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Abstract

An input to the Popular Matching problem, in the roommates setting,
consists of a graph G where each vertex ranks its neighbors in strict order,
known as its preference. In the Popular Matching problem the objective is
to test whether there exists a matching M? such that there is no matching M
where more people (vertices) are happier (in terms of the preferences) with
M than with M?. In this paper we settle the computational complexity of
the Popular Matching problem in the roommates setting by showing that
the problem is NP-complete. Thus, we resolve an open question that has
been repeatedly asked over the last decade.

1 Introduction
Matching problems with preferences are ubiquitous in everyday life scenarios.
They arise in applications such as the assignment of students to universities, doc-
tors to hospitals, students to campus housing, pairing up police officers, kidney
donor-recipient pairs and so on. The common theme is that individuals have pref-
erences over the possible outcomes and the task is to find a matching of the par-
ticipants that is in some sense optimal with respect to these preferences. In this
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paper we study the computational complexity of computing one such solution con-
cept, namely the PopularMatching problem. The input to the PopularMatching
problem consists of a graph on n vertices and the preferences of the vertices rep-
resented as a ranked list of the neighbors of every vertex, said to be the preference
list of the vertex. The goal is to find a popular matching–a matching that is pre-
ferred over any other matching (in terms of the preference lists) by at least half of
the vertices in the graph. Situations in which a stable matching – a matching that
does not admit a blocking edge, i.e. an edge whose endpoints prefer each other
to their respective “situation” in the current matching – is too restrictive, popular
matching finds applicability, since a stable matching is the smallest-sized popular
matching. So for applications where it is desirable to have matchings of larger
size than a stable matching – for instance, allocating projects to students, or pair-
ing up police officers, where the absence of blocking edges is not mandatory –
popular matching may be a suitable alternative. The notion of popularity captures
a natural relaxation of the notion of stability: blocking edges are permitted but the
matching, nevertheless enjoys “global stability”.

We define the Popular Matching problem formally as follows. Let G denote
be a graph with vertex set V(G) and edge set E(G). Let NG(v) denote the neigh-
borhood of a vertex v ∈ V(G). Given a vertex v ∈ V(G), a preference list of v in G
is a bijective function `v : NG(v) → {1, 2, . . . , |NG(v)|}. Informally, the smaller the
number a vertex v ∈ V(G) assigns to a vertex u ∈ NG(v), the more v prefers to be
matched to u. In particular, for all u,w ∈ NG(v), if `v(u) < `v(w), then v prefers u
over w. A matching M in G is a subset of edges that do not share an endpoint. We
say that a vertex v ∈ V(G) is matched by a matching M if there exists a (unique)
vertex u ∈ V(G) such that {u, v} ∈ M, which we denote by u = M(v).

In literature, the terminology related to PopularMatching is closely related to
that of the StableMarriage problem. When the input graph is (bipartite) arbitrary,
the instance is said to be that of the (stable marriage) roommates setting of the
problem. Roughly speaking, a vertex v ∈ V(G) prefers a matching M over a
matching M′ if its “status” in M is better than the one in M′, where being not
matched is the least preferred status. Formally, the notion of preference over
matchings is defined as follows. Given two matchings in G, denoted by M and
M′, we say that a vertex v ∈ V(G) prefers M over M′ if one of the following
conditions is satisfied: (i) v in matched by M but not matched by M′; (ii) v is
matched by both M and M′, and `v(M(v)) < `v(M′(v)). We say that M′ is more
popular than M, if the number of vertices that prefer M′ to M exceeds the number
of vertices that prefer M to M′. A matching M is popular if and only if there is no
matching M′ that is more popular than M. In the decision version of the Popular
Matching problem, given an instance I = (G, L = {`v : v ∈ V(G)}), the question is
whether there exists a popular matching?



History of the problem and our result. The provenance of the notion of a pop-
ular matching can be dated to the work of Condorcet in 1785 on the subject of
a Condorcet winner [8]. In the last century, however, the notion was introduced
as the majority assignment by Gärdenfors [11] in 1975. Abraham et al. [2] was
the first to discuss an efficient algorithm for computing a popular matching al-
beit for the case where the graph is bipartite and only the vertices in one of the
partitions have a preference list, a setting known as the housing allocation. The
persuasive motivation and elegant analysis of Abraham et al. led to a spate of
papers on popular matching [25, 15, 22, 20, 21, 3, 16, 23] covering diverse set-
tings that include strict preferences as well as one with ties. It is well-known that
when the input graph is bipartite–the stable marriage setting– Popular Matching
can always be decided affirmatively in polynomial time, [14]. It is equally well-
known that when the graph is arbitrary, the computational complexity of Popu-
lar Matching is unknown. In particular, whether Popular Matching is NP-hard
has been repeatedly, explicitly posed as an open question over the last decade
[1, 3, 5, 7, 13, 14, 16, 17, 18, 23, 24, 26]. Indeed, it has been stated as one of the
main open problem in the area (see the aforementioned citations). In this paper
we settle this question by proving the following result.

