
The Formal Language Theory Column
by

Giovanni Pighizzini
Dipartimento di Informatica

Università degli Studi di Milano
20135 Milano, Italy

pighizzini@di.unimi.it

http://www.tucs.nl/
http:/www.utu.fi
pighizzini@di.unimi.it

Regular Languages:
To Finite Automata and Beyond

Succinct Descriptions and Optimal Simulations

Luca Prigioniero
Dipartimento di Informatica, Università degli Studi di Milano

via Celoria 18, 20133 Milan, Italy
prigioniero@di.unimi.it

Abstract

It is well known that regular (or Type 3) languages are equivalent to finite
automata. Nevertheless, many other characterizations of this class of lan-
guages in terms of computational devices and generative models are present
in the literature. For example, by suitably restricting more general models
such as context-free grammars, pushdown automata, and Turing machines,
that characterize wider classes of languages, it is possible to obtain formal
models that generate or recognize regular languages only. These restricted
formalisms provide alternative representations of Type 3 languages that may
be significantly more concise than other models that share the same express-
ing power.

The goal of this work is to provide an overview of old and recent re-
sults on these formal systems from a descriptional complexity perspective,
that is the study of the relationships between the sizes of such devices. We
also present some results related to the investigation of the famous ques-
tion posed by Sakoda and Sipser in 1978, concerning the size blowups from
nondeterministic finite automata to two-way deterministic finite automata.

1 Introduction
The investigation of computational models operating under restrictions is one of
classical topics of computer science.

In one of his pioneer papers, Chomsky introduced a hierarchy of classes of
languages, also known as Chomsky hierarchy, obtained by applying increasing re-
strictions to general grammars, that characterize the class of Type 0 languages [7].

prigioniero@di.unimi.it

In this way he introduced the classes of context-sensitive (or Type 1), context-free
(or Type 2), and regular (or Type 3) languages.

For the same classes of languages, there also exist characterizations in terms
of computational devices. Even in this case, bounding computational resources
of general models, less powerful devices can be obtained. For example, while
Turing machines (Tm for short), in both deterministic and nondeterministic ver-
sions, even in the variant with one tape only, characterize Type 0 languages, by
restricting the working space they are allowed to use to the portion of the tape
that initially contains the input, linear bounded automata are obtained, that are
equivalent to context-sensitive grammars [31]. Also finite automata and push-
down automata (pda), that are standard recognizers for Type 3 and Type 2 lan-
guages, respectively, can be considered as particular Turing machines in which
the capacity or access to the memory storage is limited.

Besides the standard models mentioned thus far, considering machines that
make restricted use of resources, it is possible to obtain alternative characteriza-
tion of the classes of the hierarchy. For example, in 1965, Hennie proved that
when the length of the computations, i.e., the time, is linear in the input length,
one-tape Turing machines are no more powerful than finite automata, that is, they
recognize regular languages only [20].

As remarked by Chomsky, context-free languages have the property of be-
ing able to describe recursive structures such as, for instance, nested parentheses,
arithmetic expressions, and typical programming language constructs. In terms
of recognizing devices, this capability is typically implemented through the push-
down store, a memory structure in which the information is stored and recovered
in a “last in–first out” way, which is used to add recursion to finite automata,
so making the resulting model (pushdown automata), equivalent to context-free
grammars [6].

To emphasize the ability of context-free grammars to generate recursive sen-
tential forms, Chomsky investigated the self-embedding property [8]: a context-
free grammar is self-embedding if it contains some variable which, in some sen-
tential form, is able to reproduce itself enclosed between two nonempty strings.
Roughly speaking, this means that such a self-embedded variable can generate
a “true” recursion that needs an auxiliary memory (typically a stack) to be im-
plemented (in contrast with tail or head recursions, corresponding to the cases
in which the two strings surrounding the variable are empty, that can be easily
eliminated). Chomsky proved that, among all context-free grammars, only self-
embedding ones can generate nonregular languages. Hence, non-self-embedding
grammars (nse) are no more powerful than finite automata [7, 8].

Counterpart devices for non-self-embedding grammars, for which the capabil-
ity of recognizing recursive structures is limited by placing some restrictions on

the size of the memory of the corresponding general model, are constant-height
pushdown automata (h-pda). More precisely, these devices are standard nonde-
terministic pushdown automata where the amount of available pushdown store is
bounded by some constant h 2 N. Hence, the number of their possible configura-
tions is finite, thus implying that they are no more powerful than finite automata.

By contrast to models that make use of space or time restrictions, Hibbard in-
troduced d-scan limited automata (or simply d-limited automata, d-la), that are
obtained by limiting the writing capabilities of nondeterministic linear bounded
automata allowing overwriting of each tape cell only the first d times that it is
scanned, for some fixed d � 0 [21]. Nevertheless, the cell may be visited again
and the information stored therein read arbitrarily many more times, but its con-
tents is frozen for the remainder of the computation. Hibbard proved that, for
each d � 2 this model characterize context-free languages and showed the exis-
tence of an infinite hierarchy of deterministic d-limited automata, whose first level
(i.e., corresponding to deterministic 2-limited automata) has been later proved to
coincide with the class of deterministic context-free languages [40]. (See [32] and
references therein for further connections between limited automata and context-
free languages.) Furthermore, as shown by Wagner and Wechsung, when d = 1,
that is, when these devices are allowed to overwrite the contents of each tape cell
during the first visit only, 1-limited automata (1-la) are equivalent to finite au-
tomata [53]. Moreover, it is a trivial observation that when d = 0, and hence no
writings on the tape are allowed, 0-limited automata correspond to finite automata
that can move their input head back and forth on the input tape, namely two-way
finite automata.1

General devices and their restrictions characterizing Type 3 languages and
discussed in this work are depicted in Figure 1.

