
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch

Teaching Recursion and Dynamic

Programming Before College

Michal Anderle
Comenius University

anderle@dcs.fmph.uniba.sk

Michal Forišek
Comenius University

forisek@dcs.fmph.uniba.sk

Monika Steinová
monika.steinova@alumni.ethz.ch

Abstract

This paper is about teaching the algorithmic concepts “recursion” and
“dynamic programming” earlier than in a college undergraduate Algorithms
101 course. We describe our motivation to do so, we provide background
on how we believe it should be done and why, and we discuss our practical
experience with doing so.

1 Overview

Within the context of this paper, recursion denotes the use of self-reference, most
notably in mathematical definitions and in algorithm design. Two useful canonical
examples are the definition of an ancestor (your ancestors are your parents and
their ancestors) and the MergeSort algorithm.

The term dynamic programming refers to all kinds of computation where so-
lutions to multiple instances of the same problem are computed, stored, and later
reused. Problems solvable via dynamic programming are said to exhibit an op-
timal substructure – i.e., optimal solutions to larger instances of the problem are
related to optimal solutions to other, smaller instances of the same problem.

anderle@dcs.fmph.uniba.sk
forisek@dcs.fmph.uniba.sk
monika.steinova@alumni.ethz.ch

1.1 Teaching Recursion

Teaching recursion is already a well-researched topic. Rinderknecht [15] exten-
sively surveys the research on teaching and learning recursive programming over
a period of more than 40 years. Another review of this area which focuses on
publications that document research results is given by McCauley et al. [14].

1.2 Teaching Dynamic Programming

Dynamic programming is a standard paradigm used in the design of e�cient algo-
rithms. This approach is usable for problems that exhibit an optimal substructure:
the optimal solution to a given instance can be recursively expressed in terms of
optimal solutions for some sub-instances of the given instance.

There are two main ways to implement algorithms that use dynamic program-
ming. These two ways are essentially isomorphic, but there are subtle di↵erences
that may make one approach more suitable than the other, depending on the exact
setting. The two approaches are top-down, recursive (usually called memoization)
and bottom-up, iterative.

Teaching dynamic programming sooner than in college has so far received
very little attention, and it is mostly considered a topic that is too di�cult for
undergraduate college students.

The paper by Forišek [7] surveys the way dynamic programming is explained
in standard college textbooks [4, 16, 5, 8, 17], identifies and analyzes multiple
issues with those expositions, and presents a detailed suggestion on how dynamic
programming should be taught. The most notable feature of the presented ap-
proach is that it no longer treats the design of an algorithm using dynamic pro-
gramming as a conceptual black box – instead, our approach intentionally breaks
up the design of a dynamic programming algorithm into multiple smaller and eas-
ier conceptual steps. The approach presented in this paper has been used with
much success when teaching dynamic programming in an introductory university
course, as well as when teaching it to talented kids aged 15–19.

Böckenhauer et al. [3] describe their experience with teaching dynamic pro-
gramming in a way that can be introduced to first-semester students of natural
sciences with almost no background in computer science. In order to do this, they
focus solely on iterative dynamic programming with a two-dimensional matrix.

Erdősné Németh and Zsakó [6] describe a set of tasks that can help kids build
various problem-solving strategies, and in particular the dynamic programming
concept. Their tasks range from activities in the style of CS Unplugged, through
Bebras tasks, all the way to secondary-school algorithmic competitions.

1.3 The Algorithmic Competition PRASK

Slovakia has a rich history of various algorithmic competitions. They di↵er in
the types of tasks, ages of participants, and the length of the competition. A new
addition to them is the competition PRASK, founded in 2015. This competition
is focused on talented middle schoolers (approximate ages 11–15) with interest
in computer science. The main objective of PRASK is to promote and develop
algorithmic and programming skills. The competition also serves as a gateway to-
wards high school informatics competitions such as the Slovak National Olympiad
in Informatics. The tasks in PRASK are designed to be approachable by beginners
without previous knowledge in computer science.

