
The Logic in Computer Science Column

by

Yuri Gurevich

Computer Science and Engineering
University of Michigan, Ann Arbor, MI 48109, USA

gurevich@umich.edu

https://cse.umich.edu/
http://web.umich.edu/
 gurevich@umich.edu

Circuits: An abstract viewpoint

Andreas Blass and Yuri Gurevich

Abstract

Our primary purpose is to isolate the abstract, mathematical properties
of circuits — both classical Boolean circuits and quantum circuits — that
are essential for their computational interpretation. A secondary purpose is
to clarify the similarities and differences between the classical and quantum
situations.

The general philosophy in this note is to include the mathematically es-
sential aspects of circuits but to omit any of the additional structures that are
usually included for convenience. We shall, however, retain the assumption
that circuits are finite; this assumption does no harm to the applicability of
our approach and is necessary for some of our work.

One of the endearing things about mathematicians is the
extent to which they will go to avoid doing any real work.

— Matthew Pordage

1 Introduction

As we worked on Circuit Pedantry [1], we tried to figure out the appropriate level
of abstraction for Boolean and quantum circuits. There is a natural tendency in the
sciences, but especially in mathematics, to abstract away as many details as pos-
sible. This celebrated tendency is fruitful but it may also be fraught with troubles
of various kinds.

The story goes that Plato defined man as featherless biped, abstracting from
man’s many other properties, but Diogenes plucked the feathers from a cock and
brought it to Plato saying: “Here’s your man."

A more recent example is Cantor’s definition of sets. Cantor imposed no re-
strictions on what the elements of a set can be or how they are collected into a

whole. The notion of set simplified mathematical analysis, enabled the develop-
ment of logic and topology, etc. But it also led to paradoxes.

Here is a more pedestrian example which is closer to Circuit Pedantry. A finite
matrix can be defined as an indexed set {ep : p ∈ R × C} where R and C are finite
sets indexing rows and columns. Normally the rows are linearly ordered and so
are the columns. But the notion of finite matrix makes perfect sense without those
orderings. That is, until you want to draw a matrix on a whiteboard or on paper.

Still, there are advantages in dealing with sets and indexed sets rather than
linearly ordered sets. Think of relational databases where relational tuples are
unordered, which simplifies theory [8] and improves practice [6] by eliminating a
most important source of implementation dependence.

The set-based approach supports the most expressive polynomial-time compu-
tation model in the literature where machines do not distinguish between isomor-
phic structures [3, 4, 7]. Some complexity-theoretic advantages of the set-based
approach are demonstrated in [5].

In Circuit Pedantry, we restrained our own tendency to abstract and adopted
the traditional approach. In that approach, the input nodes are ordered in an arbi-
trary way and — in the case of quantum circuits (and balanced Boolean circuits)
— one fixes a bijection between incoming and outgoing edges for every gate. As
a result, there are definite timelines from the input nodes to output nodes. This
allowed us to use traditional circuit diagrams as in, for example, [9] and hopefully
to make that paper more readable.

But before we restrained our tendency to abstract, we indulged it for a little
while. There is elegance and mathematical utility in the more abstract view. We
are using the abstract view in our forthcoming paper on Quantum Circuits with
Classical Channels [2] and we illustrate it here.

Our primary purpose in the present paper is to isolate the abstract, mathemat-
ical properties of circuits — both classical Boolean circuits and quantum circuits
— that are essential for their computational interpretation. A secondary purpose
is to clarify the similarities and differences between the classical and quantum
situations.

Our general philosophy in this note is to include the mathematically essential
aspects of circuits but to omit any of the additional structures that are usually
included for convenience. We shall, however, retain the assumption, satisfied in
theoretical as well as applied work, that circuits are finite. This assumption does
no harm to the applicability of our approach and is necessary for some of our

work.

In the rest of this introduction, we describe how we want to view circuits.
Precise details will be given in later sections.

Inputs and outputs, whether of a whole circuit or of a single gate, will be
families (of Boolean values or of quantum states, usually qubits and possibly en-
tangled) indexed by some finite sets. It is customary to index inputs and outputs
by natural numbers, thereby imposing a linear ordering on the inputs and another
linear ordering on the outputs. When the number of inputs equals the number of
outputs, we thereby obtain a particular bijection between the inputs and outputs.
Although such bijections are useful for drawing circuits, we shall see that none
of this customary extra structure — numerical indexes, linear orders, particular
bijections — is essential for mathematical purposes; indeed none of this structure
will appear in the formal development below. Any gate G will have a finite set ιG
of input labels and a finite set oG of output labels, but there will be no additional
structure or assumptions on these sets. (We use the Greek letters iota and omicron
for input and output of gates, in order to keep i available for other uses.)

In the case of Boolean gates, the whole input will be an ιG-indexed family of
Boolean values, i.e., an element of {0, 1}ιG , and the output will be an element of
{0, 1}oG . In the case of quantum gates, the input and output will be vectors in Q⊗ιG

and Q⊗oG , respectively, where Q is our basic Hilbert space, usually C2, the state
space for a qubit.

Similarly, the circuit as a whole will have input nodes indexed by a finite set I
and output nodes indexed by another finite set O, with no additional structure or
assumptions. The input to such a circuit will be in {0, 1}I in the Boolean case or
Q⊗I in the quantum case. The output will be in {0, 1}O in the Boolean case or Q⊗O

in the quantum case.