Descriptional Complexity of Formal Systems. In this work we shall focus on
the models characterizing the bottom level of the Chomsky hierarchy: the class
of regular languages. We compare them from a descriptional complexity point
of view, specifically, by studying their capability of representing the same class
of languages in a more, or less, concise way. More precisely, descriptional com-
plexity is a branch of theoretical computer science whose goal is the investigation
of the relationships between the sizes of the representations of formal systems
that share the same computational power, or, in other words, the study of how
concisely a system can describe a class of problems (or languages).

At the beginning of the section a few equivalent models characterizing the
class of regular languages have been presented. These devices are obtained by

1Further technical details, properties, examples, and references about limited automata can be
found in the recent survey by Pighizzini [37].

Type 0

Type 1

Type 2

Type 3

CFG

ReG FA

h-PDA 1-LA Linear-Time TmNSE

CSG

Unrestricted

PDA d-LA

LBA

One-Tape Tm

Figure 1: Models representing regular languages obtained by posing some restric-
tions on standard grammars (on the left, in gold) and recognizers (on the right, in
green) characterizing the classes of the Chomsky hierarchy.

limiting some resources of more general models. Therefore, the main question
we are interested about is “How much does the limitation of one resource cost
in terms of another resource, or, in other words, what are the upper and lower
bounds of such trade-o↵s?” [14].

Since we are interested in comparing the sizes of the descriptions of devices
and formal systems, for each model under consideration we evaluate its size as the
total number of symbols used to describe it, or, in other words, to write down its
description. In particular, to measure the size of recognizing devices, we consider
the amount of memory required to store the “algorithm” they implement (their
transition function), so, for example, the size of finite automata is bounded by a
polynomial in the number of their states. On the other hand, the size of grammars
is given by the number of symbols used to write down their derivation rules [30].

Given two di↵erent classes of computational modelsM1 andM2 characteriz-
ing regular languages, there are natural questions we are interested in:
• Does a function F exist, such that for all the regular languages L, the size

of the smallest device of typeM1 for L is upper bounded by the function F
of the size of the smallest equivalent device of typeM2? If F exists, it is
an upper bound for the increase (blow-up) in complexity when changing
from a minimal model of type M2 for an arbitrary regular language to an
equivalent minimal model of typeM1.
• Do an infinite family of distinct regular languages Li and a function f exist,

such that for all i 2 N, the size of the smallest device of typeM1 for Li is
lower bounded by the function f of the size of the smallest equivalent device
of typeM2? If f exists, it is a lower bound for the increase in complexity

when changing from a minimal model of typeM2 to an equivalent minimal
model of typeM1 for infinitely many languages.

If there is no recursive function upper bounding the trade-o↵ between two com-
putational modelsM1 andM2, the trade-o↵ is non-recursive. Furthermore, if the
lower and the upper bounds coincide, we say that the bound is optimal.

For more details about the area of descriptional complexity see, e.g., the sur-
veys by Goldstine et al., Holzer and Kutrib [14, 22].

A classical problem in this field is the investigation of the relationships be-
tween deterministic and nondeterministic devices. It is well known that one-way
deterministic finite automata (1dfa) are su�cient for Type 3 languages. By al-
lowing nondeterministic transitions (1nfas) the computational power does not in-
crease [48]. A natural question concerning models that share the same computa-
tional power is the comparison of their size.

As an example, consider, for any fixed integer n � 0, the language Ln =

(0 + 1)⇤1(0 + 1)n�1, composed by the strings on the alphabet { 0, 1 } whose i-th to
last symbol is 1. A 1nfaAn could recognize Ln by moving the input head forward
on the input tape, until reaching the i-th symbol from the end, that is detected by
performing a nondeterministic guess. If such a symbol is 1, the automaton checks
whether the length of the remaining part of the input string is n � 1. Therefore, it
is easy to check that the number of states for a nfa accepting Ln is n + 1. On the
other hand, a 1dfa accepting Ln cannot guess which is the i-th symbol from the
end of the input string. So, intuitively, it has to “remember” a factor representing
the last n symbols read, saving it by using the finite control. When the end of the
input is reached, the devices checks that the leftmost symbol of the current factor
is 1. It is easy to see that the number of the possible factors of length n is 2n, and
each of them is stored by using a state of the 1dfa, thus implying an exponential
blowup in states with respect to the equivalent 1nfa.

Therefore, even if deterministic and nondeterministic finite automata charac-
terize the same class of languages, one-way deterministic automata can require
exponentially many states with respect to equivalent nondeterministic automata.
Hence, there is an exponential size gap from one-way nondeterministic to one-
way deterministic automata.

It is also known that even providing finite automata with the capability of
moving the input head back and forth along the tape, thus obtaining two-way fi-
nite automata (2dfa and 2nfa), their recognizing power does not increase. In fact,
Shepherdson and, independently, Rabin and Scott, in 1959 proved this result by
giving a two constructions that are based on the analysis of the moves of the input
head of the automata between the tape cells [50, 48]. Both the constructions, given
a two-way finite automaton, return an equivalent one-way deterministic finite au-
tomaton whose size is exponential in the square of the size of the automaton given

in input.
At this point, one could ask “Is it possible to exploit the ability to scan the

input in a two-way fashion in finite automata to eliminate the nondeterminism?”.
Di↵erently from the one-way case, the question about the size cost of the con-
version of (one-way and two-way) nondeterministic finite automata into two-way
deterministic finite automata, that was posed by Sakoda and Sipser in 1978, is still
open. In their paper, Sakoda and Sipser formulated the problem by the questions

1. For every 2nfa A, does an equivalent 2dfa A0 exist, such that A0 has only
polynomially more states thanA?

2. For every 1nfa A, does an equivalent 2dfa A0 exist, such that A0 has only
polynomially more states thanA?

They conjectured that, in both cases, an exponential increase of the size is neces-
sary.

The question has been solved in some special cases that can be grouped in
three classes: by considering restrictions on the simulating machines (e.g., sweep-
ing [51], oblivious [25], few reversals two-way deterministic finite automata [26]),
by considering restrictions on languages (e.g., unary case [12]), by considering re-
strictions on the simulated machines (e.g., outer-nondeterministic automata [10,
28]). However, in spite of all attempts, in the general case the question remains
open.