PRASK is a long-term competition that consists of multiple rounds, spread
across one school year. In each round the contestants have approximately one
month to come up with their solution to a given set of five problems. There are
various types of tasks: theoretical (the solution is a written text), practical (using
the tools available on a regular computer), or programming (the solution is a pro-
gram in an existing language). All problems presented in this paper have been at
some point used as theoretical tasks in this competition.

A more detailed report on the competition is given by Anderle [1].

2 Our Approach and Goals

We believe that the concepts of recursion and dynamic programming are impor-
tant concepts in algorithm theory. Both have often been documented as hard to
approach and unintuitive, even for university students. We are convinced that the
main reason for this is that those students didn’t have su�cient prior exposure to
problems and settings that introduce many of the necessary concepts in a natural
and intuitive way.

In this paper we present a carefully selected collection of problems that can
introduce recursive thinking and concepts related to dynamic programming. All
problems shown in this paper were successfully solved by talented kids aged ap-
proximately 12–15, and are pretty approachable for the general population of kids
aged 15–19.

Note that (as opposed to, e.g., Forišek [7]) our goal in this paper is not a
complete exposition of dynamic programming as an algorithm design technique.
The problems presented in this paper provide the solver with individual schemata
related to the technique. At a later age, when learning the technique as a whole,
the students will then easily discover the links between these schemata, and they
will be able to infer general patterns and acquire a deeper understanding of the
topic.

3 Problems

In this section we present the collection of problems we selected as suitable for
introduction of various concepts related to recursion and dynamic programming.
Each subsection contains a brief overview of an algorithmic topic followed by one
or two sample problems. Each problem consists of a simplified task statement, a
discussion of its algorithmic background, and selected experiences from using the
problem as a task in the PRASK competition.

Note that the task statements used in the competition are much more verbose –
e.g., they include illustrated examples where applicable and they usually include a
short story that provides additional motivation to solve the task. In this paper these
parts were omitted to conserve space. For easier orientation in the text, problem
statements are typeset with a vertical rule on the left.

3.1 Game of NIM Variants

The name NIM [2] denotes a class of impartial combinatorial games for two play-
ers that are played by removing tokens according to given rules. A player loses
the game if they cannot make a valid move.

We view these games as an important didactic tool. One of the main reasons is
that kids like to play games, and actually playing small instances of these games
against each other is a great way to discover how they work and build intuition
that can later be generalized to a full solution.

The main reason for including these games in this paper is the inherently re-
cursive nature of their solution: In an impartial combinatorial game each position
is either winning (i.e., the player to move has a winning strategy) or losing. The
evaluation of a position can be phrased using two simple recursive rules:

• If each move from a position P leads to a winning position, position P is
losing. (Note that this includes the base case for the recursion: the positions
where you lose immediately as you have no valid moves left.)
• If there is a move from position P that leads to a losing position, position P

is winning (and that move is a winning move).

Sample Problem Statement 1

The Game with Sparklers.

Petra and Janko have a box of sparklers. They use it to play a game. The
two players take alternating turns in which they remove some sparklers from
the box (and light them). Exact rules for removing sparklers are di↵erent in

di↵erent subtasks. Petra goes first. The player who is forced to remove the last
sparkler loses the game (and has to go throw out all the burned-out sparklers).

Subtask A: There are 7 sparklers in the box. The kids can remove 1, 2, 3,
or 4 sparklers in each turn. How should Petra play to win the game?

Subtask B: The same rules, but there are 42 sparklers in the box. Also for
this game Petra has a winning strategy – i.e., there is some set of rules how she
should play such that if she follows them, she is guaranteed to win the game
regardless of how Janko is playing. Find and describe a winning strategy for
Petra. Justify why your strategy works.

(An example of a strategy would be “if Janko just took 3 sparklers, you take
1, otherwise you always take as many as you can”. However, this particular
strategy is not a winning strategy, Janko can beat it.)

Subtask C: Petra and Janko are now going to play 20 independent games,
one after another. Game x will be played using a box that contains x sparklers.
In these games, the allowed moves are to remove 1, 3, 4, or 5 sparklers (but not
2). For each game determine who wins if both kids play optimally.