The connections between gates, inputs, and outputs will also be described in
what we believe to be the simplest reasonable way. Wherever a value (Boolean or
quantum) is needed, there will be a pointer to a provider for that value. A value
is needed at each input position of a gate and at each output node of the whole
circuit. Potential providers for these values are the circuit’s input nodes and the
gates’ output positions. We call the places where a value is needed “consumers”
and the places where a value can be obtained “producers”. So the wiring of our
circuits will be given by a “provider” function π from consumers to producers,
giving for each consumer c a producer π(c) expected to supply the value needed
by c.

2 Preliminaries

Throughout this paper we shall need to work with families indexed by arbitrary
finite sets, in contexts where indexing by natural numbers is more common and
provides a specific ordering for the elements of the family. This preliminary sec-
tion is devoted to describing how our more general sort of indexing works and
fixing our notation for it.

Convention 1. Throughout this paper, index sets are assumed to be finite.

An I-indexed family is a function x with domain I. The usual notations for the
value of x at i are x(i) and xi. The family itself is usually written 〈xi : i ∈ I〉 or
〈xi〉i∈I . The xi’s are called the elements or components of the family.

When the index set I is {1, 2, . . . , n}, one may write such an indexed family as
〈x1, x2, . . . , xn〉 and call it an n-tuple.

We use the notation
⊔

i∈I Ai for the disjoint union of a family 〈Ai : i ∈ I〉 of
sets, defined as ⊔

i∈I

Ai = {〈i, a〉 : i ∈ I and a ∈ Ai}.

In other words, we replace all the sets Ai by pairwise disjoint, bijective copies,
{i} × Ai, and then we take the union of those copies. If the Ai’s are themselves
pairwise disjoint, then we could have just taken their union without copying, and
we may tacitly identify that union with the official disjoint union defined above.
Even when the Ai’s are not disjoint, we may tacitly identify elements a of Ai with
the corresponding elements 〈i, a〉 of

⊔
i∈I Ai, relying on the context to provide the

correct i.

When the index set I is {1, 2, . . . , n}, one may write the disjoint union as

⊔
i∈{1,2,...,n}

Ai =

n⊔
i=1

Ai = A1 t A2 t · · · t An.

In particular, we have the binary operation t as in A1 t A2.

The (Cartesian) product of a family 〈Ai : i ∈ I〉 is defined as the collection
of those I-indexed families whose elements are taken from the corresponding sets
Ai. That is, ∏

i∈I

Ai = {〈xi : i ∈ I〉 : (∀i ∈ I) xi ∈ Ai}.

As in the case of disjoint unions, alternative notations may be used when I =

{1, 2, . . . , n}, namely

∏
i∈{1,2,...,n}

Ai =

n∏
i=1

Ai = A1 × A2 × · · · × An.

In particular, we have the binary operation × as in A1 × A2.

Similar conventions apply to the tensor product of vector spaces. The tensor
product of an indexed family 〈Vi : i ∈ I〉 of vector spaces can be defined as the
vector space generated by the elements of

∏
i∈I Vi, considered as formal symbols,

modulo the relations that make the generators linear functions of each component
when the other components are held fixed.

The precise definitions will be given in a moment, but let us first give an ori-
enting example with I = {1, 2, 3}. A typical generator 〈x1, x2, x3〉 would, in the
context of tensor products, often be written as x1 ⊗ x2 ⊗ x3, and a fairly typical
relation would be the distributivity equation

(x1 ⊗ p ⊗ x3) + (x1 ⊗ q ⊗ x3) = x1 ⊗ (p + q) ⊗ x3.

To describe these relations in more detail and in full generality, it is convenient
to introduce a bit of notation. If 〈xi : i ∈ I〉 is an indexed family, if j ∈ I, and if
q is an arbitrary entity, then we write “〈xi : i ∈ I〉 but j 7→ q” for the i-indexed
family 〈x′i : i ∈ I〉 where x′i = xi for all i , j but x′j = q. That is, we modify the
original famiiy 〈xi : i ∈ I〉 by changing the j-component to q. Then the linearity
relations for the tensor product are, first, for all j ∈ I and all p, q ∈ V j,(
〈xi : i ∈ I〉 but j 7→ p

)
+

(
〈xi : i ∈ I〉 but j 7→ q

)
=

= 〈xi : i ∈ I〉 but j 7→ p + q,

and second, for all j ∈ I, all q ∈ V j, and all scalars λ,

λ
(
〈xi : i ∈ I〉 but j 7→ q

)
= 〈xi : i ∈ I〉 but j 7→ λq.

We use the notation
⊗

i∈I Vi for this tensor product. As before, when I = {1, 2, . . . , n},
we have the alternative notations⊗

i∈{1,2,...,n}

Ai =

n⊗
i=1

Ai = A1 ⊗ A2 ⊗ · · · ⊗ An,

and we have the binary operation ⊗ as in A1 ⊗ A2.

When people work with numerical index sets and with the binary operations
t, ×, and ⊗, they make extensive (but often tacit) use of the commutative and
associative laws (up to canonical isomorphism) for these operations, and the main
effect of these laws is to render the numerical indexing irrelevant. In our general
indexed context, these laws take on quite different forms. Commutativity in the
numerical-indexed context allows one to change the order of the operands, but our
operands don’t come with an order. Associativity in the numerical context allows
one to regard operations on three or more operands as built up from binary oper-
ations in various ways, but we have defined the n-ary and in fact I-ary operations
directly, not in terms of binary ones. We list below the more general laws govern-
ing our more general operations. In each case, the isomorphisms indicated by �
are obvious and will be referred to as canonical. We leave the routine verifications
to the reader.