The importance of this open problem is supported by its similarity to the
well-known P ?

= NP problem [49] and by relationships with the LogSpace ?
=

NLogSpace question [5, 13, 27, 28]. (See [39] for further details and references.)

Outline. This work is an excerpt of the dissertation [46] and it is organized as
follows (a summary of some of the main results obtained is depicted in Figure 2).

NSE h-PDA 1-LA ltTm

2NFA2DFA

poly (Sec 2)poly (Sec 2)

poly (Sec 2) exp (Sec 2)

exp (Sec 2)

exp exp [41, Thm 4]

?
[Sakoda-Sipser problem]

poly (Sec 3)

poly (Sec 4)

Figure 2: Some of the main results discussed in the work. Dotted arrows denote
trivial relationships, while the dashed arrow indicates the Sakoda and Sipser’s
question [49]. Linear-time Turing machines are denoted ltTm.

In Section 2 we present some results on non-self-embedding grammars and
their descriptional complexity [43], and compare them with constant-height push-
down automata and 1-limited automata [15].

In Section 3 the time complexity of 1-limited automata [16] is analyzed from
a descriptional complexity point of view. Though the model recognizes regular
languages only, it may use quadratic time in the input length. With a polyno-
mial increase in size and preserving determinism, each 1-limited automaton can
be transformed into a linear-time equivalent one. We also obtained polynomial
transformations into related models, including weight-reducing Hennie machines
(i.e., one-tape Turing machines syntactically forced to operate in linear-time), and
we showed exponential gaps for the converse transformations in the deterministic
case.

The investigation about machines working in linear time is continued in Sec-
tion 4. It is not decidable whether a one-tape Turing machine works in linear
time, even if it is deterministic and restricted to use only the portion of the tape
which initially contains the input, unless the machine is weight-reducing [17].
By relating the study of Turing machines working in linear time to the above
mentioned open question of Sakoda and Sipser, we present the costs of the con-
version of nondeterministic finite automata into equivalent linear-time one-tape
deterministic machines. A polynomial blowup from two-way nondeterministic
finite automata into equivalent weight-reducing one-tape deterministic machines
(that work in linear time) was obtained. The blowup remains polynomial if the
tape in the resulting machines is restricted to the portion which initially contains
the input. However, in this case the resulting machines are not weight-reducing,
unless the input alphabet is unary. Similar results are proved in the case the simu-
lated nondeterministic automata are one-way.

In Section 5 we turn our attention to pushdown automata [44]. In particular,
we studied pushdown automata without any restriction on the input height and
we showed that it cannot be decided whether these devices accept using constant
pushdown height, with respect to the input length, or not. Furthermore, in the
case of acceptance in constant height, the height cannot be bounded by any re-
cursive function in the size of the description of the machine. In contrast, in the
restricted case of pushdown automata over a one-letter input alphabet, i.e., unary
pushdown automata, the above property becomes decidable. Moreover, if the
height is bounded by a constant that does not depend on the input length, then it
is at most exponential with respect to the size of the description of the pushdown
automaton. This bound cannot be reduced. Finally, if a unary pushdown automa-
ton uses non-constant height to accept, then the height should grow at least as the
logarithm of the input length. This bound is optimal.

In conclusion, in Section 6 we briefly discuss some possible future research
directions.

2 Non-Self-Embedding Grammars, Constant-Height
Pushdown Automata, and Limited Automata

As mentioned in Section 1, Chomsky investigated the self-embedding property of
context-free grammars, and proved that non-self-embedding grammars only gen-
erate regular languages. The proof of the result given by Chomsky is construc-
tive: it provides a method for obtaining a finite automaton equivalent to a given
non-self-embedding grammar [7, 8]. A di↵erent constructive proof of the same
result was given by Anselmo, Giammarresi, and Varricchio, who showed that it is
possible to decompose non-self-embedding grammars into regular grammars and
then to iteratively apply regular substitutions in order to obtain equivalent finite
automata [2]. In the same paper, the authors also presented an nse grammar for
the following family of languages. For any fixed integer n, let Un = { a2n }, be
the singleton composed by the unary string of length 2n. Un can be generated by
an nse grammar with variables { A0, . . . , An } such that, for each i = 1, . . . , n, the
variable Ai generates two occurrences of the variable Ai�1 and the variable A0 pro-
duces the terminal a. It is possible to see that the variable Ai derives the string a2i ,
for i = 0, . . . , n. Hence, the language generated is Un. Moreover, the size of the
grammar is linear in the parameter n, while it is not hard to verify that the equiva-
lent minimum deterministic finite automaton has 2n + 1 states. Actually, as a con-
sequence of state lower bound presented by Mereghetti and Pighizzini [34], the
same amount of states are also necessary to accept Un by using a 2nfa. Therefore,
this language witnesses that the size gap between non-self-embedding grammars
and equivalent finite automata is at least exponential.

It is worthwhile to mention that, in 1971, Meyer and Fischer proved that for
any recursive function f and arbitrarily large integer n, there exists a context-
free grammar whose description has size n and which generates a regular lan-
guage, such that any equivalent finite automaton requires at least f (n) states [35].
This means that it is not possible to obtain a recursive bound relating the size of
context-free grammars generating regular languages with the number of states of
equivalent deterministic finite automata. It is important to notice that the result
of Meyer and Fischer was obtained by considering grammars with a two-letter
terminal alphabet. The unary case was studied in 2002 by Pighizzini, Shallit, and
Wang, who obtained optimal recursive bounds [45].

We recently proved that also in the case of non-self-embedding grammars the
bounds are recursive, independently on the alphabet size [43]. In particular, by
inspecting and refining the construction presented by Anselmo, Giammarresi, and
Varricchio, we showed that each non-self-embedding grammar of size n can be
converted into equivalent nondeterministic and deterministic automata with 2O(n)

and 22O(n) states, respectively. We also obtained a family of languages that witness

that these gaps cannot be reduced. Furthermore, these gaps do not change if we
allow the variables which generate only unary strings (i.e., strings consisting of
occurrences of only one terminal) to be self-embedded. Such grammars, which are
also equivalent to finite automata, are called quasi-non-self-embedding grammars.