Subtask D: The same game as in Subtask C, but with a box of 2015
sparklers.

Analysis

The above problem is a misère version of a game of NIM. (To map it to the regular
version, one can simply label the position with one sparkler left as losing.) The
statement is designed to gradually introduce the concepts needed for the analysis
of the game. The strategy for subtask A is easy to discover by playing out all
possibilities, and its generalization for subtask B is really easy to describe (“start
by taking 1 sparkler, then whenever Janko takes x you take 5 � x”).

In particular, note that the way subtask C is phrased motivates the solver to
discover how to reuse information – “This move would get me to position x, and I
already know that the player to move wins from that position.” – which is precisely
the application of dynamic programming.

Experience

A slightly modified version of the above problem (with a more verbose statement
that explained in more detail the concept of playing optimally) was used in a round
of the PRASK competition [9].

We received 18 solutions. Almost all contestants successfully solved subtask
B, with five of them also explaining in detail how they derived it by starting from
the smallest positions and noticing that 1 and 6 were losing.

In subtask C the full statement explicitly explained what happens in the triv-
ial game with one sparkler to avoid confusion. Twelve contestants solved this

task, usually by writing out a table, noting which positions are losing and saying
that from other positions the player should move to those. Other contestants ei-
ther didn’t send anything, or they worked out small instances but then made an
incorrect generalization.

The last subtask was the hardest, only solved by eight contestants. Most of the
others also noticed the pattern but failed to generalize it correctly. Even those who
solved it correctly struggled to justify why the observed pattern has to repeat.

It seems that the task was interesting and accessible for the contestants. Most
of them were able to solve the main parts of it and come up with dynamic pro-
gramming necessary for solving it e�ciently. In the statement as presented above
we made two improvements based on the experience with the task used in the
contest: we added the introductory subtask A, and we changed subtask D to use
the same set of moves as C.

Sample Problem Statement 2

Figure 1: Valid moves of a knight (left). Subtask A (middle). Subtask B (right).

Knight on a Chessboard

Kika and Andrej are playing a game using a regular chessboard and one
knight. The knight is placed on some cell of the chessboard, then players take
alternating turns. In each turn, a player has to move the knight according to
chess rules to a cell that is closer (in terms of Manhattan distance) to the bottom-
left corner (see Figure 1 left). The player who cannot move the knight loses.

Subtask A: The knight starts at (5, 5) (see Figure 1 middle). Who can win
the game, no matter what their opponent does? Provide a description of how
that player can win.

Subtask B: Answer the same question if the knight starts at (6, 7) (see Fig-
ure 1 right).

Subtask C: For each cell of the (8⇥8)-chessboard determine whether Kika
(the starting player) can guarantee a win if the knight starts at this cell. Fill a
two-dimensional table. Into the cell (r, c) write 1 if Kika has a winning strategy
if the game starts with a knight on the cell (r, c), or 0 if she does not. Describe
how you fill the table.

Subtask D: Generalize the algorithm to an arbitrary (r ⇥ c)-chessboard.
Subtask E: A harder version of the game uses multiple knights. Each cell

of the chessboard may contain arbitrarily many of them. In each turn, the active
player can choose an arbitrary number of knights (but at least one) and move
each of them according to the previous rules.

Explain how to evaluate a position in this game. That is, given the coordi-
nates of all knights, how do you determine who has a winning strategy? Can
the table computed in Subtask C help us?

Analysis

This is also an impartial combinatorial game. It’s not exactly a game of NIM,
but they share a common generalization (games that move a token on an acyclic
graph) and they share the same properties that make the game a useful didactic
tool. Additionally, this game is based on a familiar setting and has an easily
describable state. The problem given above is designed gradually, moving from
specific examples to more general solutions.

Starting positions in subtasks A and B are carefully chosen. The one in sub-
task A is losing, and it is expected that most solvers will determine this by an
exhaustive search. The one in subtask B is winning, and there is a simple argu-
ment why: the move to (5, 5) which we know to be losing. This connection can
lead pupils towards reusing known information about the previous states.

