
The Algorithmics Column
by

Thomas Erlebach
Department of Informatics

University of Leicester

University Road, Leicester, LE1 7RH.

t.erlebach@leicester.ac.uk

https://www.cs.le.ac.uk/people/te17/
t.erlebach@leicester.ac.uk

Enumeration Complexity

Yann Strozecki
Université de Versailles

yann.strozecki@uvsq.fr

Abstract

An enumeration problem is the task of listing a set of elements without
redundancies, usually the solutions of some combinatorial problem. The
enumeration of cycles in a graph appeared already 50 years ago [96], while
fundamental complexity notions for enumeration have been proposed 30
years ago by Johnson, Yannakakis and Papadimitriou [65]. Nowadays sev-
eral research communities are working on enumeration from di↵erent point
of views: graph algorithms, parametrized complexity, exact exponential al-
gorithms, logic, database, enumerative combinatorics, applied algorithms to
bioinformatics, cheminformatics, networks . . .

In the last ten years, the topic has attracted more attention and these
di↵erent communities began to share their ideas and problems, as exempli-
fied by two recent Dagstuhl workshops “Algorithmic Enumeration: Output-
sensitive, Input-Sensitive, Parameterized, Approximative” and “Enumera-
tion in Data Management” or the creation of Wikipedia pages for enumera-
tion complexity and algorithms.

In this column, we focus on the structural complexity of enumeration,
trying to capture di↵erent notions of tractability. The beautiful algorithmic
methods used to solve enumeration problems are only briefly mentioned
when relevant and would require another column. Much of what is pre-
sented here is inspired by several PhD theses and articles [94, 17, 78, 77], in
particular a good part of this text is borrowed from [21, 20].

1 Introduction
Modern enumeration algorithms date back to the 70’s with graphs algorithms but
older problems can be reinterpreted as enumeration: the baguenaudier game [76]
from the 19th century can be seen as the problem of enumerating integers in Gray
code order. There are even thousand years old examples of methods to list simple
combinatorial structures, the subsets or the partitions of a finite set, as reported
by Ruskey [92] in his book on combinatorial generation. Algorithms to list all

yann.strozecki@uvsq.fr

integers, tuples, permutations, combinations, partitions, set partitions, trees of a
given size are also called combinatorial algorithms and are particular enumera-
tion problems. Combinatorial algorithms are the subject of a whole volume of the
Art of Computer Programming [72] and Knuth even confessed that these are its
favorite algorithms; while I agree I would extend that appreciation to all enumer-
ation algorithms.

Hundreds of di↵erent enumeration problems have now been studied, a par-
tial list called “Enumeration of Enumeration Algorithms and Its Complexity” is
maintained [101], and you are welcome to extend it! Some enumeration problems
have important practical applications. Any database query is the enumeration of
assignments of a formula, data mining relies on generating all frequent objects in a
large database (frequent itemset [1], frequent subgraphs[64]), finding the minimal
transversals of a hypergraph has applications in many fields [60] such as biology,
machine learning, cryptography . . .

A classical approach to enumeration is to see it as a variation on decision or
search problem where one tries to get more information. As an example, consider
the matchings of a graph, we may want to solve the following tasks.

• (decision problem) Decide whether there is a matching.

• (search problem) Produce a matching.

• (optimization problem) Produce a matching of largest cardinal.

• (counting problem) Count all matchings.

• (enumeration problem) List all matchings.

Usually, to analyze the complexity of a problem, we relate the time to produce
the output to the size of the input. The originality of enumeration problem is that
the output is usually very large with regard to the input. Hence, only measuring
the total time to produce the whole set of solution is not informative since for most
enumeration problems, including listing matchings, it is exponential.

To make enumeration complexity relevant, we must study finer complexity
measures than just total time, since it does not allow to di↵erentiate most enumer-
ation problems. Moreover, we use three di↵erent parameters to characterize an
instance: its size as in the classical setting, the size of the output (or its cardinal
since it is a set of solutions) and the size of a single solution in the output.

The simplest way to improve on the analysis of enumeration algorithm is to
evaluate how the total time to compute all solutions relate to the size of the input

and of the output. Algorithms whose complexity is given in this fashion are often
called output sensitive, by contrast to input sensitive algorithms [53]. Note that
output sensitivity is relevant even when the number of objects to produce is small,

in computational geometry it allows to give better complexity bound, for instance
on the convex hull problem [26]. When the total time is polynomial in the size of
the input and the output, the algorithm is said to be output polynomial (or some-
times total polynomial time). Output polynomial is a good measure of tractability
when all elements of a set must be generated, for instance to count the number of
solutions or to compute some statistics on the set of solutions.

Often, output polynomial is not restrictive enough given the outstanding num-
ber of solutions and we must ask for a total time linear in the number of solutions.
In that case, the relevant complexity measure is the total time divided by the num-
ber of solutions called amortized time or average delay. Many enumeration al-
gorithms generating combinatorial objects are in constant amortized time or CAT,
the unrooted trees of a given size [105], the linear extensions of a partial order [89]
or the integers given in Gray code order [73]. Uno also proposed in [97] a general
method to obtain constant amortized time algorithms, which can be applied, for
instance, to find the matchings or the spanning trees of a graph.

Enumeration algorithms are also often used to compute an optimal solution
by generating all admissible solutions. For instance, finding maximum common
subgraphs up to isomorphism, a very important problem in cheminformatics, is
NP-hard and is solved by listing all maximal cliques [46]. The notion of best
solution is not always clear and enumeration is then used to build libraries of in-
teresting objects to be analyzed by experts, as it is done in biology, chemistry
or network analytics [5, 10, 13]. In particular, when confronted to a multicrite-
ria optimisation problem, a natural approach is to enumerate the Pareto’s fron-
tier [88, 98, 12]. In all these applications, if the set of solutions is too large, we
are interested in generating the largest possible subset of solutions. Hence, a good
enumeration algorithm should guarantee that it will find as many solutions as pos-
sible in a predictable amount of time. In this case, polynomial incremental time

algorithms are more suitable: an algorithm is in polynomial incremental time if
the time needed to enumerate the first k solutions is polynomial in k and in the
size of the input. Such algorithms naturally appear when the enumeration task is
of the following form: given a set of elements and a polynomial time function act-
ing on tuples of elements, produce the closure of the set by the function. One can
generate such closure by iteratively applying the function until no new element is
found. As the set grows, finding new elements becomes harder. For instance, the
best algorithm to generate all circuits of a matroid uses a closure property of the
circuits [71] and is thus in polynomial incremental time. The fundamental prob-
lem of generating the minimal transversals of a hypergraph can also be solved in
subexponential incremental time [54] and some of its restrictions in polynomial
incremental time [48].

However, when one wants to process a set in a streaming fashion such as
the answers of a database query, incremental polynomial time is not enough and

we need a good delay between the output of two consecutive solutions, usually
bounded by a polynomial in the input size. We refer to such algorithms as polyno-

mial delay algorithms. Many problems admit such algorithms, e.g. enumeration of
the cycles of a graph [91], the satisfying assignments of some tractable variants of
SAT [36] or the spanning trees and connected induced subgraphs of a graph [6].
All polynomial delay algorithms are based on few methods such as backtrack

search (also called flashlight search or binary partition) or reverse search, see [78]
for a survey.

When the size of the input is much larger than the size of one solution, think
generating subsets of vertices of a hypergraph or small queries over a large database,
polynomial delay is an unsatisfactory measure of e�ciency. The good notion of
tractability is strong polynomial delay, i.e. the delay is polynomial in the size of

the last solution. A folklore example is the enumeration of the paths in a DAG,
which is in delay linear in the size of the last generated path. More complex prob-
lems can then be reduced to generating paths in a DAG, such as enumerating the
minimal dominating sets in restricted classes of graphs [58].

Contrary to classical complexity classes, none of the classes introduced in this
column but EnumP, the equivalent of NP, have complete problems. Because of
that, there are no definite notion of reduction between enumeration problems, and
for each proof that some enumeration problem is harder than another, there is a
new reduction. To overcome the lack of completeness result, several works restrict
themselves to smaller families of enumeration problem in the hope of better clas-
sifying their complexity: assignments of SAT formula [36], homomorphisms [19],
subsets given by saturation operators [80], FO queries over various structures [93],
maximal subgraphs [27, 31, 30]. . .

Organization In Section 2, enumeration problems and the related computation
model are defined, with an emphasis on the consequences of several definitional
choices. Then we introduce complexity classes related to three complexity mea-
sures, the total time in Section 3, the incremental time in Section 4 and the delay
in Section 5. For all these classes, we provide separation and characterizations
when possible. In Section 6, we describe the lack of hardness and lower bound
results for enumeration problems and show some perspective to overcome this sad
state of a↵airs. Finally in Section 7, we briefly sketch several ways to extend the
complexity classes introduced (solution order, space, randomization, FPT. . .) and
present several alternative approaches to the task of listing solutions exhaustively.