Other formal models characterizing the class of regular languages and exhibit-
ing gaps of the same order with respect to deterministic and nondeterministic au-
tomata are constant-height pushdown automata and 1-limited automata. So, it
is natural to study the size relationships between non-self-embedding grammars,
constant-height pushdown automata, and 1-limited automata, three models that
restrict context-free acceptors to the level of regular recognizers.

The exponential and double exponential gaps from constant-height pushdown
automata to nondeterministic and deterministic automata have been proven by
Ge↵ert, Mereghetti, and Palano [11]. Furthermore, Bednárová et al. showed the
interesting result that the gap from nondeterministic to deterministic constant-
height pushdown automata is double exponential also [4]. We remind the reader
that both non-self-embedding grammars and constant-height pushdown automata
are restrictions of the corresponding general models, where true recursions are
not possible. By adapting the standard transformation from pdas to cfgs, and by
modifying a decomposition of nse grammars presented by Anselmo, Giammar-
resi, and Varricchio, we proved that non-self-embedding grammars and constant-
height pushdown automata are polynomially related in size.

Also 1-limited automata can be significantly smaller than equivalent finite au-
tomata. The equivalence between 1-limited automata and finite automata has been
investigated from the descriptional complexity point of view by Pighizzini and
Pisoni, who proved that each 1-limited automaton A with n states can be simu-
lated by a one-way deterministic automaton with a number of states double expo-
nential in a polynomial in n. Furthermore, in the worst case, double exponentially
many states are necessary for this simulation. The cost reduces to a single expo-
nential when A is deterministic [41]. The lower bounds in this result have been
obtained by providing witness languages defined over a binary alphabet.

We investigated the unary case, for which it was an open question if the same
bounds held. In particular, we obtained an exponential gap between unary deter-
ministic 1-limited automata and two-way nondeterministic finite automata [42].
To this aim, we showed that, for each n > 1, the singleton language Un = { a2n }
can be recognized by a deterministic 1-limited automaton having 2n + 1 states
and a description of size O(n2). Since the same language requires 2n + 1 states to
be accepted by a one-way nondeterministic automaton, it turns out that the state
gap between deterministic 1-limited automata and one-way nondeterministic au-
tomata in the unary case is the same as in the binary case. It is an easy observation
that the gap does not reduce if we want to convert unary deterministic 1-limited

automata into two-way nondeterministic automata.
Such a gap is proven by exploiting an intermediate result on combinatorics on

words, which provides a method for constructing a sequence of length 2n whose
elements can be obtained by analyzing the prefix of the sequence obtained until
then. This allows the 1-limited automaton recognizing Un to write the elements
of the sequence on the tape by rewriting the contents of the cells during the first
visit only, using a number of states and working symbols which is linear in the
parameter n.

We also considered the relationships between 1-limited automata and unary
context-free grammars. The cost of the conversion of these grammars into finite
automata has been investigated and exponential gaps have been proven by Pighiz-
zini, Shallit, and Wang [45]. With the help of a result presented by Okhotin [36],
we proved that each unary context-free grammarG can be converted into an equiv-
alent 1-limited automaton whose description has a size that is polynomial in the
size of G [42].

Let us now turn our attention to the size relationships between 1-limited au-
tomata and non-self-embedding grammars.

We obtained a construction transforming each non-self-embedding grammar
into a 1-limited automaton of polynomial size. In particular, given an input w,
the 1-la nondeterministically generates a compression of a derivation tree of w.
Then, it verifies the validity of such a guess. As a consequence, each constant-
height pushdown automaton can be transformed into an equivalent 1-limited au-
tomaton of polynomial size. Even the conversion of deterministic constant-height
pushdown automata into deterministic 1-limited automata costs polynomial in
size. For the converse transformation, we showed that an exponential size is nec-
essary. Indeed, consider the following family of languages. For any fixed inte-
ger n > 0, let Pn be the language of the powers of any string u of length n over the
alphabet { 0, 1 }, i.e., Pn = { uk | u 2 { 0, 1 }n, k � 0 }. Pn can be accepted by a two-
way deterministic finite automaton (and, hence, by a 1-la) with O(n) states, but
requires exponentially many states to be accepted even by an unrestricted push-
down automaton, which is forced to store the word u in its finite control. From
the cost of the conversion of 1-limited automata into nondeterministic automata,
it turns out that for the conversion of 1-limited automata into non-self-embedding
grammars an exponential size is also su�cient.

Bednárová et al. raised the question of the cost of the conversion of determin-
istic h-pdas into 1nfas [4]. To this regard, it is possible to observe that, for any
integer n � 0, the language S n =

⇣
a2n
⌘⇤

is accepted by a deterministic h-pda of
size polynomial in n (a constant-height pushdown automaton for S n with a con-
stant number of states, h = n, and 2n+ 1 pushdown symbols can be found in [44])
but, as discussed at the beginning of this section, it requires an exponential num-

ber of states to be accepted by a finite automaton. Hence, we can conclude that
both simulations from two-way automata to h-pdas and from h-pdas to two-way
automata cost at least exponential.

More details about the results shown in this section can be found in [43]
and [15].

3 Limited Automata: A Time Constraint
As observed by Hennie in 1965, deterministic one-tape Turing machines operating
in linear time recognize exactly the class of regular languages [20]. The result
has later been extended to the nondeterministic case [52, 38]. Here, operating in
linear time means that every computation has length linearly bounded in the input
length. In particular, linear-time machines are necessarily halting — see [38] for
investigations of alternative linear-time restrictions. The above-mentioned result
implies that every Hennie machine is equivalent to some finite automaton. From
the opposite point of view, this means that providing two-way finite automata
with the ability to overwrite the tape cells does not extend the expressiveness of
the model, as long as the time is linearly bounded in the length of the input.