Subtask C requires a thorough approach while filling the table. The statement
strictly determines the format of the output. This is intentional because, at this
stage, solvers need to move from thinking about specific players to thinking about
the player to move. Number 0 and 1 represent this idea better than the characters
‘K’ and ‘A’ that could be chosen by the contestants. Subtask D then leads to a
better formalization of the discovered relations.

The last subtask is optional, intended as possible follow-up. It requires a better
understanding of winning and losing positions and shows how complex problems
can be solved by looking at easier instances. (For the full solution, consider what
happens if all the knights are on positions that were losing in the one-knight ver-
sion of the game, and what happens in all other cases.)

Experience

This exact task, of course with a more verbose statement, was used in a round of
the PRASK competition [11]. We received 12 solutions to it.

The first two subtasks were successfully solved by all contestants. All but
one then generalized their observations and described the rules for winning and
losing positions. Most of them also described how they essentially used dynamic
programming to gradually fill the resulting table and how they would generalize it
for bigger chessboards. But instead of doing it cell by cell, they usually filled the
table in “waves” of losing and winning positions.

One contestant, even though she described the rules correctly, failed to pro-
duce a correct result. It seemed that she filled some cells before she filled all
reachable positions. The problem first occurred at position (5, 3), which is why
we would consider adding it to the early subtasks when reusing the problem.

The last subtask was solved by 8 contestants, others didn’t write anything to
their solutions. All of them correctly generalized the problem and produced a
correct strategy.

3.2 Coin Change Problem Variants

Using money to pay a sum exactly is an excellent environment, because already at
a young age contestants have practical experience with it and thus they can benefit
from the intuition they already have, and they don’t have to use abstraction when
reasoning about problems set in this environment.

This environment gives us a class of problems related to the famous “knap-
sack” problem. In these problems we ask questions like “given a sum and a set
of denominations, in how many di↵erent ways can we pay the sum?” or “given
a sum and a set of denominations, what is the smallest number of coins and ban-
knotes needed to pay the given sum exactly?” All of these problems are solvable
in pseudopolynomial time using a natural application of dynamic programming.

The optimal substructure comes from the following observation: When paying
any amount x, I have to use some coin y x and then I’m left with the remainder
(which is x � y) and the same question as before.

Sample Problem Statement

Money Problems.

In Absurdistan they use gold coins as the only form of payment. The coins
come in multiple denominations.

When paying any amount, people of Absurdistan like to use a simple greedy
algorithm: always take the largest coin that does not exceed the sum you are

trying to pay.
A set of coin denominations is good if it has two properties:

1. If one has an unlimited number of coins of every denomination, one can
pay any positive integer amount exactly.

2. Using the greedy strategy to pay any amount will always use the fewest
coins possible. (That is, there cannot be a di↵erent way to pay the same
amount using fewer coins.)

For example, the Euro denominations and the US dollar denominations are
two examples of good sets of coins.

Subtask A: Design a set of coin values (each between 1 and 7, inclusive)
that will violate both properties. Explain why that’s the case.

Subtask B: Absurdistan currently uses coins with values 1, 4, 7, and 19.
This set of coins is good, but people in Absurdistan still struggle to use the
coins. Help them by creating a simple table: for each amount from 1 to 20, the
table should contain the smallest number of coins with which it is possible to
pay that amount exactly. (Optionally, you can also include one optimal way of
paying each amount.)

Subtask C: Create a similar table for the set of values you designed in
Subtask A. (Of course, in this table at least one amount will be marked as
impossible to pay exactly.)

Subtask D: Absurdistan will eventually have a money reform that will in-
troduce a new set of denominations. Describe a general algorithm they should
use to create a new table such as the one you created in Subtask C. Try to find an
algorithm that is fast enough so that we can use it to create a table for amounts
1 to 500 if the number of new denominations is at most five.

Subtask E: After the money reform the king realized that coins with value
x have his face on them, but coins with value y bear the face of the previous
king (whom the current king hates). Therefore, the current king made a royal
decree: whenever anyone is paying any amount, they must always use at least
as many x-coins as y-coins.