2 Enumeration problems
Let ⌃ be a finite alphabet and ⌃⇤ be the set of finite words built on ⌃. We denote
by |x| the length of x 2 ⌃⇤. Let A ✓ ⌃⇤ ⇥ ⌃⇤ be a binary predicate, we write A(x)
for the set of y such that A(x, y) holds. The enumeration problem Enum·A is the
function which associates A(x) to x. The element x is often called the instance or
the input, while an element of A(x) is called a solution. We denote the cardinal of
a set S by |S |.

In this column, we only consider predicates A such that |A(x)| is finite for
all x. This assumption could be lifted and the definitions on the complexity of
enumeration adapted to the infinite case. This is not done here because infinite
sets of solutions behave quite di↵erently when studying the complexity of their
enumeration. However, there are many natural infinite enumeration problems such
as listing all primes or all words of a context-free language [52].

We can further reduce the set of enumeration problems by adding constraints
on their solutions. First, the size of each solution can be bounded by a function of
the instance. It is reasonable since in many problems the size of a solution is fixed,
known beforehand and not too large, otherwise we would not even try to produce
them. A predicate A is said to be polynomially balanced if for all y 2 A(x), |y| is
polynomial in |x|.

Let Check·A be the problem of deciding, given x and y, whether y 2 A(x).
A constraint we could impose on enumeration problem is to be able to check
e�ciently whether a string is a solution. To do that, we ask for Check·A to be
in polynomial time, a condition which holds for almost all practical enumeration
problems.

From a polynomially balanced predicate A with Check·A in polynomial time,
we can define an NP problem by asking whether A(x) is empty or a #P problem by
asking for |A(x)|. It is then natural to define a class containing such enumeration
problems, analogous to NP.

Definition 2.1. The class EnumP is the set of all problems Enum·A where A is
polynomially balanced and Check·A 2 P.

The problems in EnumP can be seen as the task of listing the solutions (or
witnesses) of NP problems. One good property of EnumP is to be stable under
several reductions and having some complete problem as explained in Section 6.
However, it is hard to define a reduction which makes all hard problems of EnumP
complete and this di�culty appears in the definition of the polynomial hierarchy
for enumeration that we mention in Section 7.

Finally, remark that in the definition of EnumP no specificity of enumeration
are taken into account. We are able to define it before even specifying the com-

putation model or the complexity measures, as it only relies on the complexity of
deciding the auxiliary problem Check·A.

Computation model The computational model is the random access machine
model (RAM) with comparison, addition, subtraction and multiplication as its
basic arithmetic operations and an operation Output(i, j) which outputs the con-
catenation of the values of registers Ri,Ri+1, . . . ,Rj. RAM machine have been
introduced by Cook and Reckhow [34, 2]; for variants designed for enumeration
see [7, 94]. All instructions are in constant time except the arithmetic instructions
which are in time logarithmic in the sum of the integers they are called on.

A RAM machine solves Enum·A if, on every input x 2 ⌃⇤, it produces a se-
quence y1, . . . , yn such that A(x) = {y1, . . . , yn} and for all i , j, yi , y j, that is
no solution must be repeated! We may assume that all registers are initialized to
zero, and the space used by the machine at some point of its computation is the
sum of the length of the integers up to the last registers it has accessed. We define
by TM(x, i) the time taken by the machine M on input x before the ith Output in-
struction is executed. Usually we drop the subscript M and write T (x, i) when the
machine is clear from the context. The delay of a RAM machine which outputs
the sequence {y1, . . . , yn} is the maximum over all i  n of the time the machine
uses between the generation of yi and yi+1, that is maxi T (x, i + 1) � T (x, i). In
some works, preprocessing and postprocessing times are considered separately
from the delay. It is extremely rare to need more time for deciding if the enumer-
ation is finished than to output a solution, hence we consider here that there is no
postprocessing: enumeration stops as soon as the last solution is output. To make
small complexity classes interesting, it is important to allow preprocessing, that is
TM(x, 0), to be larger than the delay and we will mention it when appropriate.

Why a RAM instead of a Turing Machine ? While the RAM machine better
maps to real computers and is thus better to measure precisely the complexity of
algorithms, it can be simulated with cubic slowdown by a Turing Machine [34,
87]. A polynomial time Church’s Thesis states that all realistic computational
models are equivalent up to polynomial slowdown1, which makes the computation
model irrelevant for classical complexity. However, we can isolate a sequence of
operations during the execution of a RAM which takes exponentially more time
on a Turing Machine which simulates it. The RAM has the power of indirection: it
can access any address in constant time, while the Turing machine should traverse
all its tape to read some cell. This allows to use dictionary data structures essential

1the thesis is not true for quantum computers, but we still do not know whether they are phys-
ically implementable

in enumeration such as AVL trees or tries [35] which gives linear time access to
objects inside an exponential set.

Why such a constant time OUTPUT instruction? The choice of the OUTPUT
instruction and of its complexity is only relevant for algorithms with a sublinear
delay, in particular a constant delay. In all definitions of RAM machine for enu-
meration [7, 94, 78, 17] the OUTPUT instruction can be issued in constant time.
This is required to make constant delay interesting by capturing problems like
Gray code enumeration or query answering, otherwise only a constant number of
constant size solutions can be generated in constant delay. This is similar to the
definition of logarithmic space, where machine can write an output in a special
tape which is not taken into account in the space used [87]. Constant time output
is meaningful, when only the deltas between solutions rather than solutions are
output. It is also relevant, when instead of storing solutions we only need to do
a constant time operation on each solution such as counting them or evaluating
some measure which depends only on the constant amount of changes between
two consecutive solutions.

The originality of the RAM model proposed in this column is to allow out-
putting solutions at di↵erent positions of the memory, to really take advantage of
indirection. In previous models the size of the solution was implicit, here we make
it explicit and also maintain its position in memory. This choice does not seem a
big stretch from reality since, in practice, a programmer does not even precisely
control where information is stored in memory. It allows to list with constant de-
lay consecutive solutions which may di↵er by an unbounded number of elements,
which is not possible in the traditional model with fixed registers for the output.

Why this cost model ? The cost model used to take into account the di↵erent
operations of the RAM has no impact on complexity classes defined by a polyno-
mial bound, so the choice is mostly arbitrary. We choose to count addition and
multiplication as a linear number of operations in the size of their arguments. We
could choose to count the addition as a unit time operation, but not the multiplica-
tion otherwise we can generate doubly exponential numbers in linear time. Note
that we need to allow unbounded integers in registers to be able to deal with large
data structures.

For small complexity classes, such as linear delay or constant delay, the choice
of the cost model becomes extremely relevant. In such situations, sometimes im-
plicitly, the uniform cost model (see [34, 2]) is chosen: addition, multiplication
and comparison are in constant time. However, if the input is of size n, the
machine has log(n) word-size, i.e. integers in registers are bounded by n. This
model is robust enough to define linear time computation [59] and constant delay

in enumeration [43, 7]. It is similar to word RAM model, a transdichotomous
model [55], used to give finer and more realistic bounds for data structures. In
some enumeration algorithms, all solutions must be stored and they can be 2n of
them. Hence, restricting integers in registers to be of size log(n) or even k log(n)
for a fixed k is not su�cient to address all the memory needed to store the so-
lutions. Hence, rather than bounding the register size, a good compromise is to
take as cost of an instruction the logarithm of the sum of its arguments divided

by n. Alternatively, some constant time operations on unbounded integers such as
comparison and incrementation can be allowed.

3 Output polynomial time
To measure the complexity of an enumeration problem, we consider the total time
taken to compute all solutions. Since the number of solutions can be exponential
with regard to the input, it is more relevant to give the total time as a function
of the size of the input and of the output. In particular, we would like it to be
polynomial in the number of solutions; algorithms with this complexity are said
to be in output polynomial time or sometimes in polynomial total time.

Definition 3.1 (Output polynomial time). A problem Enum·A 2 EnumP is in
OutputP if there is a polynomial p(x, y) and a machine M which solves Enum·A
and such that for all x, T (x, |A(x)|) < p(|x|, |A(x)|).

For instance, if we see a polynomial as a set of monomials, then classical
algorithms for interpolating multivariate polynomials from their values are output
polynomial [107] as they produce the polynomial in a time proportional to the
number of its monomials.

The classes EnumP and OutputP may be seen as analogue of NP and P for
the enumeration. It turns out that their separation is equivalent to the P = NP

question, since an algorithm in OutputP allows to decide whether there is at least
one solution in polynomial time.

Proposition 3.1 (Folklore, see [21]). OutputP = EnumP if and only if P = NP.