Theorem 1. PopularMatching is NP-complete.1

Our method. An optimization question related to the PopularMatching is about
finding a popular matching of the largest size (as not all popular matchings are
of same size). Let this problem be called Max-Sized Popular Matching. Until
recently, it was also not known whether this problem is NP-hard in roommate set-
ting. Recently, Kavitha showed Max-Sized PopularMatching in arbitrary graphs
is NP-hard, [18]. This reduction serves as one of the main three gadgets in our
reduction–the other two gadgets are completely new. The design of our reduction
required several new insights. Firstly, our source problem is a “3-SAT-like” vari-
ant of Vertex Cover, called the Partitioned Vertex Cover, which allows us to
enjoy benefits of both worlds: we gain both the lack of “optimization constraints”
as in 3-SAT, and the simplicity of Vertex Cover.

The input of Partitioned Vertex Cover consists of a graph G, a collection
P of pairwise vertex-disjoint edges in G, and a collection T of pairwise vertex-
disjoint triangles in G such that every vertex in V(G) occurs in either a triangle in
T or an edge in P (but not in both). In other words, T ∪ P forms a partition of
V(G) into sets of sizes 3 and 2. The objective is to decide whether G has a vertex
cover U ⊆ V(G) such that for every P ∈ P, it holds that |U ∩ P| = 1 and for every
T ∈ T , it holds that |U ∩ T | = 2.

1After a preprint of this paper appeared on arXiv, Kavitha [19] also published a pre-print show-
ing this theorem. Her reduction is quite different from this paper, and it also appears in the pro-
ceedings of SODA 2019 [9].



The use of Partitioned Vertex Cover as the source problem neccessitates us
to encode a selection of exactly one “element” out of two, and exactly two “el-
ements” out of three. Here, our gadget design is carefully tailored to exploit
a known characterization of a popular matching [14, Theorem 1] in terms of
admissible alternating paths and cycles in a graph associated with a candidate
matching (to be a popular matching). In particular, we make use of “troublemaker
triangles”–these are triangles consisting of three vertices, one of whom must be
matched to a vertex outside the triangle to give rise to a popular matching. We
embed these triangles in a structure that coordinates the way in which they can be
traversed in the aforementioned characterization. Our gadgets lead traversals of
such paths and cycles to dead-ends.

Related results. Chung [4] was the first to study the PopularMatching problem
in the roommates setting. He observed that every stable matching is a popular
matching. In the midst of a long series of articles, the issue of the computa-
tional complexity of PopularMatching in an arbitrary graph remained unsettled,
leading various researchers to devise notions such as the unpopularity factor and
unpopularity margin [15, 27, 13] in the hope of capturing the essence of popu-
lar matchings. A solution concept that emerged from this search is the maximum
sized popular matching, motivated by the fact that unlike stable matchings (Rural
Hospital Theorem [28]), all popular matchings in an instance do not match the
same set of vertices or even have the same size. Thus, it is natural to focus on
the size of a popular matching. There is a series of papers that focus on the Max-
Sized Popular Matching problem in bipartite graphs (without ties in preference
lists) [17, 14, 7] and (with ties) [6]. When preferences are strict, there are various
polynomial time algorithms that solve Max-Sized Popular Matching in bipartite
graphs: Huang and Kavitha [13] give an O(mn0) algorithm that is improved by
Kavitha to O(m) [17] where m and n0 denote the number of edges in the bipartite
graph and the size of the smaller vertex partition, respectively. In the presence of
ties (even on one side), the Max-Sized Popular Matching was shown to be NP-
hard [6]. It is worth noting that every stable matching is popular, but the converse
is not true. As a consequence of the former, every bipartite graph has a popular
matching that is computable in polynomial-time because it has a stable matching
computable by the famous Gale-Shapley algorithm described by the eponymous
authors in their seminal paper [10].
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