Describe an algorithm that can be used to compute our table (i.e., for each
amount, how many coins are needed to pay it) if the royal decree is in e↵ect.

Analysis

The first subtask is designed to help the solver familiarize themselves with the
greedy strategy and to discover why it’s not necessarily optimal. It’s pretty obvi-
ous that we need a coin worth 1 to pay the amount 1, and that once we have such
a coin we can pay any amount. A simple set of coin values for which the greedy
algorithm fails is the set {1, 5, 7}: e.g., the greedy algorithm will pay the sum 10
as 7 + 1 + 1 + 1 (four coins used) whereas the optimal way is 5 + 5.

In Subtask B the contestants can practice using the greedy strategy to pay vari-
ous amounts. Already this subtask o↵ers them an option to discover a very simple
form of dynamic programming: instead of going through the whole algorithm for
each sum, we can reuse the values computed sooner. For instance, when paying
the sum 29 we will start by using the coin 19, so then we are left with the sum 10
and we already know how to pay that sum optimally.

Subtask C is still small enough to be solved by exhaustive search, but the
benefits of using dynamic programming to speed up your work are much more
significant when the number of ways to pay a sum grows exponentially.

Subtask E is solvable using a clever trick: we can guarantee satisfying the
royal decree by simply gluing one x coin to each y coin. Thus, we get the same
problem as before, only the set of denominations now contains x + y instead of y.

Experience

An essentially identical task was used in the PRASK competition [13], the only
di↵erences were that in Subtask A the upper bound was not present and in Subtask
B it was not highlighted that the given set of denominations is good.

All contestants who attempted this problem solved Subtask A successfully,
with one of them remarking: “Let’s come up with a set where the second property
fails, then we just multiply all its coins by 2 to make it also fail the first property.”

Among contestants who attempted Subtask C, one half still used some brute
force approach, the other half managed to discover some version of dynamic pro-
gramming. (When reusing the task we would raise the maximum amount to pay
from 20 to 50 in order to discourage the brute force approach.)

Notably, two di↵erent approaches (corresponding to di↵erent orders of for-
cycles in the implementation) were both present: some contestants added the coin
values one at a time, each time recomputing the optimal solution for all amounts,
others were iterating over all amounts and always attempted to use each coin as
the first one when paying the current amount.

The best two contestants (ages 14 and 15) managed to fully solve the task,
including the trick needed to solve Subtask E.

We note that the first of the two approaches mentioned for Subtask C can
be extended to a new subtask: given a finished table for some unknown set of
denominations and a new coin type, how will the table change?

3.3 Monotonous Paths on a Grid

One of the classes of problems that are most suitable as early introductions to the
concept of dynamic programming are problems that involve paths on a grid, with
Manhattan being a common metaphor. The canonical problem from this category

is: “You are going from an intersection to another intersection that is r blocks
to the south and c blocks to the east. Assuming you can only walk southwards
and eastwards, how many di↵erent routes can you take?” Solving this problem
first in its pure form and later in the presence of obstacles that block specific roads
and/or intersections is a really easy problem and again, the application of dynamic
programming is very natural: “all routes that reach the goal = all routes that reach
it from the north + all routes that reach it from the west”.

Below we present one of our problems that falls into this broad category.

Sample Problem Statement

Figure 2: The candy-giving stations and the dwellings of ten travellers (left). The
same situation extended by one more diagonal and one more dwelling (right).

Collecting Candy.

We have a “triangular” grid of cells. (See Figure 2 for two examples.) A
group of travelers is located in the top-left corner. Each traveler is on their way
home. The homes are depicted below the diagonal. In each step, each traveler
can move either one cell down or one cell to the right. Each cell contains a
station that hands out a fixed amount of candy to each passing traveler.

Subtask A: Consider the plan shown in Figure 2 on the left. For each
dwelling, determine the maximum total amount of candy that can be gathered
on the way from the top-left corner to that dwelling. Describe how you com-
puted your answers and explain why they are correct.