4 Incremental polynomial time
When generating all solutions is already too long, we want to be able to generate at
least some. Hence, we should measure (and bound) the total time used to produce
a given number of solutions. This dynamic version of the total time is called
incremental time. Given an enumeration problem A, we say that a machine M

solves Enum·A in incremental time f (m)g(n) if on every input x, M enumerates m

elements of A(x) in time f (m)g(|x|) for every m  |A(x)|.

Definition 4.1 (Incremental polynomial time). A problem Enum·A 2 EnumP is in
IncPa if there is a machine M which solves it in incremental time O(ma

n
b) for b

constant. Moreover, we define IncP =
S

a�1 IncPa.

In the definition of IncPa, we usually allow preprocessing polynomial in the
input to make the class more robust. Remark that allowing arbitrary polynomial
preprocessing does not modify the class IncP, since this preprocessing can always
be seen as the polynomial time before outputting the first solution.

Let A be a binary predicate, AnotherSolA is the search problem defined as,
given x and a set S, find y 2 A(x) \ S or answer that S ◆ A(x) (see:[94, 37]). The
problems in IncP are the ones with a polynomial search problem, as stated in the
following proposition.

Proposition 4.1 (Folklore). Let A be a predicate such that Enum·A 2 EnumP.

AnotherSolA is in FP if and only if Enum·A is in IncP.

The class IncP is usually defined as the class of problems solvable by an algo-
rithm with a delay polynomial in the number of already generated solutions and
the size of the input.

Definition 4.2 (Usual definition of incremental polynomial time.). A problem
Enum·A 2 EnumP is in UsualIncPa if there is a machine M which solves it such
that for all x and for all 0 < t  |A(x)|, |T (x, t) � T (x, t � 1)| < ct

a|x|b for b and c

constants.

This alternative definition is motivated by saturation algorithms, which pro-
duce solutions by applying some polynomial time rules to enrich a set of solutions
until saturation. There are many saturation algorithms, for instance to enumerate
circuits of matroids [71] or to compute closure by set operations [79].

With our definition, we better capture the fact that investing more time guar-
antees more solutions to be output, which is a bit more general at first sight than
bounding the delay because the time between two solutions is not necessarily reg-
ular. It turns out that these classes are the same by amortization, that is storing the
output solutions in a bu↵er and outputting them regularly from the bu↵er.

Proposition 4.2 (Folklore, see [20]). For every a 2 N, IncPa+1 = UsualIncPa.

The amortization method plus a data structure to detect duplicates solutions
such as a trie, allow to deal with bounded repetition of solutions and is often used
to simplify the design of algorithms, see for instance the well-named Cheater’s
Lemma [22].

Since IncP is characterized by the search problem AnotherSolA, it is related
to the class TFNP introduced in [82]. A problem in TFNP is a polynomially
balanced polynomial time predicate A such that for all x, A(x) is not empty. An
algorithm solving a problem A of TFNP on input x outputs one element of A(x).
The class TFNP can also be seen as the functional version of NP \ coNP. It
turns out that the separation of IncP and OutputP is equivalent to the separation of
TFNP and FP. The proof is based on modifying AnotherSolA into a problem of
TFNP, so that, assuming TFNP = FP, a solution to this problem is found which
can then be used to solve AnotherSolA.

Proposition 4.3 ([20]). TFNP = FP if and only if IncP = OutputP.

The class OutputP is conditionally di↵erent from EnumP as shown in Propo-
sition 3.1 and it is also strictly larger than IncP by Proposition 4.3. However, no
natural problem is known to be inside OutputP but not in IncP.

Open problem 1. Find a natural problem in OutputP not in IncP. It should be

a problem for which AnotherSol is hard, but not its decision version, where the

existence of another solution is asked.

We can get a finer separation of classes than in Proposition 4.3: (IncPa)a2R+
form a strict hierarchy inside IncP. We need to assume some complexity hypoth-
esis since P = NP implies IncP = IncP1. Since we need to distinguish between
di↵erent polynomial complexities as in fine grained complexity, we also rely on
the Exponential Time Hypothesis (ETH). It states that there exists ✏ > 0 such that
there is no algorithm for 3-SAT in time Õ(2✏n) where n is the number of variables
of the formula and Õ means that we have a factor of n

O(1).

Theorem 4.1 ([20]). If ETH holds, then IncPa (IncPb for all a < b.

The theorem is proved by considering a modified version of SAT with a care-
fully chosen number of trivial solutions and an exponential repetition of the real
ones. Then, if IncPa = IncPb we can find a solution of any SAT formula slightly
faster than brute force by using the incremental algorithm, which in turn proves
a larger collapse of the IncPa classes. Applying this trick enough times proves
the theorem. Using a similar proof, the same strict hierarchy for OutputP can be
obtained.

5 Delay
In this section, we study complexity classes derived from a constraint on the delay,
depending either on the input or the size of a single solution.

5.1 Polynomial delay
Definition 5.1 (Polynomial delay). A problem Enum·A 2 EnumP is in DelayP if
there is a machine M which solves it such that for all x and for all 0 < t  |A(x)|,
|T (x, t) � T (x, t � 1)| < C|x|a for constants C and a.

Observe that, by definition, DelayP = UsualIncP0 and is thus included in IncP
by Proposition 4.2. Polynomial delay is the most usual notion of tractability in
enumeration, both because it is one of the best possible guarantees (regularity
and linear total time) and paradoxically because it is relatively easy to obtain.
Indeed, most methods used to design enumeration algorithms such as backtrack
search with an easy extension problem [80], or e�cient traversal of a supergraph
of solutions [75, 6], yield polynomial delay algorithms when they are applicable.

Contrarily to IncP, there is no characterization of DelayP related to the com-
plexity of some search or decision problem, but there are some interesting impli-
cations. Let ExtSol·A be the problem of deciding, given x and w1, whether there
is s = w1w2 such that s 2 A(x). The set A(x) can be divided into solutions begin-
ning by 0 and 1 and so on recursively and ExtSol·A can be used to decide whether
those subsets of solutions are empty. This method is an e�cient backtrack search,
often called binary partition or flashlight search (see e.g. [80]).

Proposition 5.1. If ExtSol·A 2 P, then Enum·A 2 DelayP.

Consider any graph property P closed by induced subgraph. Given a graph,
the problem is to generate all its maximal induced subgraphs satisfying P, for in-
stance generating the maximal cliques of a graph if the property is to be a complete
graph. The input restricted problem is also the problem of generating maximal in-
duced subgraphs, with the additional constraint that there is a vertex in the input
graph G such that G \ v 2 P. The general problem is in DelayP if the input re-
stricted version is in polynomial time (and thus has only a polynomial number
of solutions). This method helps design algorithms, and equivalences with the
restricted problem can be obtained for IncP and OutputP, see [27]. This is a gen-
eralization of a method by Lawler et al. [75] on families of sets closed by subsets,
where the enumeration is related to the so called I [j problem.

Since an enumeration problem asks for a set of solutions, we can build new
problems by acting on this set: the predicate A [B is defined as (A [B)(x) =
A(x) [B(x) and we get a new problem Enum·(A [B). This definition can easily
be adapted to any set operation such as the complement or the intersection. We
say that a complexity class C is stable under some operation, say the union, when
Enum·A,Enum·B 2 C implies Enum·A [B 2 C. It turns out that DelayP is stable
for several operations.

Theorem 5.1 ([94]). The classes OutputP, IncP, DelayP are stable under union,

Cartesian product and polynomial size deletion.

As a consequence, these operations can be used to design reductions, as shown
in Section 6 or to simplify the design of good algorithms by focusing on simpler
problems. To obtain stability under union for smaller classes, like constant delay,
we need additional hypotheses, either the union is disjoint or the Check·A problem
is in constant time. Several other operations do not leave any enumeration classes
stable but EnumP because they allow to build an EnumP-complete problem from
simpler ones.

Theorem 5.2 ([94]). If P , NP the DelayP, IncP, OutputP are not stable under

unbounded deletion, intersection or complement.

5.2 Strong polynomial delay
When the input is huge with regard to a single solutions, we would like a sublinear
delay, or even a delay which depends only on the size of the generated solutions.
In the following definition, a preprocessing polynomial in the size of the input is
allowed, since the input should at least be read before outputting solutions.

Definition 5.2 (Strong Polynomial delay). A problem Enum·A 2 EnumP is in
SDelayP if there is a machine M which enumerates A(x) = {y1, . . . , yn} for all x

and for all 0 < t  n, |T (x, t) � T (x, t � 1)| < C|yt|a for constants C and a.

Presently, very few problems have strong polynomial delay algorithms: gen-
erating the assignments of 9FO formulas with second order free variables [44]
or existential MS O formulas over bounded tree width structures [3]. However,
even extremely simple problems such as computing the closure by union of a set
system [80], have a linear delay algorithm but do not seem to have a strong poly-
nomial delay algorithm.