Suppose f : I → J is a bijection. Then any J-indexed family, being a function
with domain J, can be composed with f to produce an I-indexed family, with
the same components but differently indexed. In symbols, composition with f
transforms 〈x j : j ∈ J〉 into 〈x f (i) : i ∈ I〉. Then we have, for any families
〈A j : j ∈ J〉 of sets and 〈V j : j ∈ J〉 of vector spaces,⊔

i∈I

A f (i) �
⊔
j∈J

A j∏
i∈I

A f (i) �
∏
j∈J

A j⊗
i∈I

V f (i) �
⊗

j∈J

V j.

That is, up to canonical isomorphisms, re-indexing doesn’t change disjoint unions,
Cartesian products, and tensor products.

Now suppose 〈Ji : i ∈ I〉 is an I-indexed family of index sets Ji, and let K be
the disjoint union of all the Ji (remember that elements of K have the form 〈i, j〉
with i ∈ I and j ∈ Ji). Then we have, for any K-indexed families 〈A〈i, j〉 : 〈i, j〉 ∈ K〉

of sets and 〈V〈i, j〉 : 〈i, j〉 ∈ K〉 of vector spaces,⊔
〈i, j〉∈K

A〈i, j〉 �
⊔
i∈I

⊔
j∈Ji

A〈i, j〉∏
〈i, j〉∈K

A〈i, j〉 �
∏
i∈I

∏
j∈Ji

A〈i, j〉⊗
〈i, j〉∈K

V〈i, j〉 �
⊗

i∈I

⊗
j∈Ji

V〈i, j〉.

We shall sometimes simplify notation by omitting mention of the canonical
bijections and isomorphisms above. For example, if X = A × C and Y = B × D,
then we may identify A×B×C×D with X×Y , omitting mention of the canonical
isomorphism arising from the bijection f : I = {1, 2, 3, 4} → J =

⊔
i∈{1,2}{1, 2} that

sends 1, 2, 3, 4 to 〈1, 1〉, 〈2, 1〉, 〈1, 2〉, 〈2, 2〉, respectively. In detail, let A, B,C,D =

A11, A21, A12, A22. Then

A × B ×C × D = A11 × A21 × A12 × A22 =
∏
i∈I

A f (i)

�
∏
j∈J

A j

�
∏

u∈{1,2}

∏
v∈{1,2}

A〈u,v〉 = (A ×C) × (B × D).

Consider two I-indexed families of sets 〈Ai : i ∈ I〉 and 〈Bi : i ∈ I〉 and an
I-indexed family of functions fi : Ai → Bi. These functions fi induce functions
on disjoint unions and Cartesian products

〈i, a〉 7→ 〈i, fi(a)〉 :
⊔
i∈I

Ai →
⊔
i∈I

Bi

and
〈ai : i ∈ I〉 7→ 〈 fi(ai) : i ∈ I〉 :

∏
i∈I

Ai →
∏
i∈I

Bi.

Similarly, linear transformations between vector spaces fi : Vi → Wi induce
a linear transformation of the tensor products,

⊗
i∈I Vi →

⊗
i∈I Wi , sending each

generator 〈xi : i ∈ I〉 of the former space to the generator 〈 fi(xi) : i ∈ I〉 of the
latter. It is easy to check, using the linearity of the fi’s, that this mapping of the
generators respects the defining relations of the tensor product and thus gives a
well-defined linear transformation of the tensor products.

Remark 2. For category-minded readers, we mention that
⊔

and
∏

are functors
from I-indexed families of sets to sets. In fact, they are the left and right adjoints,
respectively, of the functor that sends any set X to the I-indexed family all of
whose components are X. Similarly,

⊗
is a functor from I-indexed families of

vector spaces to vector spaces. The canonical isomorphisms indicated earlier are
natural isomorphisms in the category-theoretic sense.

3 Boolean Circuits

Definition 3. A Boolean gate type is a triple 〈ι, o, g〉 consisting of two finite sets
ι and o and a function g : {0, 1}ι → {0, 1}o. We call ι the set of input labels, o the
set of output labels, and g the function of the gate type.

In this section, all gate types under consideration will be Boolean, so we omit
“Boolean” and just call them gate types.

People often restrict the labels to be natural numbers. This makes it easier to
write elements of {0, 1}ι and {0, 1}o, but it has no mathematical significance.

Definition 4. A Boolean circuit consists of

• a finite set I of input nodes,

• a finite set O of output nodes,

• a finite set of gates,

• an assignment of a gate type (ιG, oG, gG) to each gate G, and

• a provider function π as described below.

By producers we mean input nodes and triples of the form (G, out, l) where G is a
gate of the circuit and l is one of its output labels (l ∈ oG). We call such a triple an
output port of the gate G. By consumers we mean output nodes and triples of the
form (G, in, l) where G is a gate of the circuit and l is one of its input labels (l ∈ ιG).
We call such a triple an input port of the gate G. Producers and consumers are
called nodes of the circuit.