Subtask B: The plan shown in the same figure on the right is the same,
except for an additional diagonal of cells with stations. Again, determine the
optimal candy count for each dwelling. Can we reuse the solution of Subtask
A to answer this question easily? If yes, how?

Subtask C: Knowing the optimal amounts is not enough! For each
dwelling from Subtask B, find one optimal path along which the traveler should
go in order to collect as much candy as possible. In detail, describe the process
of how you determined these paths.

Subtask D: Suppose we gave you a similar grid with 80 rows. Would you
still be able to solve the same task as on the grid with 10 rows? Try to estimate
the amount of time you would need to solve such a big grid.

Analysis

The straightforward visualisation on a grid makes the task approachable also for
our young students. The candy counts written in cells lead students into thinking
about writing other numbers into cells when computing their solutions.

We have broken the task into several steps through which we intended to grad-
ually build students’ experience and abstraction, enabling them to solve the last,
most general task.

Subtask A contains a specific instance of the problem to increase the students
familiarity with the task. Since the students were given weeks to find a solution,
we intentionally chose a fairly large grid by which we aimed to discourage stu-
dents from trying all potential paths manually. (This is still possible, e.g., for
the second dwellings from the top and bottom to verify the results obtained by a
di↵erent method.)

Subtask B is actually giving useful advice on how to approach Subtask A as
well – by guiding the students towards processing the instance one diagonal at a
time.

Subtask D should encourage the students to generalize the process they used
manually to solve the specific instances. At this stage (if not earlier) we expect
the students to claim that each cell is reachable from at most two other cells (from
above and from the left) and we can always determine the maximum by picking
the better of those two options.

This subtask also guides them towards a future concept of (asymptotic) time
complexity of algorithms, and we expected an argument that the computation time
is proportional to the number of cells, and that the new grid has roughly 60 times
more cells than the old one.

3.3.1 Experience

This exact problem was used in a round of the PRASK competition [10].
One contestant only submitted numeric answers without any explanation. All

others employed a visualisation of the computed results in a grid. The majority
stored candy counts in the cells, but we had a single student that moved along
grid edges of his figure and stored the counts in the crossroads. Both directions
of computation (both “which cells influence my current cell” and “which cells are
influenced by my current cell”) were present among the solutions.

A range of di↵erent approaches could be observed in Subtask A, including
correct solutions but also:

• An incorrect heuristic that from the view of consecutive 2–3 stations picks
the one which yields the most candy and moves on to another 2–3 stations.
• A greedy approach which processes the dwellings gradually and prefers

cells with a maximal candy count in a row or a column.
• An application of Dijkstra’s algorithm1.

In general we were able to observe that students were building their knowledge
gradually. We saw few students that analyzed grids consisting of an increasing
number of rows (and all columns). Several students were able to generalize these
ideas further but the majority were thinking in terms of the fixed instance given in
the subtask.

The transition from Subtask A to Subtask B saw mixed results. On the one
hand, all the students were able to reuse their solution of Subtask A to determine
the counts for the bigger instance. On the other hand, some students did not
solve Subtask A correctly and did not fix their solution retroactively using their
new observation. We conclude that these students have not fully realized that
in a similar spirit smaller instances could have been used in their calculations in
Subtask A.

Only the students who solved Subtask B correctly were also able to provide
a correct solution to Subtask C. Additionally, they all computed the path together
with the candy count calculation.

We correctly predicted that the generalization is a di�cult leap. Some students
able to solve the given instances using previous cells were unable to detach from
the fixed size and formulate the idea for an instance of arbitrary dimension. Only
the best two contestants were able to estimate the time complexity correctly.

If the task were to be used in a class, we recommend shrinking the instance
used in Subtask A to allow brute force solutions, and also shrinking Subtask B to
match.

1The student claims that the algorithm was mentioned in one of his textbooks and he studied it
more carefully to solve the subtask.

3.4 Fractal Patterns

The visual nature of fractals makes them a popular tool when familiarizing young
students with recursion. Below we describe a slightly more involved task that
references one particular fractal pattern.