Open problem 2. Prove that SDelayP (DelayP modulo some decision complex-

ity hypothesis.

Studying EnumDNF, the enumeration of assignments of a DNF formula, could
help prove the separation of SDelayP and DelayP. The structure of the assign-
ments of a DNF is very simple: it is the union of the assignments of its terms.
The main di�culty to obtain a strong polynomial delay algorithm for EnumDNF
is that the union is not disjoint and just enumerating the solutions of each term
causes repetitions of solutions. Solution repetitions because of non disjoint union
is a common problem in enumeration and this issue appears in its simplest form
when solving EnumDNF. We hope that understanding finely the complexity of
this problem and giving better algorithm to solve it will shed some light on more
general problems, that is why we propose the following conjectures.

Conjecture 5.1 (DNF Enumeration Conjecture). EnumDNF < SDelayP.

We can even state a stronger variant, similar in precision to ETH.

Conjecture 5.2 (Strong DNF Enumeration Conjecture). There is no algorithm
solving the problem EnumDNF in delay o(m) where m is the number of terms of
the DNF.

In [20], several stronger forms of these conjectures on restricted formulas such
as monotone DNF and k-DNF, or adapted to the average delay are refuted.

Open problem 3. Prove or disprove the (strong) DNF Enumeration Conjecture

modulo some decision complexity hypothesis.

5.3 Four flavors of constant delay
The class of problems solvable with a constant delay is very sensitive to the way
the computational model and the complexity measure are defined. There are at
least four slightly di↵erent notions of constant delay used by di↵erent communi-
ties. In all cases, we assume that operations on integers less than n are in constant
time, with n the size of the input.

Constant delay In several RAM models, the output registers are fixed and an
output solution is always contained in the first of these registers. Hence, two
consecutive solutions must only di↵er by a fixed number of elements, such an
ordering of solutions is often called a Gray code. Moreover; it should be possible
to go from a solution to the next in constant time, such an algorithm is sometimes
called loopless in the context of Gray code. There are many such algorithms for
the generation of combinatorial objects [100, 92, 72]: the integers less than 2n,
combinations, Dyck words, . . .

Constant delay with dynamic amortization The use of the generalized OUT-
PUT instruction presented in this column allows to amortize a slow enumeration
process with a fast one. It can be used to generate assignments of a k-DNF in
constant time [20]. Constant delay can be obtained even when the solutions do
not follow a Gray code order.

Constant amortized time An algorithm has a constant amortized time (CAT)
if its total time divided by the number of solutions is constant, i.e. its average
delay is constant. Consider the generation of the integers between 0 and 2n � 1
in the usual order. Adding one to an integer number may change up to n bits, but
on average only two bits are changed and the time needed is proportional to the

number of changed bits. Hence, on average over the whole enumeration, only a
constant number of operations per solution is required. See Ruskey’s book [92]
for many examples of CAT algorithms. Uno’s push-out method [97] also helps
turn backtracking algorithms into CAT algorithms.

Remark that for some problems, such as the enumeration of unrooted trees [105],
it has been later proved that they admit a proper constant delay algorithm [84].
Amortization may be used to turn a CAT algorithm to constant delay algorithm
if the generation of solutions is regular enough. Sometimes, the solutions to be
generated are organized as nodes of a tree and given by some traversal of the tree.
Using Feder’s trick, introduced for 2CNF [51], of generating solutions of even
depth when going down the tree and solutions of odd depth when going up, one
may turn a CAT algorithm into a constant delay one without relying on amortiza-
tion.

Open problem 4. Give a su�cient condition to make constant amortized time

algorithms constant delay, possibly using exponential space. Can we always do

that for algorithms obtained by push-out amortization?

FPT delay When doing query evaluation, the query is often considered fixed,
and we say that we consider the data complexity. Hence, the number of free vari-
ables of the query is also fixed, let us denote it by k. A solution is a k-tuple of
elements from the structure. Let n be the size of the structure, then k integers of
size log(n) bits are necessary to encode a solution. Since we have assumed a uni-
form cost measure, these elements can be dealt with in constant time. Note that
there are at most n

k solutions, hence to make the class interesting, the preprocess-
ing should be bounded by something stricter than any polynomial. The choice is
often to consider a linear preprocessing.

Durand and Granjean have shown that FO queries over bounded degree struc-
tures can be done with constant delay and linear preprocessing [43]. Following
that result, many query languages have been proven to have a constant delay algo-
rithm, see the survey of Segoufin [93]. Several enumeration algorithms for solving
FO queries over sparse models (see [99]) can be executed by a jumping automaton
on graph or JAG [33], which represents an input by a colored graph and is only
allowed to move pebbles along edges as a computation step. A JAG with a fixed
number of pebbles is more restricted than a constant delay algorithm. One could
hope to prove lower bounds for enumeration using JAGs, in fact they have been
introduced to prove space lower bounds for problems like connectivity [102].

Open problem 5. [Suggested by Segoufin] Can we prove unconditionally that

there is some simple FO query, say 9z(R(x, z) ^ S (z, y)), which cannot be solved

using a JAG with a constant number of pebbles and linear preprocessing?

6 Reduction and lower bounds
In this section, we study the problem of proving that an enumeration problem is
hard for some classes. We first show that many di↵erent reductions are used to
prove that some problem is harder than another. Unfortunately, we have no sat-
isfying notion of completeness as in classical complexity, which makes relative
hardness of problems less satisfying. Then we show a few methods to prove that
an enumeration is not in some class relying on decision problems. Finally, in the
spirit of fine grained complexity [104], we propose to base hardness of enumera-
tion on the supposed hardness of well-studied enumeration problems such as the
enumeration of minimal transversal in hypergraphs.

6.1 Reductions
In this section we briefly review di↵erent notions of reductions for enumeration
problems. One required property is that complexity classes introduced in the pre-
vious sections are closed under reduction. It means that if we can reduce Enum·A
to Enum·B and that Enum·B 2 C for some class C, then Enum·A 2 C. This prop-
erty guarantees that reduction can serve to provide algorithms and not just hard-
ness. All considered reductions are also transitive. The parsimonious reduction
for counting problems enforces equality of numbers of solutions. We can adapt it
by providing an explicit way to realize the bijection between solutions.

Definition 6.1 (Parsimonious Reduction). Let Enum·A and Enum·B be two enu-
meration problems. A parsimonious reduction from Enum·A to Enum·B is a pair
of polynomial time computable functions f , g such that for all x, g(x) is a bijection
between A(x) and B(f (x)).

An EnumP-complete problem is defined as a problem in EnumP to which
any problem in EnumP reduces. The problem Enum·3S AT , the task of listing all
solutions of a 3-CNF formula is EnumP-complete, since the reduction used in the
proof that SAT is NP-complete [32] is parsimonious. The parsimonious reduction
is enough to obtain EnumP-complete problem, but is usually too restrictive to
make some hard problems complete. Let us consider the predicate S AT0(�, x)
which is true if and only if x is a satisfying assignment of the propositional formula
� or x is the all zero assignment, then S AT0(�) is never empty and therefore many
problems of EnumP cannot be reduced to Enum·S AT0 by parsimonious reduction,
while, from an enumeration perspective, it is exactly as hard as Enum·3S AT .

To overcome this problem, we can generalize the parsimonious reduction as
much as possible, so that DelayP is stable under the designed reduction. To make
Enum·S AT0 complete, it is enough to allow in parsimonious reduction the addition

or deletion of a polynomial number of solutions themselves produced in polyno-
mial time. DelayP is stable under such reduction because of Proposition 5.1. Sev-
eral reductions for OutputP, IncP and DelayP have been given by Mary in [78].
We give here a polynomial delay reduction, which associates to each solution of
some problem a subset of solutions of another problem such that all these subsets
partition the desired set of solutions.
Definition 6.2 (Polynomial delay reduction from [78]). Let Enum·A,Enum·B 2
EnumP and f , g two polynomial time computable functions. The pair (f , g) is a
polynomial delay reduction if there is a polynomial p such that:
• Ss2B(f (x)) g(s) = A(x) (all solutions of A are obtained)

• |{s 2 B(f (x)) | g(s) = ;}|  p(|x|) (all but a polynomial number of solutions
of B give solutions of A)

• 8s1, s2 2 B(f (x)), g(s1) \ g(s2) = ; (no repetition of solutions)
Using this reduction, it has been proven that the problem of listing minimal

transversals of a hypergraph is equivalent to listing the minimal dominating sets
of a graph [67], a result which has motivated the study of enumeration of minimal
dominating sets over various graph classes [68, 14].