The provider function π is a function from consumers to producers subject to
the following requirement. We say that a gate G is a direct prerequisite for another
gate H and we write G ≺ H if π maps (at least) one of the input ports of H to an
output port of G. We require that the relation ≺ be acyclic. /

To simplify terminology and notation, we shall sometimes refer to providers
of a gate when we mean providers of that gate’s input ports. Thus, G ≺ H if and
only if some provider of H is an output port of G.

Notation 5. When G is a gate, we abbreviate {π(G, in, l) : l ∈ ιG} as π(G).

In view of the assumption that our circuits are finite, the requirement that ≺
be acyclic is equivalent to requiring that it be a well-founded relation. We use the
word prerequisite without “direct” and the notation ≺∗ for the transitive closure of
≺; thus ≺∗ is a strict partial order.

The intuition behind the definition is as follows. Each gate G, given the set ιG
of input labels, the set oG of output labels, and the Boolean function gG, reads an
input in {0, 1}ιG from its input ports, applies gG, and puts the result in {0, 1}oG at its
output ports. The inputs here, at the input ports x of G, are simply retrieved from
the corresponding nodes π(x) as given by the provider function π. The gate G con-
sumes its inputs and produces its outputs; hence the “producer” and “consumer”
terminology. The input nodes of the circuit, the elements of I, can also provide
inputs for gates, so they count as producers. The output nodes can retrieve values
computed by gates or supplied in the input (as given by π) and exhibit them as the
result of the circuit’s computation. This intuition is formalized in the following
theorem.

Theorem 6. Let a circuit be given along with an assignment of Boolean values
to its input nodes, i.e., an element a of {0, 1}I . Then there is a unique function
C assigning to each node x of the circuit a Boolean value C(x) subject to the
following requirements.

1. For input nodes x, we have C(x) = a(x).

2. For consumers x, we have C(x) = C(π(x)) (i.e., consumer nodes just retrieve
bits from their providers).

3. For any gate G, its oG-tuple of outputs,

l 7→ C(G, out, l),

is the result of applying its function gG to its ιG-tuple of inputs

m 7→ C(G, in,m).

Proof. Clause (2) reduces the problem to defining C on producers. Rewriting
clause (3) in terms of producers,

(l 7→ C(G, out, l)) = gG(m 7→ C(π(G, in,m))),

we find that this and clause (1) constitute a definition of C (on producers) by
recursion on the direct prerequisite relation ≺. Since this relation is well-founded,
the recursion has a unique solution. �

According to the theorem, any a ∈ {0, 1}I gives rise, via the function C, to a
uniquely defined element b ∈ {0, 1}O, namely the restriction of C to output nodes.
In this way, the given circuit defines a function {0, 1}I → {0, 1}O, the function
computed by the circuit.

4 Balanced Boolean Circuits

In preparation for the discussion of quantum circuits, we introduce a special class
of Boolean circuits, defined in [1] and designed to be subject to some of the re-
strictions that become necessary when one moves from the classical world to the
quantum world.

Definition 7. A Boolean circuit is balanced if all of its gate functions gG and its
provider function π are bijective.

Since bijective functions are invertible, bijectivity of all the gate functions gG

says that the circuit is composed entirely of reversible gates.

Injectivity of the provider function π means that each input bit and each bit
produced by a gate can be used (or output) only once. This amounts to saying that
the gates and inputs have no fan-out.

Surjectivity of π means that input bits and bits produced by gates must be
used, either in computations by subsequent gates or as output from the circuit.
They cannot simply be discarded. Intuitively, this seems to be a mild requirement
because, if a circuit did discard some of its produced bits, then we could simply
regard those bits as additional output. In other words, if π were merely injective
and not bijective, we could enlarge O and extend π to map the new elements of O
to those producers that were missing from the image of π.

We record some immediate consequences of the definition.

First, if G is a gate in a balanced circuit, then, since gG : {0, 1}ιG → {0, 1}oG is
a bijection, the index sets ιG and oG must have the same cardinality; each gate has
equally many input as output ports.1

Summing that equality over all gates, we find that the total number of gate in-
put ports, which is the number of consumers except for the circuit’s output nodes,
must equal the total number of gate output ports, which is the number of producers
except for the circuit’s input nodes.

But the provider function π is also required to be a bijection, so the number of
consumers equals the number of producers, without the exceptions. Therefore, the
exceptions must match, i.e., the circuit has as many input nodes as output nodes:
|I| = |O|.

5 Quantum Gates and Circuits

We turn now to the description of circuits for quantum computation. For simplic-
ity and to maintain similarity with the Boolean case discussed in the preceding
sections, we make two assumptions about our circuits. First, we assume that the
capacity of each connection is a qubit, the quantum analog of a bit, rather than
a more complicated quantum system (which would be analogous to transmitting
more than one bit, or perhaps an element of some other alphabet, in the Boolean
case). Second, we assume that each gate represents a unitary operator; that is,
we do not permit more complicated2 measurements. The second assumption is
eliminated in [2].

Under these assumptions, quantum circuits differ from Boolean circuits in the
following ways. First, the no-cloning theorem means that at most one consumer
can use the output of any one producer, i.e., a producer’s output cannot be dupli-
cated to supply multiple consumers. Thus, the provider function π of a quantum
circuit is necessarily one-to-one. Furthermore, just as in our earlier discussion of
Boolean circuits, we may assume that π is surjective, i.e., that whatever is pro-
duced is also consumed; we just treat any unconsumed production as additional

1This observation would remain valid if each consumer c received from its provider π(c) not a
bit but an element of some other, fixed alphabet Σ. But it would not be valid if the alphabet Σ were
allowed to be different for different c. For example, if a gate G has hexadecimal inputs and binary
outputs, then in order for gG to be bijective, oG must have four times as many elements as ιG.