However, Průša showed that it is undecidable given a linear bounded determin-
istic Turing machine to check whether it works in linear time over all input strings,
or, in other words, whether it is actually a deterministic Hennie machine [47].
To avoid this drawback, he proposed the weight-reducing variant of Hennie ma-
chines, in which the time limitation is syntactic. As a consequence, the number
of visits of a cell by the head is bounded by some constant (i.e., not depending on
the input length), hence the device works in linear time over every input string.

By contrast to Hennie machines, in d-limited automata the head is allowed to
visit a cell after the d-th visit, even if it cannot rewrite the contents anymore. This
allows to use super-linear time.

As an example let us consider, for each fixed integer n � 0, the language

Qn =
n

x0x1 · · · xk | k > 0, for each i : xi 2 ⌃n, for some j,0: x j = x0

o

on the alphabet ⌃ = { 0, 1 }. A deterministic 1-laAn may recognize Qn as follows.
It first scans the factor x0, overwriting each input symbol with a marked copy.
Then,An repeats a subroutine which overwrites a factor xi with the marker] < ⌃,
while checking whether xi equals x0 or not. This can be achieved as follows.
Before overwriting the j-th symbol of xi, first, An, with the help of a counter
modulo n, moves the head leftward to the position j of x0 and stores the unmarked
scanned symbol � in its finite control; second, it moves the head rightward un-
til reaching the position j of xi, namely, the leftmost position that has not been

overwritten so far. At this point, An compares the scanned symbol (i.e., the j-th
symbol of xi) with � (i.e., the j-th symbol of x0). When An finds out that a com-
plete factor xi matches x0, it reaches the end of the input checking that has length
multiple of n.

It is possible to implement An with a number of states linear in n and #⌃ + 1
working symbols. Since for each position of a factor xi, i > 0, the head has to
move back to the factor x0, we observe that An works in quadratic time in the
length of the input string.

Therefore, also in the case d = 1, 1-limited automata can operate in super-
linear time. This contrasts with Hennie machines which operate in linear time by
definition. The question we addressed is whether this ability of 1-limited automata
with respect to Hennie machines yields a gap between the two models in terms of
the size of their representations.

We proved that, operating in super-linear time is not essential for 1-las, if
allowing a polynomial increase in the number of states. In other words, with a
polynomial increase in size, each 1-limited automaton can be transformed into
an equivalent linear-time 1-limited automaton, or, alternatively, into a weight-
reducing Hennie machine. Furthermore, the obtained device is deterministic when
the original machine is deterministic as well. This is achieved by extending the
exponential-cost simulation of 1-la by 2nfa given in [41] (which in turn extends
Shepherdson’s classic conversion of 2dfas to 1dfas [50]) with a method for storing
and accessing a carefully chosen subcollection of the many “Shepherdson tables”
that a 1nfa would need to remember in its states: the simulating automaton can
both store the tables (despite the 1-limitation) and access them e�ciently (in both
size and time).

We also showed that the 1-limited automata resulting from our constructions
have a special structure that can be exploited in order to obtain equivalent 1-lim-
ited automata in which an initial phase just overwrites each tape cell, i.e., the
device initially performs a nondeterministic left-to-right pass over the tape during
which all the cells are independently overwritten. It follows that reversing a 1-lim-
ited automaton, i.e., transforming it into another one recognizing the reverse of
its accepted language, has polynomial cost only. This fails in the deterministic
case, for which we exhibit an exponential lower bound. As a consequence, we
obtained exponential lower bounds for the simulation of deterministic weight-
reducing Hennie machines by deterministic 1-limited automata.

For details about the results discussed in this section please refer to [16].

4 Two-Way Automata and One-Tape Machines
In this section we continue the investigation about devices operating in linear time.
In particular, we compare the sizes of descriptions of finite automata with those
of equivalent one-tape Turing machines working in linear time. In this section we
consider the following variants of one-tape deterministic Turing machines, that
are summarized in Figure 3:

Bounded machines. We say that a device is bounded if each input string is sur-
rounded by two special symbols called the left and the right endmarkers
and the machine is restricted to use only the portion of the tape that initially
contains the input (plus the endmarkers), that cannot be left by the head.

Weight-reducing Turing machines. Roughly speaking, in weight-reducing Tur-
ing machines each overwriting is decreasing with respect to some fixed or-
der on the working alphabet. As a consequence, after overwriting a cell
with a minimal symbol, such a machine cannot visit the cell again.

By this condition, in weight-reducing Turing machines the number of visits
to each tape cell is bounded by a constant. However, they could have non-
halting computations which, hence, necessarily visit infinitely many tape
cells.

Linear-time Turing machines. A Turing machine is said to be linear-time if,
over each input w, its computation halts within O(|w|) steps.

Hennie machines. A Hennie machine is a linear-time Turing machine which is,
furthermore, bounded.

Weight-Reducing Hennie machines. These devices are defined by combining
previous conditions.

Observe that each bounded weight-reducing Turing machine can execute a
number of steps which is at most linear in the length of the input. Conse-
quently, bounded weight-reducing deterministic Turing machines are nec-
essarily Hennie machines.

It is useful to emphasize that, it cannot be decided whether or not a one-tape
Turing machine works in linear time.2 Furthermore, there is no recursive function
bounding the size blowup from one-tape Turing machines working in linear time
to equivalent finite automata. We proved that these results remain true even in the
restricted case of bounded machines.

2We mention that it is decidable, though, whether or not a machine makes at most cm+ d steps
on input of length m, for any fixed c, d > 0 [9].

one-tape deterministic Turing machines (dTms)

bounded dTms linear-time dTms

weight-reducing dTms

deterministic Hennie machines

weight-reducing deterministic Hennie machines

Figure 3: Variants of one-tape deterministic Turing machines.