We can relax polynomial delay reductions by allowing a polynomially bounded
number of repetitions, such reductions are called e-reduction in [37]. Instead of
mapping a solution of B to a polynomial number of solutions of A, we could even
allow a polynomial delay algorithm to generate any number of solutions of A from
a solution of B. We can further be generalized by defining Turing reduction for
enumeration, that is allowing access to an oracle solving an enumeration problem
using two additional instructions, one to begin an enumeration, the other to get
the next solution. When the oracle machine computing the reduction has a poly-
nomial delay or an incremental polynomial time, the reductions are called D or I
reductions [37].

Finally, the notion of polynomial delay reduction may be refined when consid-
ering hardness results within DelayP as in fine-grained complexity, in particular
hardness for strong polynomial delay and constant delay. It can be done by re-
quiring that, for a reduction (f , g), g(s) can be enumerated with strong polynomial
delay or constant delay. Such a reduction is used to prove that several saturation
problems are not in SDelayP if listing the models of monotone DNF [80] is not in
SDelayP.

No complete problems are known for the complexity classes we have intro-
duced but EnumP with respect to any reduction. In fact, artificial constructions
using padding, as presented for SAT and parsimonious reduction, are often enough
to build a hard but not complete problem. This emphasises the need to find other
methods to prove lower bounds for specific problems.

6.2 Known lower bounds
Relation to decision To any enumeration problem Enum·A, we can associate
Exist·A the problem of deciding whether A(x) = ;. If P , NP, any problem
such that Exist·A is NP-hard cannot be in OutputP. Hence, any variation on the
enumeration of witnesses of NP-hard problems is not in OutputP.

Recall that, by Proposition 4.1, a problem Enum·A 2 IncP if and only if
AnotherSolA 2 FP. Hence, if we assume P , NP and that AnotherSolA is NP-
hard, then Enum·A < IncP. This has been used to prove that several problems
are not in IncP: enumerating maximal models of Horn formula [69], enumerat-
ing vertices of a polyhedron [70] and dualization in lattice given by implicational
bases [41].

Barrier to a natural method The most used method to obtain a polynomial
delay algorithm is showing that ExtSol·A is polynomial. Hence showing that it is
in fact NP-complete may rule out the use of backtrack search. Extension problems
have been studied for their own sake and there are many NP-hardness results,
see [24, 23] and the references therein. In particular, the extension problem of the
minimal transversals is NP-hard [16].

Unconditional lower bounds Unconditional lower bounds are extremely hard
to obtain: after fifty years of research, is not even known whether SAT requires
superlinear time. To obtain unconditional lower bounds in enumeration, the eas-
iest approach is to show that a problem is not in a very small complexity class,
like constant delay with polynomial preprocessing, and even to restrict the com-
putational model. That is why we have proposed the Open Problem 5 on the JAG
computational model. Indeed, the best known separations from classical com-
plexity are for classes of problems solvable by family of boolean circuits: strict
hierarchy inside AC

0 [62], polynomial size monotone circuits cannot decide the
existence of a k-clique [90] and ACC , NEXP [103].

Open problem 6. Can we define meaningful circuit classes for enumeration and

prove unconditional separations of these classes? Can we relate circuit classes

for enumeration to parallel computation or descriptive complexity?

Lower bound from fine grained complexity Instead of assuming P , NP,
we may need to make stronger assumptions. If we assume that 3S UM cannot
be solved faster than O(n2), there are several lower bounds on the complexity of
generating all triangles of a graph [74]. Some lower bounds involving the number
of triangles can be rephrased as stating that the delay is at least O(m1/3), with m the
number of edges. Another example is the characterization of the complexity of an

acyclic FO query: either it is in some class called CCQ and its assignments can
be enumerated in constant delay or it is not in CCQ and its assignments cannot
be enumerated with constant delay, unless the product of boolean matrices can be
computed in O(n2) [8]. Finally, an algorithm that generates maximal solutions of
any strongly accessible set system has a worst case time complexity of ⌦(t2q/2),
unless SETH is false [30]. Here t denotes the number of solutions and q their
maximal size.

Open problem 7. Assuming SETH, prove a weak lower bound: there is no con-
stant delay or strong polynomial delay algorithm for generating the minimal

transversals of a hypergraph, the circuits of a binary matroid or the maximal

cliques of a graph.

Reduction to well studied problem Rather than assuming complexity hypothe-
ses on decision problems, as in the previous paragraph, we could base the hardness
of an enumeration problem on an hypothesis on the hardness of another enumer-

ation problem. The best example of this approach are the many problems which
have been proven to be as hard or equivalent to enumerating the minimal transver-
sals of an hypergraph, a problem which is still not proved to be in OutputP after
30 years of research. Among these problems are the dualization of a monotone
boolean formula, the generation of vertices of an integral polytope [15], the enu-
meration of minimal keys, see [47, 60] for many examples.

We can use the conjectures made on the complexity of EnumDNF in Sec-
tion 5.2 as a source of hardness. More precisely, if EnumDNF can be reduced to
some problem Enum·A, then it should be a sign that Enum·A is not in SDelayP.
If the enumeration of assignments of a monotone DNF formula (equivalently the
ideals of some boolean poset) can be reduced to Enum·A then it is a sign that there
is no algorithm with strong polynomial delay and polynomial space.

Open problem 8. Propose your own hypothesis on some enumeration problem

you have not been able to crack. In particular, is there a good problem that is in

IncP but not believed to be in DelayP which can be used for reduction ?

Open problem 9. Could we transfer hardness between classes: prove that some

problem, for instance EnumDNF, is not in SDelayP if and only if some other prob-

lem, for instance generating minimal transversals, is not in IncP.

7 Alternative approaches

7.1 Variations on enumeration complexity
The definition of enumeration problems and complexity classes we gave can eas-
ily be modified and extended, yielding other complexity classes and separations.
Some of these variations are mentioned here:

Checkability In the definition of the di↵erent enumeration classes, we could
remove the hypothesis that the solutions are of polynomial size and certifiable
in polynomial time. In that case, all class separations are unconditional, using
the time hierarchy Theorem [61], see [21]. However, several properties do not
hold, such as the closure of DelayP under union and the equivalences between
separation of enumeration complexity classes and P , NP or FP , TFNP.

Solution order Enumeration problems can be further constrained by requiring
the solutions to be produced in a given order. When partial orders are allowed, it is
a strict generalization of enumeration problems as defined here. From a practical
point of view, it is a way to deal with a large number of solutions by requesting the
enumeration of the best ones first and it relates to the problem of finding the k best
solutions (see Section 7.2). From a structural complexity perspective, on one hand
it has no e↵ect on the class OutputP since the elements can be sorted after having
been produced. On the other hand, it has a dramatic e↵ect on DelayP: maximal
independent sets can be enumerated in lexicographic order with polynomial delay
but not in reverse lexicographic order [65]! However, hardness results with a fixed
order are directly derived from the hardness of finding some largest solution and
do not tell much about enumeration. Indeed, even trivial enumeration problems
become hard when paired with the appropriate order (see Section 2.4 of [94]).

FPT enumeration Fixed parameter tractable classes can be easily derived from
the enumeration classes presented here in the obvious manner, and kernelization
can be extended to enumeration. Enumeration of vertex covers or weighted as-
signments of satisfiability problems admit enumeration algorithms with an FPT
delay [39, 38].

Randomized enumeration Randomization can be added to enumeration algo-
rithms, by allowing to produce a wrong set of solutions with a small probability.
The only example of such an algorithm is for enumerating monomials of a poly-
nomial [95], and randomization is required because polynomial identity testing

needs to be solved as a subroutine. Interestingly, while randomization helps in
many settings, it does not seem yet well exploited in enumeration.

Dynamic enumeration Recently, many enumeration algorithms from databases
have been adapted to allow for updates of the input. It means that after modifying
the input, e.g. adding or removing an edge of a graph, or changing the color of
a node, the enumeration can be restarted without doing another preprocessing
(or a very short one). For instance, enumerating the satisfying assignments of
MSO formulas over trees can be done with a delay linear in each solution and
logarithmic update [4].

Space complexity Only time restrictions have been considered in this column,
but space has a huge role in practical enumeration algorithms and is often a bot-
tleneck, for instance when generating maximal cliques [29]. We could define an
equivalent of PSPACE by allowing a space polynomial in the input, without tak-
ing into account the output solutions. It is also relevant to ask for polynomial
space and polynomial delay algorithms as a tractability measure. In fact, several
algorithmic methods have been designed to traverse a supergraph of solutions with
polynomial delay, while using only polynomial space [75, 6, 30].

When trying to prove lower bounds, it could be helpful to add the constraint of
polynomial space. For instance, we could try to prove that the minimal transver-
sals of a hypergraph cannot be computed with polynomial delay and polynomial

space. Moreover, amortization which allows to trade space for regularity as in
Proposition 4.2 cannot work when requiring polynomial space. Hence, with poly-
nomial space IncP0 may not be equal to DelayP. Some partial results [21] show
that algorithms in incremental linear time with enough regularity are in polyno-
mial delay using only an additional polynomial space but the general question is
open.