Sample Problem Statement

Pyramid with Sarcophagi

Egyptians decided to build a new Great Pyramid and move all sarcophagi
into it. The pyramid will have a triangular cross-section. Floors will be num-
bered from 1 on the top and rooms on floor x will be numbered from 1 to x from
the left to the right. A local custom dictates that only some rooms are suitable
for a sarcophagus. The rules for this are as follows:

The room on the top must contain a sarcophagus.
Each other room must contain a sarcophagus if and only if there is exactly

one sarcophagus in the one or two rooms that are directly above this room.
These rules uniquely determine which rooms must and which rooms must

not contain a sarcophagus. The first six floors of the pyramid are shown in
Figure 3.

Figure 3: The locations of sarcophagi in a 6-floor pyramid.

Subtask A: Notice that each room on the 4th floor contains a sarcophagus.
Imagine that we are constructing more and more floors of the pyramid. Will
there be other floors that are fully filled? What numbers will they have and
why? Is there an infinite number of such floors?

Subtask B: For each of the following rooms, determine whether they con-
tain a sarcophagus: room 10 on floor 20; room 266 on floor 276; room 11 on
floor 276.

Subtask C: Devise a procedure that will compute whether a given room on
a given floor contains a sarcophagus. Try to find a way that will be as fast as
possible. There is a solution that can determine the answer for any room in a
1 000 000-floor pyramid in a minute using just a pen and some paper.

Use your procedure to find out whether room 498 on the 2019th floor con-
tains a sarcophagus.

Analysis

The task is based on a well-known structure – the Sierpinski triangle. This discrete
version of the triangle is recursive and has a nice visual interpretation, which
makes it accessible to the pupils. We define it by using the recursive definition
of Pascal’s triangle (i.e., binomial coe�cients) and taking just the parity of these
numbers.

The first subtask is a bit unconventional, as it asks for the general proof right
away. The reasoning is to give pupils the opportunity to explore the recursive
structure of the Sierpinski triangle. The resulting pattern (powers of 2) is easy to
spot when the picture is extended by more rows and it is closely related to the
overall structure. The proof is also fairly simple to formulate.

Afterwards, pupils are asked to solve a few specific instances in subtask B.
The first instance is small and solvable by writing out 20 rows of the triangle. The
second is larger and requires the use of previously obtained conclusions. Also,
the position (266, 276) is the same as (10, 20) just in another part of the triangle.
The position (11, 276) is the same as (266, 276) due to the vertical symmetry of
the pyramid.

The last subtask asks pupils to generalize the process used in the previous
subtask. However, some notion of e↵ectivity needs to be introduced to avoid
solutions that will just construct the whole triangle. And because pupils don’t
know time complexity, intuitive concepts such as “using pen and paper” were
incorporated into the statement.

Experience

Almost identical tasks, with a more detailed statement and some small modifica-
tions, were used in one round of the PRASK competition [12]. In this round, 15
contestants sent a solution to it.

With a single exception, all contestants were able to find the pattern of fully
filled floors, but only 6 of them proceeded further and correctly proved it. How-
ever, from the analysis of the solutions it was obvious that at least 6 more contes-
tants correctly understood the recursive structure of the Sierpinski triangle. It is

hard to tell whether they didn’t know how to formulate the correct proof or didn’t
find it necessary to do so.

Subtasks B was solved by 12 contestants and there weren’t any obvious prob-
lems. The only mistakes stemmed from a wrong generalization of the pattern, but
mostly, pupils were able to use the structure of the triangle and figure out correct
answers for both positions.

Eleven contestants attempted to solve the last subtask. Two of them used
a wrong pattern, one just described how the structure of the triangle looks but
didn’t provide any procedure. Several of them were aware of the connection to
binomial coe�cients (as far as we can tell, they knew this connection beforehand,
but weren’t aware of the recursive structure) and approached this subtask by trying
to evaluate the parity of the corresponding binomial coe�cient. Around half of
the contestants ended with a correct and e�cient solution.