To overcome the above-mentioned “negative” results, we considered weight-
reducing machines, that can be seen as a syntactical restriction on one-tape Tur-
ing machines. In this case, it can be decided if a deterministic Turing machine
is weight reducing. These devices can have non-halting computations. However,
they work in linear time as soon as they are halting. In fact, we showed that it
is possible to decide whether a weight-reducing machine is halting. As a conse-
quence, it is also possible to decide whether it works in linear time. Moreover,
by a polynomial size increase, each weight-reducing machine can be transformed
into and equivalent one which always halts and works in linear time. The same
blowup is easily extended to weight-reducing Hennie machines. Furthermore,
with a polynomial size increase, any weight-reducing machine can be made halt-
ing whence working in linear time, while the cost of the simulation by 1dfas is
doubly exponential.

Moreover, each linear-time machine T can be converted into an equivalent
weight-reducing one whose size is bounded by a function of the size and of the
execution time of T .

We also related the study of these restricted variants of one-tape machines,
accepting only regular languages, to the Sakoda and Sipser question, concerning
the size blowups from 1nfas or 2nfas to 2dfas. In this case, as target machines, we
considered linear-time one-tape deterministic Turing machines. It turned out that
each 2nfa A can be simulated by a one-tape deterministic Turing machine which
works in linear time (with respect to the input length) and which has a polynomial
size with respect to the size ofA. We point out that the resulting machine can use
extra space, besides the tape segment which initially contained the input. Next,
the machine is halting and weight reducing, thus implying a linear execution time.
Hence, nondeterminism can be eliminated with at most a polynomial size increase,
obtaining a linear execution time in the input length, and provided the ability to
rewrite tape cells and to use some extra space.

We then investigated what happens by removing the latter possibility, namely

if the machine does not have any further tape storage, i.e., it is a Hennie machine.
We proved that even under this restriction it is still possible to obtain a machine of
polynomial size, namely each 2nfa can be transformed into an equivalent Hennie
machine of polynomial size. However, the machine resulting from our construc-
tion is not weight reducing, unless we require that it agrees with the given 2nfa
only on su�ciently long inputs. This problem does not occur in the unary case,
where we proved that each unary 2nfa can be simulated by a weight-reducing
Hennie machine of polynomial size. Similar results are obtained for the transfor-
mation of 1nfas into variants of one-tape deterministic machines.

The results discussed in this section have been presented in [17].

5 Pushdown Automata and Space Restrictions
As discussed in Section 2, pushdown automata in which the maximum height
of the pushdown is limited by some constant, namely constant-height pushdown
automata, allow more succinct representations of regular languages than finite
automata [11], and are polynomially related in size with their natural genera-
tive counterpart, non-self-embedding context-free grammars, roughly, context-
free grammars without “true” recursion [7].

In this section we turn our attention on standard pushdown automata, namely
with an unrestricted pushdown store, that, however, are able to accept their inputs
by making use only of a constant amount of the pushdown store. More precisely,
we say that a pushdown automaton M accepts in constant height h, for some
given h, if for each word in the language accepted byM there exists one accept-
ing computation in which the maximum height reached by the store is bounded
by h. Notice that this does not prevent the existence of accepting or rejecting
computations using an unbounded pushdown height.

It is a simple observation that a pushdown automatonM accepting in constant
height h can be converted into an equivalent constant-height pushdown automaton:
in any configuration it is enough to keep track of the current height in order to stop
and reject when a computation tries to exceed the height limit. The description of
the resulting constant-height pushdown automaton has size polynomial in h and
in the size of the description ofM.

While studying these size relationships, we tried to understand how large h
can be with respect to the size of the description ofM. We discovered that h can
be arbitrarily large. Indeed, adapting an argument presented by Meyer and Fis-
cher to prove non recursive trade-o↵s between the size of pdas accepting regular
languages and the number of states of equivalent automata [35], we showed that
there is no recursive function bounding the maximal height reached by the push-
down store in a pushdown automaton accepting in constant height, with respect

to the size of its description. With the same argument, we obtained that there is
no recursive function bounding the size blowup from pdas accepting in constant
height to finite automata.

Moreover, using a technique introduced by Hartmanis, based on suitable en-
codings of single-tape Turing machine computations [19], we also proved that it
cannot be decided whether a pushdown automaton accepts in constant height or
not.

What does happen, instead, if the language recognized by a pushdown automa-
ton is unary? By studying the structure of the computations of unary pushdown
automata, we were able to prove that, in contrast to the general case, it can be
decided whether or not they accept in constant height. Furthermore, we proved
that if a unary pushdown automatonM accepts in height h, constant with respect
to the input length, then h is bounded by an exponential function in the size ofM.
By presenting a suitable family of pushdown automata, we showed that this bound
cannot be reduced.

Let us turn our attention to pushdown automata that accept using height which
is not constant in the input length, in order to investigate how the pushdown height
grows. In particular, we asked if there exists a minimum growth of the pushdown
height, with respect to the length of the input, when it is not constant. The answer
to this question is already known and it derives from results on Turing machines:
the height of the store should grow at least as a double logarithmic function [1].
This lower bound cannot be increased, because a matching upper bound has been
recently obtained in [3]. As a consequence of the constructions obtained for au-
tomata accepting unary languages, we were able to prove that in the unary case
this lower bound is logarithmic and it cannot be further increased.

For more details about the results discussed in this section we refer the reader
to [44].

6 Future Work
In this work we presented some old and recent results related to the area of de-
scriptional complexity, and, in this regard, we focused on the class of regular
languages. To conclude, we discuss possible directions for future research in this
field.

First of all, it is worth mentioning that there exist other models characteriz-
ing the class of regular languages besides the ones analyzed here. One example
are the well-known regular expressions, widely discussed in classical textbooks
(see, e.g. [24]). From regular expressions we can derive a more succinct repre-
sentation of regular languages, by using straight line programs, namely programs

representing directed acyclic graphs, whose internal nodes represent the basic reg-
ular operations (i.e., union, concatenation, and star). Descriptional complexity of
straight line programs has been analyzed and it has been proved that they are poly-
nomially related in size with constant height pushdown automata [11]. Anyways,
it would be interesting to deepen the study of descriptional complexity of models
“derived” from regular expressions.