Open problem 10. Prove or disprove that IncP0 = DelayP with polynomial space.

7.2 Alternative approaches
There are many alternative ways to consider the problem of listing solutions. In
this column, we have studied the dynamic of algorithms solving exhaustive enu-
meration problems through incremental time or delay. It seems to be very hard
to prove lower bounds or completeness results with these dynamic measures and
approaches relying on classical notions of time complexity are more amenable to
hardness results. From a practical point of view, due to the size of the solution
space, non exhaustive approaches seem particularly relevant.

Input sensitive Input sensitive algorithms have their complexity expressed in
terms of the input size only. The size of the solution space is thus a lower bound
to their complexity. Since this size is typically exponential, their complexity is
also exponential. In fact, these algorithms are often called exact exponential algo-
rithms (see the book of Fomin and Kratsch [53]). The aim is to find algorithms,
whose complexity is as close as possible to the maximal number of solutions. As
a byproduct, analysis of input sensitive algorithms often provide upper bounds on
the number of solutions. A typical example is the Bron–Kerbosch algorithm [18]
to list all maximal cliques of a graph: there are at most 3n/3 maximal cliques in a
graph with n vertices [83] and its complexity is in O(3n/3). When there are less so-
lutions than the maximal number, input sensitive algorithms should be ine�cient,
but they are sometimes e�cient in practice [25].

Polynomial hierarchy In this column, we have presented EnumP and classes
inside it, trying to characterize di↵erent notions of tractability for enumeration. To
classify hard problems, for which finding a solution is already NP-hard, we need
something similar to the polynomial hierarchy. Such classes have been built [37]
by adding oracles in the polynomial hierarchy to polynomial delay or incremental
polynomial time machine. Note that it is di�cult to find a reduction notion for
these classes which leaves them stable and yet allows for complete problems.

K-best solutions One way to deal with a large solution space is to reduce it ar-
bitrarily. We can fix a parameter k and ask to enumerate only k solutions. We
could also have some order on the solutions and ask for the k best ones. When k

is not fixed but given as input the problem is very similar to the (ordered) enumer-
ation of solutions with respect to incremental time. The k-shortest path and the
k-minimum spanning tree problems are typical k-best problems with many appli-
cations as explained in a survey by Eppstein [49]. In this survey, some methods
for generating k-best solutions are presented, and they are variations on methods
also used for enumeration: binary partition or the I [{ j} method [75].

Jth solution To avoid to deal with the time and space needed to generate the
whole solution set, it would be good to generate solutions on demand. This prob-
lem is sometimes called the jth solution problem, there is some order on the set
of solutions and given an integer j, we are asked to generate the jth. Remark that
if the jth solution problem is in polynomial time, the counting problem is also
in polynomial time. Hence, only very simple problems admit a polynomial time
algorithm for the jth solution, for instance listing the solutions of an FO query
over a bounded degree structure [9].

Uniform generation A more relaxed variant of the jth solution problem is to
ask for a random solution given uniformly at random, a problem deeply con-
nected to approximate counting [63]. A polynomial time uniform generator can
be turned into an exhaustive enumeration algorithm working with high probability
by repeatedly generating solutions. The only di�culty is to know when to stop
because there is no new solution anymore, but a bound can be derived from the
Coupon Collector Theorem [50].

Theorem 7.1 ([57, 21]). If Enum·A 2 EnumP has a polytime uniform generator,

then Enum·A is in randomized DelayP.

The algorithm used in Theorem 7.1 needs an exponential space for storing the
solutions and some amortization. In general, we cannot get rid of the space, since
Goldberg has given a tight lower bound on the product of space and delay [57].
However, when repetitions are allowed, we can build an exhaustive algorithm
using polynomial space [21], keeping the good space use of random generation.

Open problem 11. There are several methods to obtain a uniform generator:

random walk on a reconfiguration graph [85] or Boltzmann samplers [42]. Can

we get an e�cient enumeration algorithm directly from these methods without

building the random generator?

How much does a free solution help? Often, it is NP-hard to even find a single
solution or a few of them. But what if we are provided a solution to some NP

hard problem, can we find a second one easily ? It turns out that it can be hard,
for instance finding a second Hamiltonian circuit given one is NP-hard [87]. In
fact, when looking for Nash equilibria in a two players game, there is always one
and it is relatively easy to find (in PPAD [86]), while finding a second one is
NP-hard [56].

Finding a second solution is a restricted version of the AnotherSol problem
and it has been systematically studied by several authors [106, 66]. For some
problem, deciding whether there is a second solution given one is easy: There are
always an even number of Hamiltonian circuits in cubic graph, hence if one is
given there must be a second. It is easy to build an artificial enumeration problem,
for which giving a single solution makes the enumeration easy or for which it does
not help.

Open problem 12. Is there a natural EnumP-complete problem which can be

solved in output polynomial time when one solution is given along with the input?

7.3 New horizons
Enumeration problems are especially exposed to the problem of combinatorial
explosion because even a constant delay algorithm cannot escape the cost of go-
ing through each solution, which can already be too large. Moreover, even if a
modern computer equipped with a good algorithm can easily generate thousands
of billions of spanning trees or shortest paths, no user will ever be able to make
sense of such an amount of data. Hence, we should find ways to generate fewer so-
lutions while still capturing the essence of the set of solutions. Following the ideas
of several enumeration specialists, in particular Uno, we propose two promising
and mostly unexplored directions.

Succinct representation It is often natural to represent a set of solutions by
Cartesian product and union of smaller sets: the maximal cliques of a graph are
the union of the maximal cliques of its connected components and the spanning
forests of a graph are the Cartesian product of the spanning forests of its con-
nected components. A constant delay algorithms to list spanning trees using a
more involved Cartesian product decomposition is given in [28] as well as several
examples of Cartesian decomposition for enumeration.

Usually, when confronted to an enumeration problem, one first tries to find
a representation of the set of solutions which minimizes its size while allowing
e�cient computation on it like finding its size, its maximum, some statistic on
its elements . . . It should be some middle ground between the set of solutions,
which is easy to exploit but often too large to compute and store, and the instance,
which represents the set of solutions very succinctly but is not directly useful for
computation.

This approach is similar to knowledge compilation [40], where some boolean
function is represented by a succinct logical circuit (an OBDD or a DNNF).
While the cost of computing the representation may be large, after compilation
all queries over the original function can be evaluated e�ciently over the repre-
sentation. In a recent result, Amarilli et al. [3] give a strong polynomial delay
algorithm to enumerate the models of d-DNNF circuits used in knowledge com-
pilation. They relate it to set circuits, which can be seen as way of generating a
set of solutions by using only Cartesian products and disjoint unions of ground
solutions. Several known enumeration problems such as the enumeration of the
models of an MSO formula on a structure of bounded tree-width can then be re-
duced to the enumeration of the solutions of such circuits.

Open problem 13. What enumeration problem can we capture using circuits of

Cartesian products and general unions? Is it possible to generalize Cartesian

product by some form of join without losing tractability?

Open problem 14. What decomposition of solution sets can be useful in enumer-

ation outside of union and Cartesian product?

Approximate representation The previous point was about compressing the
set of solutions without loss. But we could also compress it with loss, that is
producing a small representation which cannot be used to recover all solutions but
only to approximate them.

This idea has been used to replace the Pareto’s frontier of a problem by a much
smaller number of approximate Pareto optimal points [88]. The lossy compression
approach is also reminiscent of sketches used to obtain a succinct representation
of a very large stream, while maintaining some property with high probability. For
instance, using a logarithmic space, the number of distinct elements in a stream
can be evaluated [45], or with a sublinear space the minimum spanning tree or
maximal matching can be approximated [81].

To approximate a set of solutions A(x), we can use some subset S such that
|S | is within some factor of |A(x)|. We could also allow non solutions to be in
S and then both |S \ A(x)| and |S 4 A(x)| must be within some factor of |A(x)|.
This kind of approximation based on the number of solutions is not very relevant:
what if we get a large family of similar solutions but miss all the diversity of the
solution set? To avoid this problem, an equivalence relation can be used to define
similar solutions. Then, only one representative per equivalence class should be
enumerated. Representatives are often harder to enumerate, a good example is
the enumeration of classes of trees or graphs up to isomorphism, see Chapter 8
of [92].