The simple recursive structure of the discrete Sierpinski triangle makes it suit-
able to be explored by middle school pupils. The e�cient algorithm to determine
the value of a given cell is reasonably simple, but its e↵ectivity is hard to analyze
for pupils of this age. Hence, we did not ask for such an analysis and instead we
just provided a large instance for them to solve manually in order to gain some
intuition about the algorithm’s complexity.

4 Conclusion and Acknowledgement

In this paper we have presented examples of tasks for pre-college students that mo-
tivate recursive thinking and dynamic programming techniques. The tasks consist
of several subtasks with gradual di�culty ranging from concrete instances to ab-
stract tasks. The students are lead through these subtasks and build more abstract
conclusions and discover the recursive nature of the problems. We do not aim
at completely covering the techniques but we rather deepen the understanding of
how to reuse smaller solutions on the way to solve large instances.

We are thankful to the whole collective of volunteers who help run the Slovak
programming competitions and other extra-curricular activities for talented kids
in STEM areas for all their contributions. In particular, we are thankful to people
who helped with the problems mentioned in this paper when they were used in
the PRASK competition: Marián Horňák, Ján Hozza, Kristína Korecová, Andrej
Korman, Mário Lipovský, Roman Sobkuliak, and Mária Vajdová.

References

[1] M. Anderle. PRASK – An Algorithmic Competition for Middle Schoolers in Slo-
vakia. Olympiads in Informatics, 12:147–157, 2018.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathe-

matical Plays, volume 1. Wellesley, Massachusetts; A. K. Peters Ltd., 2 edition,
2001.

[3] H.-J. Böckenhauer, T. Kohn, D. Komm, and G. Serafini. An Elementary Approach
Towards Teaching Dynamic Programming. 128:587, 06 2019.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2nd edition, 2001.

[5] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill,
2006.

[6] A. N. Erdösné and L. Zsakó. The Place of the Dynamic Programming Concept in
the Progression of Contestants’ Thinking. Olympiads in Informatics, 10:61–72, 07
2016.

[7] M. Forišek. Towards a Better Way to Teach Dynamic Programming. Olympiads in

Informatics, 9:45–55, 07 2015.

[8] J. Kleinberg and É. Tardos. Algorithm Design. Addison-Wesley, 2006.

[9] KSP. Prskavkový problém. https://prask.ksp.sk/ulohy/zadania/996,
2015. Accessed: September 2019.

[10] KSP. Párty v časopriestore. https://prask.ksp.sk/ulohy/zadania/1022/,
2015. Accessed: September 2019.

[11] KSP. Prehra na šachovnici. https://prask.ksp.sk/ulohy/zadania/1354/,
2017. Accessed: September 2019.

[12] KSP. Premiestnení faraóni. https://prask.ksp.sk/ulohy/zadania/1354/,
2017. Accessed: September 2019.

[13] KSP. Potiaže s peniazmi. https://prask.ksp.sk/ulohy/zadania/1741, 2019.
Accessed: September 2019.

[14] R. McCauley, S. Grissom, S. Fitzgerald, and L. Murphy. Teaching and learning
recursive programming: a review of the research literature. Computer Science Edu-

cation, 25:37–66, 01 2015.

[15] C. Rinderknecht. A Survey on the Teaching and Learning of Recursive Program-
ming. Informatics in Education, 13:87–119, 04 2014.

[16] R. Sedgewick. Algorithms in C++. Addison-Wesley, 3rd edition, 1998.

[17] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 2nd edition, 2008.

https://prask.ksp.sk/ulohy/zadania/996
https://prask.ksp.sk/ulohy/zadania/1022/
https://prask.ksp.sk/ulohy/zadania/1354/
https://prask.ksp.sk/ulohy/zadania/1354/
https://prask.ksp.sk/ulohy/zadania/1741

	Overview
	Teaching Recursion
	Teaching Dynamic Programming
	The Algorithmic Competition PRASK

	Our Approach and Goals
	Problems
	Game of NIM Variants
	Coin Change Problem Variants
	Monotonous Paths on a Grid
	Experience

	Fractal Patterns

	Conclusion and Acknowledgement

