintained. We notice that there
are very few agents outside the group after its formation.

In the third figure (end of the learning phase), we observe that agents still
converge to form a group, but the group is formed earlier than before (around 7



steps). The group is still maintained and still moves during the cycle. We can
notice even less agents outside the group than before.

Longer learning phase. We finally study the impact of a longer learning phase:
75 000 cycles instead of 5000.

Figure 5 is the equivalent of Figure 2 for a longer learning phase. At the end
of the learning, the agents are gathering faster (around 5 steps) and are less often
outside of the group.

Figure 6 is the equivalent of Figure 3 for a longer learning phase. We observe
that the minimum number of neighbors goes above 80%, which means that all the
agents are in the group most of the time.

3.3.2 Scalability and comparison with a hardcoded algorithm

In the section, we explore the scalability and robustness properties of the afore-
mentioned learning scheme. We show that the agents that have learned Q-values
with default parameters in 75 000 cycles are able to gather with more agents with-
out any new learning: we can take several agents that have learned in groups of
10 until we obtain a group of 100.

In a second time, we compare this behavior with a hardcoded gathering algo-
rithm (i.e., where the behavior is written in advance and not learned).

• First, we compare the learned behavior to an algorithm that uses the exact
and absolute positions of all the agents (by opposition to relative positions
and approximations used during learning). With this algorithm, agents al-
ways move towards the barycenter [22, 64] of all the agents. As this al-
gorithm has an exact view on the environment, the performances are 50%
better.

• We then make a fairer and more meaningful comparison with an algorithm
that uses the same perceptions as the learning algorithm. With an equally
constrained perception of the environment, we get results that are similar
to the learned algorithm (the learned algorithm even slightly better in terms
of “time to form a group”). We thus show that, even with a relatively sim-
ple learning scheme, we can reach the same performances as a hardcoded
behavior.

Note that, since the agents have already learned a behavior, there is no more
“progression” visible on the plots.



Figure 7: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 with (hardcoded algorithm). Average is 5.4 steps,
median is 5.0 steps and standard deviation is 0.6.



Figure 8: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13 (hardcoded algorithm). Maximum is black squares and minimum is
white triangles. The dashed line is the minimum number of neighbors needed to
be considered in the group. Each point is an average over a cycle (65 steps). Av-
erage is 90.6%, median is 91.1% and standard deviation is 6.1% for the minimum
number of neighbors. Average is 96.3%, median is 96.3% and standard deviation
is 0.7% for the maximum number of neighbors.



Figure 9: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 (learned behavior). Average is 10.4 steps, median is
10.0 steps and standard deviation is 5.1.



Figure 10: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 (Q-hardcoded algorithm). Average is 12.1 steps, me-
dian is 11.0 steps and standard deviation is 4.9.



Figure 11: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13. Maximum is black squares and minimum is white triangles (learned
behavior). The dashed line is the minimum number of neighbors needed to be
considered in the group. Each point is an average over a cycle (65 steps). Average
is 40.4%, median is 16.3% and standard deviation is 31.0% for min neighbor. Av-
erage is 87.1%, median is 86.0% and standard deviation is 5.1% for max neighbor.



Figure 12: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13 (Q-hardcoded algorithm). Maximum is black squares and minimum is
white triangles. The dashed line is the minimum number of neighbors needed to
be considered in the group. Each point is an average over a cycle (65 steps). Av-
erage is 27.8%, median is 27.8% and standard deviation is 2.3% for the minimum
number of neighbor. Average is 79.9%, median is 80.0% and standard deviation
is 2.3% for the maximum number of neighbor.



Time to create a group for 100 agents. On Figure 9, we can see the time needed
to form a group for 100 agents on a ring of size 13. Compared to the case with 10
agents, the time needed to form a group including 80% of the population is higher
(around 10 steps in average). But the agents are still able to gather in a short time
(the worst case is no more than 50 steps) most of the time: 997 times over 1000.

Number of neighbors for 100 agents. On Figure 11, we observe that the max-
imum number of neighbors is higher than 80% most of the time, which means
that a group exists most of the time. We also observe that the minimum number
of neighbors is often low. This means that a few agents, even if not isolated, are
unable to join the main group.

Performances of the hardcoded algorithm. On Figure 73 and 8, we can ob-
serve that the hardcoded algorithm is better than the learned behavior. In average,
the agents gather in 5 steps with a standard deviation of 0.6. Moreover, the max-
imum and minimum number of neighbors are very high (average: resp. 96% and
91%). However, these good results are only possible because this algorithm uses
the exact and absolute positions of other agents.

Fairer comparison. To make a fairer comparison between hardcoded algorithm
an learned behavior, we try to impose to the hardcoded algorithm the same con-
straints that were imposed to the learning algorithm: relative position, sector ap-
proximation and action choice with Q-values. To do so, we compute Q-values
with the help of the hardcoded algorithm. Each agent decide how to act accord-
ing to the hardcoded algorithm, and Q-values are computed along the sequence of
actions determined by the hardcoded algorithm. It allows each agent to compute
Q-values for couples (s, a) of states and actions. We call this algorithm the Q-
hardcoded algorithm: the desired behavior is known in advance, but we imposes
the same perception constraints to the agents than the learned behavior.

In Figure 10, we observe that the time needed to form a group has the same
distribution as the learned behavior in Figure 9. The average time is even slightly
better for the learned behavior (10 steps) than for the Q-hardcoded algorithm (12
steps). However, the standard deviation is slightly higher for learned behavior
(5.1) than for the Q-hardcoded algorithm (4.9).

In Figure 10, we represent the distribution of the number of neighbors. Here
again, we observe that the distribution is better for the learned behavior (Fig-
ure 11) than for the Q-hardcoded algorithm (Figure 12): the average of the maxi-
mum number neighbors is better (87% versus 80%) as well as the average of the

3Note that the figures are intentionally numbered to keep figures 9 and 10 (resp. 11 and 12)
side by side, in order to have a clearer comparison between these figures.



minimum number of neighbors (40% versus 28%)4. However, the distribution of
the number of neighbors is more sparse for the learned behavior.

3.4 Future works
In order to extend this work, it might be interesting to investigate how this multi-
agent behavior emerges from the individual behavior of each agent, the di↵erence
of behavior between agents, and to quantify the importance of diversity in the
behavior of agents.

Another direction to continue this work would be to devise a way for agents
to design or learn their own approximations of their environment. This could be
done through unsupervised learning [45], or with the help of the reward feedback
from the environment (or by a combination of both). This automatic design of the
perception approximation could allow to systematically find a good compromise
between the reduction of the learning space and the capacity to perceive meaning-
ful di↵erences and learn complex tasks. Neural networks may be a good modular
framework to model these approximations functions.

A major challenge would be to find a way to reuse the behavior learned with
the old approximation, instead of re-learning the behavior from scratch whenever
a change occurs in the approximation. The relative dynamics of the two timescales
(one for the evolution of the approximation, and one for the evolution of the be-
havior) would also be of a particular importance.
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