As widely discussed, the question posed by Sakoda and Sipser in 1978 about
the elimination of nondeterminism from two-way automata is still open. We plan
to continue the investigation on this question by considering models that have the
same computational power of finite automata and by studying the relations in sizes
between these nondeterministic devices and finite automata by deterministic ones.

For example, as remarked by Pighizzini in a recent survey, at the moment di-
rect simulations of 1-limited automata by deterministic 1-limited automata and
by two-way deterministic automata are not known [37]. It could be interesting
to study if simulating unary and non-unary 1-limited automata by two-way (in-
stead of one-way) deterministic finite automata the cost reduces from a double
exponential to a simple exponential.

It could be also interesting to study “relaxed” versions of the problem of
Sakoda and Sipser, in which the simulating machine is a deterministic 1-limited
automaton (i.e., a deterministic two-way automaton with the capability of rewrit-
ing the contents of tape cells during the first visit).

Moreover, following the research line started in [10], it could be deepen the
investigation on the Sakoda and Sipser problem in case of simulated devices that
perform a limited use of nondeterminism. In this regard, it is possible to consider
several restrictions like, for example, on the number of nondeterministic choices
along the computation (see, e.g. [23]), or on the number of total, or accepting,
computations (also known as degree of ambiguity [33, 18, 29]).

Acknowledgment
I am deeply indebted to Giovanni Pighizzini for his supervision during my PhD
and his guidance for the writing of my dissertation [46], on which this work is
based. I cannot overstate the importance of his advice and support to my develop-
ment as a researcher and a person.

References
[1] Maris Alberts. “Space Complexity of Alternating Turing Machines”. In:

Fundamentals of Computation Theory (FCT) ’85. Vol. 199. Lecture Notes

in Computer Science. Springer, 1985, pp. 1–7. isbn: 3-540-15689-5. doi:
10.1007/BFb0028785.

[2] Marcella Anselmo, Dora Giammarresi, and Stefano Varricchio. “Finite Au-
tomata and Non-Self-Embedding Grammars”. In: Conference on Imple-
mentation and Application of Automata (CIAA) 2002. Vol. 2608. Lecture
Notes in Computer Science. Springer, 2002, pp. 47–56. doi: 10.1007/3-
540-44977-9_4.

[3] Zuzana Bednárová, Viliam Ge↵ert, Klaus Reinhardt, and Abuzer Yakaryil-
maz. “New Results on the Minimum Amount of Useful Space”. In: Interna-
tional Journal of Foundations of Computer Science 27.2 (2016), pp. 259–
282. doi: 10.1142/S0129054116400098.

[4] Zuzana Bednárová, Viliam Ge↵ert, Carlo Mereghetti, and Beatrice Palano.
“Removing Nondeterminism in Constant Height Pushdown Automata”. In:
Information and Computation 237 (2014), pp. 257–267.

[5] Piotr Berman and Andrzej Lingas. On the Complexity of Regular Lan-
guages in Terms of Finite Automata. Tech. rep. 304. Polish Academy of
Sciences, 1977.

[6] Noam Chomsky. Context-Free Grammars and Pushdown Storage. Tech.
rep. 65. Research Laboratory of Electronics: Massachusetts Institute of
Technology, 1962, pp. 187–194.

[7] Noam Chomsky. “On Certain Formal Properties of Grammars”. In: In-
formation and Control 2.2 (1959), pp. 137–167. doi: 10.1016/S0019-
9958(59)90362-6.

[8] Noam Chomsky. “A Note on Phrase Structure Grammars”. In: Information
and Control 2.4 (1959), pp. 393–395. doi: 10.1016/S0019-9958(59)
80017-6.

[9] David Gajser. “Verifying Time Complexity of Turing Machines”. In: The-
oretical Computer Science 600 (2015), pp. 86–97. doi: 10.1016/j.tcs.
2015.07.028.

[10] Viliam Ge↵ert, Bruno Guillon, and Giovanni Pighizzini. “Two-Way Au-
tomata Making Choices Only At the Endmarkers”. In: Information and
Computation 239 (2014), pp. 71–86. issn: 08905401. doi: 10.1016/j.
ic.2014.08.009.

[11] Viliam Ge↵ert, Carlo Mereghetti, and Beatrice Palano. “More Concise Rep-
resentation of Regular Languages by Automata and Regular Expressions”.
In: Information and Computation 208.4 (2010), pp. 385–394.

http://dx.doi.org/10.1007/BFb0028785
http://dx.doi.org/10.1007/3-540-44977-9_4
http://dx.doi.org/10.1007/3-540-44977-9_4
http://dx.doi.org/10.1142/S0129054116400098
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1016/S0019-9958(59)80017-6
http://dx.doi.org/10.1016/S0019-9958(59)80017-6
http://dx.doi.org/10.1016/j.tcs.2015.07.028
http://dx.doi.org/10.1016/j.tcs.2015.07.028
http://dx.doi.org/10.1016/j.ic.2014.08.009
http://dx.doi.org/10.1016/j.ic.2014.08.009

[12] Viliam Ge↵ert, Carlo Mereghetti, and Giovanni Pighizzini. “Converting
Two-Way Nondeterministic Unary Automata into Simpler Automata”. In:
Theoretical Computer Science 295.1–3 (2003), pp. 189 –203. issn: 0304-
3975. doi: http://dx.doi.org/10.1016/S0304-3975(02)00403-6.

[13] Viliam Ge↵ert and Giovanni Pighizzini. “Two-Way Unary Automata ver-
sus Logarithmic Space”. In: Information and Computation 209.7 (2011),
pp. 1016–1025. doi: 10.1016/j.ic.2011.03.003.