2The general notion of quantum measurement, as defined in, for example [9], allows measure-
ments with only one possible outcome; such a measurement amounts to a unitary operator acting
on the state.

output. Thus, we may assume that the provider function π is bijective.

Second, the gate functions gG in a quantum circuit are not Boolean functions
but unitary transformations of Hilbert spaces. Specifically, if ιG and oG are, as
before, the sets of input and output labels, respectively, of G, then gG unitarily
maps Q⊗ιG to Q⊗oG , where Q is the one-qubit Hilbert space Q = C2. Since unitary
transformations exist only between Hilbert spaces of equal dimension, we con-
clude, just as in the balanced Boolean case, that |ιG| = |oG| for every gate G and
that therefore also |I| = |O|. In these respects, quantum circuits look like balanced
Boolean circuits.

Third, and most important, both for the utility of quantum computation and
for our work below, is entanglement. In the Boolean case, the inputs to a gate
were separate bits, obtained independently from the appropriate providers. In the
quantum case, it is usually not the case that a gate’s input qubits are independent.
They may be entangled with each other and also with other qubits that the gate
in question does not directly work with. This entanglement can be seen as the
source of the power of quantum computation; it is also the source of some of the
complexity in our formal development of the theory.

We now begin the formal development, interspersed with commentary to clar-
ify the underlying intentions.

Notation 8. We use Q to denote the qubit Hilbert space C2.

Definition 9. A quantum gate type is a triple 〈ι, o,U〉 consisting of two finite sets
ι and o and a unitary transformation U : Q⊗ι → Q⊗o. We call ι the set of input
labels, o the set of output labels, and U the operator of the gate type.

As mentioned above, unitarity of U in this definition forces ι and o to have the
same cardinality. They need not, however, be the same set, nor need there even
be a canonical bijection between them. In many pictures of quantum circuits,
a particular bijection would be implicit in the layout of the circuit on the page,
but neither the layout nor the bijection is canonical, and neither is relevant in our
abstract context.

Definition 10. A quantum circuit consists of

• a finite set I of input nodes,

• a finite set O of output nodes,

• a finite set of gates,

• an assignment of a gate type (ιG, oG,UG) to each gate G, and

• a bijective provider function π from consumers to producers such that the
direct prerequisite relation ≺ and therefore also its transitive closure ≺∗ are
acyclic.

In the last clause of this definition, “consumer”, “producer”, ≺, and ≺∗ are to
be understood exactly as in the case of Boolean circuits. Thus, the only difference
between quantum circuits and balanced Boolean circuits is that each gate G has a
unitary operator UG : Q⊗ιG → Q⊗oG instead of a Boolean bijection gG : {0, 1}ιG →
{0, 1}oG . We also carry over from the Boolean case Notation 5 and the terminology
“providers of a gate”.

The intuition behind the behavior of a quantum circuit is similar in some re-
spects to that for Boolean circuits but quite different in other respects.

As before, a gate G will obtain its input from its providers and act on that
input to produce its output. It is, however, important not to misinterpret “retrieve”
in our description of the Boolean case, “inputs . . . are simply retrieved from the
corresponding provider nodes.” “Retrieve” must not mean “copy” here because
quantum states, unlike classical bits, cannot simply be copied. We should rather
regard what is consumed at a gate G to be the same as (not a copy of) what is
produced at its provider nodes.

Furthermore, it can be misleading to speak of the state vector on which a gate
acts or the state vector that it produces. These states will usually be entangled with
other parts of the circuit that are not directly involved with G. Even taking into
account that the bits in {0, 1} of the Boolean situation must be replaced by vectors
in Q in the quantum situation, we cannot expect to assign a state vector in Q to
each node of the circuit;3 we cannot expect a direct analog of Theorem 6. Instead
of keeping track of separate bits at all the nodes, we must now keep track of the
evolution of a global quantum state. Specifically, it makes good sense to speak of
the input state where the circuit’s computation begins, of the final state after the
computation is complete, and of various intermediate states, related to each other
by the action of the gates. The following definition serves to describe the contexts
in which such a global state makes sense.

Definition 11. A stage of a quantum circuit is a set Z of gates closed under direct

3We could assign a mixed state to each node by taking a suitable trace of the global state.
The trace operation could, however, lose a great deal of information and could, in fact, ruin the
usefulness of quantum computation. The reason is that tracing can destroy the entanglement on
which quantum computation depends for its power.

prerequisites, i.e., if x ∈ Z and y ≺ x then y ∈ Z. The exits of a stage Z are those
input nodes in I and output ports of gates G in Z that are not consumed in Z (i.e.,
are not in π(H) for any gate H in Z). We write Exit(Z) for the set of exits of a
stage Z.

The formal notion of stage introduced in this definition is intended to model
the informal notion of a stage during a computation, that is, a moment when some
gates have already fired and the rest are still waiting to fire. The set Z consists of
the gates that have already fired, the “past” of the stage in question; the comple-
mentary set of all gates not in Z is the “future” of the stage. The requirement, in
the definition, that Z be closed under ≺ formalizes the idea that a gate cannot be
fired until all its prerequisites have been fired; firing a gate requires the availability
of its input. Note that closure under ≺ immediately implies closure under ≺∗.