More generally, we could equip the solutions with some distance and try to
cover them all by as few of them as possible. Given an instance x of a problem
Enum·A and an integer d, we define a d-cover of A(x) as S ✓ A(x) such that for
all solutions of A(x), there is a solution in S at distance at most d. An enumera-
tion problem is d-approximable in polynomial time when S can be generated in
total time polynomial in the size of the smallest d-cover of A(x). Allowing ran-
domization to be able to sample the solutions could be important in this context,
since we may have much less time than solutions. Remark that a d-approximation
algorithm could be extremely useful for a user-interactive system, where the user
sets the value d, obtains first a coarse representation of the solutions and can them
zoom on an interesting solution by restricting the problem around it and asking
for an approximation with a smaller d.

The notion of d-approximability has been designed so that the produced rep-
resentative solutions should be quite di↵erent for the given distance, which hope-
fully makes such representative solutions useful in practice. A similar approach
has been recently proposed through the notion of diversity, which is the sum of

the Hamming distances of pairs of elements in a set. A family of hard problems,
such as vertex cover, admit FPT algorithms for producing a set of solutions of
high enough diversity [11].

Open problem 15. Give a d-approximation algorithm for a problem with a struc-

tured set of solutions, such as the minimal spanning trees or the shortest paths,

for any distance over solutions.

Acknowledgement
The author wants to thank all members of the friendly enumeration community,
without your results this column would be empty. Special thanks to Alexandre
Vigny and Arnaud Mary for insights I have directly incorporated in the text and
to Florent Capelli and Étienne Grandjean for having read this manuscript and
suggested many improvements.

References
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining associ-

ation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215,
pages 487–499, 1994.

[2] Alfred V Aho and John E Hopcroft. The design and analysis of computer algo-

rithms. Pearson Education India, 1974.
[3] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-

based approach to e�cient enumeration. In 44th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,

Poland, pages 111:1–111:15, 2017.
[4] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enu-

meration on trees with tractable combined complexity and e�cient updates. In
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, pages 89–103. ACM, 2019.
[5] Ricardo Andrade, Martin Wannagat, Cecilia C Klein, Vicente Acuña, Alberto

Marchetti-Spaccamela, Paulo V Milreu, Leen Stougie, and Marie-France Sagot.
Enumeration of minimal stoichiometric precursor sets in metabolic networks. Al-

gorithms for Molecular Biology, 11(1):25, 2016.
[6] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathe-

matics, 65(1):21–46, 1996.
[7] Guillaume Bagan. Algorithms and complexity of enumeration problems for the

evaluation of logical queries. PhD thesis, University of Caen Normandy, France,
2009.

[8] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive
queries and constant delay enumeration. In International Workshop on Computer

Science Logic, pages 208–222. Springer, 2007.

[9] Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Com-
puting the jth solution of a first-order query. RAIRO-Theoretical Informatics and

Applications, 42(1):147–164, 2008.

[10] Dominique Barth, Olivier David, Franck Quessette, Vincent Reinhard, Yann
Strozecki, and Sandrine Vial. E�cient generation of stable planar cages for chem-
istry. In International Symposium on Experimental Algorithms, pages 235–246.
Springer, 2015.

[11] Julien Baste, Michael R. Fellows, Lars Ja↵ke, Tomás Masarík, Mateus
de Oliveira Oliveira, Geevarghese Philip, and Frances A. Rosamond. Diversity
in combinatorial optimization. CoRR, abs/1903.07410, 2019.

[12] Cristina Bazgan, Florian Jamain, and Daniel Vanderpooten. Approximate pareto
sets of minimal size for multi-objective optimization problems. Operations Re-

search Letters, 43(1):1–6, 2015.

[13] Kateřina Böhmová, Luca Häfliger, Matúš Mihalák, Tobias Pröger, Gustavo Saco-
moto, and Marie-France Sagot. Computing and listing st-paths in public trans-
portation networks. Theory of Computing Systems, 62(3):600–621, 2018.

[14] Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond. Enu-
merating minimal dominating sets in triangle-free graphs. In 36th International

Symposium on Theoretical Aspects of Computer Science (STACS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[15] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino. Gener-
ating vertices of polyhedra and related problems of monotone generation. Proceed-

ings of the Centre de Recherches Mathématiques at the Université de Montréal,

special issue on Polyhedral Computation (CRM Proceedings and Lecture Notes),
49:15–43, 2009.

[16] Endre Boros, Vladimir Gurvich, and Peter L Hammer. Dual subimplicants of posi-
tive boolean functions. Optimization Methods and Software, 10(2):147–156, 1998.

[17] Johann Brault-Baron. De la pertinence de l’énumération: complexité en logiques

propositionnelle et du premier ordre. PhD thesis, Université de Caen, 2013.

[18] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

[19] Andrei A Bulatov, Víctor Dalmau, Martin Grohe, and Dániel Marx. Enumerating
homomorphisms. Journal of Computer and System Sciences, 78(2):638–650, 2012.

[20] Florent Capelli and Yann Strozecki. Enumerating models of dnf faster: breaking
the dependency on the formula size. arXiv preprint arXiv:1810.04006, 2018.

[21] Florent Capelli and Yann Strozecki. Incremental delay enumeration: Space and
time. Discrete Applied Mathematics, 2018.

[22] Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions of con-
junctive queries. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems, PODS 2019, Amsterdam, The Nether-

lands, June 30 - July 5, 2019., pages 134–148, 2019.

[23] Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot,
and Florian Sikora. Extension of some edge graph problems: Standard and param-
eterized complexity. In Fundamentals of Computation Theory - 22nd International

Symposium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019, Proceedings,
pages 185–200, 2019.

[24] Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot,
and Florian Sikora. Extension of vertex cover and independent set in some classes
of graphs. In Algorithms and Complexity - 11th International Conference, CIAC

2019, Rome, Italy, May 27-29, 2019, Proceedings, pages 124–136, 2019.

[25] Frédéric Cazals and Chinmay Karande. A note on the problem of reporting maxi-
mal cliques. Theoretical Computer Science, 407(1-3):564–568, 2008.

[26] Timothy M Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[27] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all maximal in-
duced subgraphs for hereditary and connected-hereditary graph properties. Journal

of Computer and System Sciences, 74(7):1147–1159, 2008.

[28] Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, and Luca Versari.
Listing Subgraphs by Cartesian Decomposition. In Igor Potapov, Paul Spirakis,
and James Worrell, editors, 43rd International Symposium on Mathematical Foun-

dations of Computer Science (MFCS 2018), volume 117 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 84:1–84:16, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[29] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Sublinear-space
bounded-delay enumeration for massive network analytics: Maximal cliques.
In 43rd International Colloquium on Automata, Languages, and Programming,

ICALP 2016, July 11-15, 2016, Rome, Italy, pages 148:1–148:15, 2016.

[30] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Listing maxi-
mal subgraphs satisfying strongly accessible properties. SIAM Journal on Discrete

Mathematics, 33(2):587–613, 2019.

[31] Alessio Conte and Takeaki Uno. New polynomial delay bounds for maximal sub-
graph enumeration by proximity search. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing, pages 1179–1190. ACM, 2019.

[32] Stephen A Cook. The complexity of theorem-proving procedures. In Proceed-

ings of the third annual ACM symposium on Theory of computing, pages 151–158.
ACM, 1971.

[33] Stephen A Cook and Charles W Racko↵. Space lower bounds for maze threadabil-
ity on restricted machines. SIAM Journal on Computing, 9(3):636–652, 1980.

[34] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines.
J. Comput. Syst. Sci., 7(4):354–375, 1973.

[35] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli↵ord Stein. In-

troduction to algorithms. MIT press, 2009.

[36] Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of gener-
alized satisfiability problems. Informatique théorique et applications, 31(6):499–
511, 1997.

[37] Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, and Herib-
ert Vollmer. On the complexity of hard enumeration problems. In International

Conference on Language and Automata Theory and Applications, pages 183–195.
Springer, 2017.

[38] Nadia Creignou, Arne Meier, Julian-Ste↵en Müller, Johannes Schmidt, and Herib-
ert Vollmer. Paradigms for parameterized enumeration. Theory of Computing Sys-

tems, 60(4):737–758, 2017.

[39] Nadia Creignou and Heribert Vollmer. Parameterized complexity of weighted sat-
isfiability problems: Decision, enumeration, counting. Fundamenta Informaticae,
136(4):297–316, 2015.

[40] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of

Artificial Intelligence Research, 17:229–264, 2002.

[41] Oscar Defrain and Lhouari Nourine. Dualization in lattices given by implicational
bases. In International Conference on Formal Concept Analysis, pages 89–98.
Springer, 2019.

[42] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schae↵er. Boltz-
mann samplers for the random generation of combinatorial structures. Combina-

torics, Probability and Computing, 13(4-5):577–625, 2004.

[43] Arnaud Durand and Etienne Grandjean. First-order queries on structures of
bounded degree are computable with constant delay. ACM Trans. Comput. Log.,
8(4):21, 2007.