The exits of a stage are those producers which have already produced their
outputs but have not yet had those outputs consumed. These outputs constitute the
information created (or supplied as input) in the past and destined to be consumed
in the future.

In terms of typical pictures of circuits, a stage Z can be depicted as a cut
through the circuit, separating the gates already fired (those in Z) from the rest of
the gates, which still await firing in the future. The circuit’s input nodes in I would
be depicted as being on the past side of the cut (where Z is) while the output nodes
in O are on the future side. The edges in the picture that cross the cut are those
whose past ends are in Z (more precisely, these ends are output ports of gates in
Z) or I and whose future ends are not. When people use such pictures, they often
think in terms of a global state associated to such a cut.

In our abstract picture, we don’t directly refer to edges, but our exits corre-
spond to the past ends of the edges crossing the cut (and their pre-images under π
correspond to the future ends of those edges).

If one were to actually cut a circuit into a past circuit (input nodes and gates
in Z) and a future circuit (output nodes and gates not in Z), then Exit(Z) would
amount to providers for outputs of the past fragment and to inputs for the future
fragment. The terminology “exit” is intended to suggest the operation of these
nodes in producing output from the Z fragment.

Definition 12. Let Z be a stage of a quantum circuit and let G be a gate not in
Z. We say that G is ready at Z if all its direct prerequisites (and therefore all its
prerequisites) are in Z. In this case, Z ∪ {G} is also a stage, and we denote it by
Z + G.

The idea behind this definition is that, after the gates in Z have fired, G is ready
to be fired next. Firing it would then bring the computation to the stage Z + G.
There may, of course, be several gates that are ready at Z, and any one (or more)
of them could be fired next.

Notice for future reference that, if a gate G is ready at a stage Z, then

Exit(Z + G) =
(
Exit(Z) − π(G)

)
t {(G, out,m) : m ∈ oG},

that is, firing G after stage Z adds to the exits the output ports of G and removes
the producers that are providers for G. The following proposition is just a refor-
mulation of this observation in a form that will be convenient later.

Proposition 13. Let Z be a stage, G a gate that is ready at Z, and R = Exit(Z) −
π(G). Then

Exit(Z) = R t {π(G, in, l) : l ∈ ιG}

and
Exit(Z + G) = R t {(G, out,m) : m ∈ oG}.

We take advantage of this proposition to simplify some of our notation as
follows.

Notation 14. Let Z, G, and R = Exit(Z) − π(G) be as in Proposition 13. We
identify Exit(Z) with R t ιG and thereby identify Q⊗Exit(Z) with Q⊗R ⊗ Q⊗ιG , using
the bijection l 7→ π(G, in, l) for l ∈ ιG. Similarly, we identify Q⊗Exit(Z+G) with
Q⊗R ⊗ Q⊗oG , using the bijection m 7→ (G, out,m) for m ∈ oG. In other words,
we omit mention of those two bijections and the maps they induce on the tensor
powers of Q.

It is also worth noting the two extreme cases of stages. The empty set is a
stage, the stage at which no gate has yet fired. Only the circuit’s input is available
at this stage; formally, Exit(∅) = I. The set of all gates is also a stage, the stage
after all the gates have fired. Its exits are the providers of the output nodes.

The next theorem formalizes the idea that, once an input state for the circuit
is specified in Q⊗I , there is a well-defined global state at each stage, where these
global states for different stages are related to each other by the action of the gates.
In very abbreviated form, the theorem could be summarized as saying that, given
a circuit and an input state, there is a well-defined computation of that circuit on
that input. It is the quantum analog of Theorem 6.

Theorem 15. Let a quantum circuit be given along with an input state vector
|ψ〉 ∈ Q⊗I . Then there is a unique function assigning to each stage Z of the circuit
a state vector C(|ψ〉,Z) ∈ Q⊗Exit(Z) subject to the following requirements.

1. For the initial stage, we have C(|ψ〉,∅) = |ψ〉.

2. If G is ready at Z,then

C(|ψ〉,Z + G) = (IR ⊗ UG)C(|ψ〉,Z),

where R = Exit(Z) − π(G) is as in Proposition 13 and IR is the identity
operator on Q⊗R.

Requirement (2) in the theorem says, intuitively, that the gate G acts on C(|ψ〉,Z)
to produce C(|ψ〉,Z + G) by applying its operator UG to the relevant part of this
state, which, thanks to the identifications in Notation 14, is Q⊗ιG . It does nothing
to the rest of C(|ψ〉,Z), namely, the part in Q⊗R.

Proof. Fix, for the whole proof, the circuit and the initial state |ψ〉.

To prove uniqueness of C(|ψ〉,Z), we proceed by induction on the cardinality
of Z. If this cardinality is 0, then requirement (1) in the theorem ensures unique-
ness of C(|ψ〉,∅).

Consider now a stage Z that contains at least one gate. Because ≺∗ is acyclic,
Z must contain a gate G that is not a prerequisite for any other gate in Z. Deletion
of G from our stage thus produces another stage, which we call Z′ and which,
by induction hypothesis, has a uniquely defined C(|ψ〉,Z′). But then Z = Z′ + G,
and C(|ψ〉,Z) = C(|ψ〉,Z′ + G) is uniquely determined by requirement (2) of the
theorem. This completes the induction step and thus completes the uniqueness
proof.

It remains to prove the existence part of the theorem. The proof of unique-
ness given above implicitly provides a construction that almost proves existence.
Specifically, the uniqueness proof obtains C(|ψ〉,Z) by removing the gate G to ob-
tain Z′ with Z = Z′ + G and then acting by IR ⊗ UG on C(|ψ〉,Z′). This C(|ψ〉,Z′)
is, of course, obtained in the same way by removing a gate G′ to get Z′ = Z′′+G′,
and continuing in the same way until one gets to the empty stage. Starting from
|ψ〉 = C(|ψ〉,∅), we apply the gates (or rather their operators I ⊗ U) in the re-
verse of the order described above. That is, we have, using the notation Ri for
Exit({G1, . . . ,Gi−1}) − π(Gi),

C(|ψ〉,Z) = (IRk ⊗ UGk) ◦ (IRk−1 ⊗ UGk−1) ◦ · · · ◦ (IR2 ⊗ UG2) ◦ (IR1 ⊗ UG1)|ψ〉

for an enumeration (G1,G2, . . . ,Gk) of the gates in Z that is coherent with ≺ in
the sense that the prerequisites of any gate appear earlier than the gate itself, i.e.,
if Gi ≺ G j then i < j. (Intuitively, this enumeration is a sequentialization of the
circuit, in the sense that G1 fires first, then G2, etc.) Note for future reference, that
coherence with ≺ is the same as coherence with the transitive closure ≺∗.

The issue that still needs to be addressed is that there are, in general, several
ways choose the gate G in the induction step of the uniqueness proof. We need
that all enumerations (G1,G2, . . . ,Gk) of the gates in Z coherent with ≺ produce
the same C(|ψ〉,Z).

Once this is done, it will be clear that C so defined satisfies the requirements
in the theorem. Indeed, requirement (1) is immediate, being the k = 0 case of the
definition where no operators act on |ψ〉. To check requirement (2), it suffices to
apply the definition with an arbitrary coherent enumeration for Z and, for Z + G,
the enumeration obtained by appending G as the last gate.

To show that any two coherent enumerations of Z lead to the same C(|ψ〉,Z),
we invoke Theorem 32 from [1, §4.2]: If two enumerations of a finite partially
ordered set are both coherent with the partial order, then one can be obtained from
the other by a sequence of interchanges of two consecutive elements, in such a
way that the enumerations at all steps of the process are coherent with the partial
order. We apply this result to the finite set Z of gates and the partial order ≺∗. We
thus find that it suffices to consider two enumerations that differ by interchanging
just two consecutive elements.

Suppose, therefore, that one enumeration is (G1, . . . ,Gk) as above and the
other is obtained from it by interchanging Gi and Gi+1. These two enumerations
give formulas for C(|ψ〉,Z) that differ only in two of the factors of the form IR⊗UG

that are being composed, and those two factors are adjacent. It is tempting to say
that we just need to prove that those factors commute, but the situation is a bit
more subtle because each of the two relevant R’s depends on the preceding stages.

Let Y be the stage just before either of the two critical gates Gi and Gi+1 acts,
i.e., Y = {G1, . . . ,Gi−1}. Then Exit(Y) can be split into three disjoint subsets: the
part π(Gi) of providers for the input ports of Gi, the analogous part π(Gi+1) for
Gi+1, and the rest U of Exit(Y). Formally, we observe that π(Gi) and π(Gi+1) are
disjoint, because π is bijective, and we define U = Exit(Y) − π(Gi) − π(Gi+1).

Let us consider the action of the critical gates Gi and Gi+1 with respect to
the original enumeration (G1, . . . ,Gi,Gi+1, . . . ,Gk) and, in particular, let us look
at the Ri and Ri+1 at those stages. In our formula for C(|ψ〉,Z), we determined
Ri by referring to Proposition 13 with the gate Gi and the stage just before the

action of Gi. In our present context, that stage is what we are calling Y , and
Ri is therefore Exit(Y) − π(Gi) = π(Gi+1) t U. Then Ri+1 is determined by again
referring to Proposition 13 but now with the gate Gi+1 and the stage Y +Gi. So Ri+1

is Exit(Y + Gi) − π(Gi+1) This Ri+1 could, a priori, differ from Exit(Y) − π(Gi+1) =

π(Gi) t U, because we now have Exit(Y + Gi) rather than Exit(Y). Fortunately,
there is no real difference. To see this, first consult Proposition 13 to see that
Exit(Y + Gi) differs from Exit(Y) only by (1) removal of ports that are in π(Gi)
and (2) addition of output nodes of Gi. The removals in (1) make no difference
for us, because π(Gi) is disjoint from π(Gi+1). The additions in (2) also make no
difference for the following, less trivial reason. Recall that the enumeration with
Gi and Gi+1 interchanged is also coherent with ≺. So we know that Gi ⊀ Gi+1; no
output node of Gi can be the provider for an input node of Gi+1. And this is just
what we need to ensure that the additions (2) don’t matter.