[44] Arnaud Durand and Yann Strozecki. Enumeration complexity of logical query
problems with second-order variables. In Computer Science Logic (CSL’11)-25th

International Workshop/20th Annual Conference of the EACSL. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2011.

[45] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In
European Symposium on Algorithms, pages 605–617. Springer, 2003.

[46] Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph iso-
morphism algorithms and their applications in molecular science: a review. Wiley

Interdisciplinary Reviews: Computational Molecular Science, 1(1):68–79, 2011.

[47] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hy-
pergraph and related problems. SIAM Journal on Computing, 24(6):1278–1304,
1995.

[48] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone
dualization and generating hypergraph transversals. SIAM Journal on Computing,
32(2):514–537, 2003.

[49] David Eppstein et al. K-best enumeration. Bulletin of EATCS, 1(115), 2015.

[50] Paul Erdos and Alfred Rényi. On a classical problem of probability theory. Magyar

Tud. Akad. Mat. Kutató Int. Közl, 6(1-2):215–220, 1961.

[51] Tomás Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319,
1994.

[52] Christophe Costa Florêncio, Jonny Daenen, Jan Ramon, Jan Van den Bussche, and
Dries Van Dyck. Naive infinite enumeration of context-free languages in incre-
mental polynomial time. J. UCS, 21(7):891–911, 2015.

[53] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Sci-
ence & Business Media, 2010.

[54] Michael L Fredman and Leonid Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

[55] Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound
with fusion trees. Journal of computer and system sciences, 47(3):424–436, 1993.

[56] Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity
considerations. Games and Economic Behavior, 1(1):80–93, 1989.

[57] Leslie Ann Goldberg. E�cient algorithms for listing combinatorial structures.
PhD thesis, University of Edinburgh, UK, 1991.

[58] Petr A Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch,
Sigve H Sæther, and Yngve Villanger. Output-polynomial enumeration on graphs
of bounded (local) linear mim-width. Algorithmica, 80(2):714–741, 2018.

[59] Etienne Grandjean and Thomas Schwentick. Machine-independent characteriza-
tions and complete problems for deterministic linear time. SIAM Journal on Com-

puting, 32(1):196–230, 2002.

[60] Matthias Hagen. " Algorithmic and Computational Complexity Issues of MONET.
Cuvillier Verlag, 2008.

[61] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

[62] John Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings

of the eighteenth annual ACM symposium on Theory of computing, pages 6–20.
Citeseer, 1986.

[63] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity.
Springer Science & Business Media, 2003.

[64] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph
mining algorithms. The Knowledge Engineering Review, 28(1):75–105, 2013.

[65] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. On generat-
ing all maximal independent sets. Information Processing Letters, 27(3):119–123,
1988.

[66] Laurent Juban. Dichotomy theorem for the generalized unique satisfiability prob-
lem. In International Symposium on Fundamentals of Computation Theory, pages
327–337. Springer, 1999.

[67] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. On the enumeration of minimal dominating sets and related notions.
SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.

[68] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,
and Takeaki Uno. A polynomial delay algorithm for enumerating minimal domi-
nating sets in chordal graphs. In International Workshop on Graph-Theoretic Con-

cepts in Computer Science, pages 138–153. Springer, 2015.

[69] Dimitris J Kavvadias, Martha Sideri, and Elias C Stavropoulos. Generating all
maximal models of a boolean expression. Information Processing Letters, 74(3-
4):157–162, 2000.

[70] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir
Gurvich. Generating all vertices of a polyhedron is hard. In Proceedings of the

seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 758–765.
Society for Industrial and Applied Mathematics, 2006.

[71] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and
Kazuhisa Makino. On the complexity of some enumeration problems for matroids.
SIAM Journal on Discrete Mathematics, 19(4):966–984, 2005.

[72] Donald E Knuth. The art of computer programming, volume 4A: combinatorial

algorithms, part 1. Pearson Education India, 2011.

[73] Donald Ervin Knuth. The art of computer programming, volume 3. Pearson Edu-
cation, 1997.

[74] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum
conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM symposium

on Discrete algorithms, pages 1272–1287. SIAM, 2016.

[75] Eugene L. Lawler, Jan Karel Lenstra, and A. H. G. Rinnooy Kan. Generating all
maximal independent sets: Np-hardness and polynomial-time algorithms. SIAM J.

Comput., 9(3):558–565, 1980.

[76] Édouard Lucas. Récréations mathématiques: Les traversees. Les ponts. Les

labyrinthes. Les reines. Le solitaire. la numération. Le baguenaudier. Le taquin,
volume 1. Gauthier-Villars et fils, 1882.

[77] Andrea Marino. Enumeration algorithms. In Analysis and Enumeration, pages
13–35. Springer, 2015.

[78] Arnaud Mary. Énumération des Dominants Minimaux d’un graphe. PhD thesis,
Université Blaise Pascal, 2013.

[79] Arnaud Mary and Yann Strozecki. E�cient enumeration of solutions produced
by closure operations. In 33rd Symposium on Theoretical Aspects of Computer

Science, 2016.

[80] Arnaud Mary and Yann Strozecki. E�cient enumeration of solutions produced by
closure operations. Discrete Mathematics & Theoretical Computer Science, 21(3),
2019.

[81] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record,
43(1):9–20, 2014.

[82] Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence the-
orems and computational complexity. Theoretical Computer Science, 81(2):317–
324, 1991.

[83] John W Moon and Leo Moser. On cliques in graphs. Israel journal of Mathematics,
3(1):23–28, 1965.

[84] Shin-ichi Nakano and Takeaki Uno. A simple constant time enumeration algorithm
for free trees. PSJ SIGNotes ALgorithms, (091-002), 2003.

[85] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[86] Christos H Papadimitriou. On the complexity of the parity argument and other in-
e�cient proofs of existence. Journal of Computer and system Sciences, 48(3):498–
532, 1994.

[87] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,
2003.

[88] Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-o↵s and optimal access of web sources. In Proceedings 41st Annual Sym-

posium on Foundations of Computer Science, pages 86–92. IEEE, 2000.

[89] Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM Journal

on Computing, 23(2):373–386, 1994.

[90] Alexander A Razborov. Lower bounds for the monotone complexity of some
boolean functions. In Soviet Math. Dokl., volume 31, pages 354–357, 1985.

[91] RC Read and RE Tarjan. Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks, 5(3):237–252, 1975.

[92] Frank Ruskey. Combinatorial generation. Preliminary working draft. University of

Victoria, Victoria, BC, Canada, 11:20, 2003.

[93] Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD

Record, 44(1):10–17, 2015.

[94] Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis,
Université Paris Diderot - Paris 7, 2010.

[95] Yann Strozecki. On enumerating monomials and other combinatorial structures by
polynomial interpolation. Theory of Computing Systems, 53(4):532–568, 2013.

[96] James C Tiernan. An e�cient search algorithm to find the elementary circuits of a
graph. Communications of the ACM, 13(12):722–726, 1970.

[97] Takeaki Uno. Constant time enumeration by amortization. In Workshop on Algo-

rithms and Data Structures, pages 593–605. Springer, 2015.

[98] Sergei Vassilvitskii and Mihalis Yannakakis. E�ciently computing succinct trade-
o↵ curves. Theoretical Computer Science, 348(2-3):334–356, 2005.

[99] Alexandre Vigny. Query enumeration and nowhere dense graphs. PhD thesis,
Université Paris-Diderot, 2018.

[100] Timothy Walsh. Generating gray codes in o (1) worst-case time per word. In Inter-

national Conference on Discrete Mathematics and Theoretical Computer Science,
pages 73–88. Springer, 2003.

[101] Kunihiro Wasa. Enumeration of enumeration algorithms. arXiv preprint

arXiv:1605.05102, 2016.

[102] Avi Wigderson. The complexity of graph connectivity. In International Sympo-

sium on Mathematical Foundations of Computer Science, pages 112–132. Springer,
1992.

[103] Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM

(JACM), 61(1):2, 2014.

[104] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of the ICM, 2018.

[105] Robert Alan Wright, Bruce Richmond, Andrew Odlyzko, and Brendan D McKay.
Constant time generation of free trees. SIAM Journal on Computing, 15(2):540–
548, 1986.

[106] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE transactions on fundamentals of

electronics, communications and computer sciences, 86(5):1052–1060, 2003.

[107] R. Zippel. Interpolating polynomials from their values. Journal of Symbolic Com-

putation, 9(3):375–403, 1990.

	Introduction
	Enumeration problems
	Output polynomial time
	Incremental polynomial time
	Delay
	Polynomial delay
	Strong polynomial delay
	Four flavors of constant delay

	Reduction and lower bounds
	Reductions
	Known lower bounds

	Alternative approaches
	Variations on enumeration complexity
	Alternative approaches
	New horizons