Thus, for the enumeration (G1, . . . ,Gi,Gi+1, . . . ,Gk), we have Ri = Exit(Y) −
π(Gi) = π(Gi+1) t U and Ri+1 = Exit(Y) − π(Gi+1) = π(Gi) t U. An exactly
analogous argument gives the same R’s for the alternative ordering (G1, . . . ,Gi+1,

Gi, . . . ,Gk). That is, the same two operators IRi ⊗ UGi and IRi+1 ⊗ UGi+1 occur in
both versions of the formula for C but in reversed order. So all we still need to
prove is that these two operators commute. Fortunately, that is easy. The first is
IU ⊗ UGi ⊗ Iπ(Gi+1) and the second is IU ⊗ Iπ(Gi) ⊗ UGi+1 . These commute because,
in each of the three tensor factors, at least one of them is the identity operator.
This completes the proof that C is well-defined and thus completes the proof of
the theorem. �

The following corollary records information implicit in the proof of Theo-
rem 15, namely that C(|ψ〉,Z) is, for each fixed Z, obtained from |ψ〉 in a uniform
and unitary manner.

Corollary 16. For every quantum circuit and every stage Z, there is a unitary
operator Q⊗I → Q⊗Exit(Z) sending each input state vector |ψ〉 to the C(|ψ〉,Z) de-
scribed in Theorem 15.

Proof. The desired unitary operator is the operator

(IRk ⊗ UGk) ◦ (IRk−1 ⊗ UGk−1) ◦ · · · ◦ (IR2 ⊗ UG2) ◦ (IR1 ⊗ UG1),

used in the proof of Theorem 15 and shown there to be independent of the sequen-
tialization of the circuit. �

Given a quantum circuit and an input state |ψ〉 ∈ Q⊗I , Theorem 15 provides
a complete description of the resulting computation. That includes, in particular,
the final result of these computations, namely C(|ψ〉,Z) where Z is the set of all
the gates in the circuit. But it also includes intermediate results C(|ψ〉,Z) for all
stages Z, and these tell what happens, step-by-step, in any sequentialization of the
computation. Furthermore, even if one does not fully sequentialize the computa-
tion but allows several gates to act simultaneously, then, first, any simultaneously
acting gates must be incomparable under ≺∗ because a gate can act only after its
inputs have been produced by its prerequisite gates, and, second, after any part
of such a computation has taken place, the gates in that part constitute a stage.
Theorem 15 thus provides a well-defined state after that part of the computation.

Remark 17. Theorems 6 and 15 say, in the Boolean and quantum cases respec-
tively, that a circuit and initial data produce a well-defined computation, but the
detailed formulations differ significantly. Theorem 6 provides a separate bit C(x)
for every node x. We have already explained that it is unreasonable to expect
an exact analog for quantum circuits, providing a separate qubit for every node,
because the qubits can be entangled. This is why Theorem 15 assigns quantum
states not to individual nodes but to (the exits of) whole stages.

In the opposite direction, though, we can easily obtain a Boolean analog of
the quantum result. Observe that the definitions of “stage”, “exit”, “ready”, and
“Z +G” can be applied verbatim to Boolean circuits. Furthermore, Proposition 13
remains correct and we can make identifications like those in Notation 14 for
products of sets instead of tensor products of vector spaces. In light of these
observations, we can transcribe Theorem 15 to the Boolean situation, obtaining
the following corollary of Theorem 6.

Corollary 18. Let a Boolean circuit be given along with an input a ∈ {0, 1}I .
Then there is a unique function assigning to each stage Z of the circuit a state
C(a,Z) ∈ {0, 1}Exit(Z) subject to the following requirements.

1. For the initial stage, we have C(a,∅) = a.

2. If G is ready at Z, then

C(a,Z + G) = (IR × gG)C(a,Z),

where R = Exit(Z) − π(G) is as in Proposition 13 and IR is the identity
function on {0, 1}R.

Proof. The desired C(a,Z) in this corollary is the function assigning to each x ∈

Exit(Z) the bit C(x) from Theorem 6. The required properties of C in the present
corollary follow easily from the properties of the earlier C in Theorem 6. �

References

[1] Andreas Blass and Yuri Gurevich, “Circuit pedantry," Bulletin of the European As-
sociation for Theoretical Computer Science 129 October 2019, https://arxiv.
org/abs/1910.06145

[2] Andreas Blass and Yuri Gurevich, “Quantum ciruits with classical channels," in
preparation

[3] Andreas Blass, Yuri Gurevich and Saharon Shelah, “Choiceless polynomial time,"
Annals of Pure and Applied Logic 100 141–187 1999

[4] Andreas Blass, Yuri Gurevich and Saharon Shelah, “On polynomial time compu-
tation over unordered structures," The Journal of Symbolic Logic 67:3 1093–1125
2002

[5] Andreas Blass, Yuri Gurevich and Jan Van den Bussche, “Abstract state machines
and computationally complete query languages," Information and Computation
174:1 20–36 2002

[6] C.J. Date and Hugh Darwen, “A Guide to the SQL Standard," 4th edition, Addison-
Wesley 1997

[7] Anuj Dawar, David Richerby and Benjamin Rossman, “Choiceless polynomial time,
counting and the Cai-Fürer-Immerman graphs," Annals of Pure and Applied Logic
152:1 31–50 2008

[8] Héctor Garcia-Molina, Jeffrey D. Ullman and Jennifer Widom, “Database systems:
The complete book," Prentice Hall 2002

[9] Michael A. Nielsen and Isaac L. Chuang, “Quantum Computation and Quantum
Information," 10th Anniversary Edition, Cambridge University Press 2010

https://arxiv.org/abs/1910.06145
https://arxiv.org/abs/1910.06145

	Introduction
	Preliminaries
	Boolean Circuits
	Balanced Boolean Circuits
	Quantum Gates and Circuits