[14] Jonathan Goldstine, Martin Kappes, Chandra M. R. Kintala, Hing Leung,
Andreas Malcher, and Detlef Wotschke. “Descriptional Complexity of Ma-
chines with Limited Resources”. In: Journal of Universal Computer Sci-
ence 8.2 (2002), pp. 193–234. doi: 10.3217/jucs-008-02-0193.

[15] Bruno Guillon, Giovanni Pighizzini, and Luca Prigioniero. “Non-Self-Em-
bedding Grammars, Constant-Height Pushdown Automata, and Limited
Automata”. In: Conference on Implementation and Application of Automata
(CIAA) 2018. Vol. 10977. Lecture Notes in Computer Science. Springer,
2018, pp. 186–197. doi: 10.1007/978-3-319-94812-6_16.

[16] Bruno Guillon and Luca Prigioniero. “Linear-Time Limited Automata”. In:
Theoretical Computer Science 798 (2019), pp. 95–108. doi: 10.1016/j.
tcs.2019.03.037.

[17] Bruno Guillon, Giovanni Pighizzini, Luca Prigioniero, and Daniel Průša.
“Two-Way Automata and One-Tape Machines - Read Only versus Linear
Time”. In: Developments in Language Theory (DLT) 2018. Vol. 11088.
Lecture Notes in Computer Science. Springer, 2018, pp. 366–378. doi:
10.1007/978-3-319-98654-8_30.

[18] Yo-Sub Han, Arto Salomaa, and Kai Salomaa. “Ambiguity, Nondetermin-
ism and State Complexity of Finite Automata”. In: Acta Cybernetica 23.1
(2017), pp. 141–157. doi: 10.14232/actacyb.23.1.2017.9.

[19] Juris Hartmanis. “Context-Free Languages and Turing Machine Computa-
tions”. In: Mathematical Aspects of Computer Science. Vol. 19. Proceed-
ings of Symposia in Applied Mathematics. American Mathematical Soci-
ety, 1967, pp. 42–51.

[20] Fred C. Hennie. “One-Tape, O↵-Line Turing Machine Computations”. In:
Information and Control 8.6 (1965), pp. 553–578.

[21] Thomas N. Hibbard. “A Generalization of Context-Free Determinism”. In:
Information and Control 11.1/2 (1967), pp. 196–238.

[22] Markus Holzer and Martin Kutrib. “Descriptional Complexity — An Intro-
ductory Survey”. In: Scientific Applications of Language Methods. Imperial
College Press, 2010, pp. 1–58. doi: 10.1142/9781848165458_0001.

http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(02)00403-6
http://dx.doi.org/10.1016/j.ic.2011.03.003
http://dx.doi.org/10.3217/jucs-008-02-0193
http://dx.doi.org/10.1007/978-3-319-94812-6_16
http://dx.doi.org/10.1016/j.tcs.2019.03.037
http://dx.doi.org/10.1016/j.tcs.2019.03.037
http://dx.doi.org/10.1007/978-3-319-98654-8_30
http://dx.doi.org/10.14232/actacyb.23.1.2017.9
http://dx.doi.org/10.1142/9781848165458_0001

[23] Markus Holzer and Martin Kutrib. “One-Time Nondeterministic Computa-
tions”. In: International Journal of Foundations of Computer Science 30.6-
7 (2019), pp. 1069–1089. doi: 10.1142/S012905411940029X.

[24] John E. Hopcroft and Je↵rey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[25] Juraj Hromkovič and Georg Schnitger. “Nondeterminism versus Determin-
ism for Two-Way Finite Automata: Generalizations of Sipser’s Separation”.
In: International Colloquium on Automata, Languages, and Programming
(ICALP) 2003. Vol. 2719. Lecture Notes in Computer Science. Springer,
2003, pp. 439–451. isbn: 3-540-40493-7. doi: 10.1007/3-540-45061-
0_36.

[26] Christos A. Kapoutsis. “Nondeterminism Is Essential in Small Two-Way
Finite Automata with Few Reversals”. In: Information and Computation
222 (2013), pp. 208–227. doi: 10.1016/j.ic.2012.11.001.

[27] Christos A. Kapoutsis. “Two-Way Automata Versus Logarithmic Space”.
In: Theory of Computing Systems 55.2 (2014), pp. 421–447. doi: 10.1007/
s00224-013-9465-0.

[28] Christos A. Kapoutsis and Giovanni Pighizzini. “Two-Way Automata Char-
acterizations of L/poly Versus NL”. In: Theory of Computing Systems 56.4
(2015), pp. 662–685. doi: 10.1007/s00224-014-9560-x.

[29] Chris Keeler and Kai Salomaa. “Nondeterminism Growth and State Com-
plexity”. In: Descriptional Complexity of Formal Systems (DCFS) 2019.
Vol. 11612. Lecture Notes in Computer Science. Springer, 2019, pp. 210–
222. doi: 10.1007/978-3-030-23247-4_16.

[30] Alica Kelemenová. “Complexity of Normal Form Grammars”. In: Theo-
retical Computer Science 28 (1984), pp. 299–314. doi: 10.1016/0304-
3975(83)90026-9.

[31] Sige-Yuki Kuroda. “Classes of Languages and Linear-Bounded Automata”.
In: Information and Control 7.2 (1964), pp. 207–223. doi: 10 . 1016 /
S0019-9958(64)90120-2.

[32] Martin Kutrib, Giovanni Pighizzini, and Matthias Wendlandt. “Descrip-
tional Complexity of Limited Automata”. In: Information and Computation
259.2 (2018), pp. 259–276. doi: 10.1016/j.ic.2017.09.005.

[33] Hing Leung. “Descriptional Complexity of NFA of Di↵erent Ambiguity”.
In: International Journal of Foundations of Computer Science 16.5 (2005),
pp. 975–984. doi: 10.1142/S0129054105003418.

http://dx.doi.org/10.1142/S012905411940029X
http://dx.doi.org/10.1007/3-540-45061-0_36
http://dx.doi.org/10.1007/3-540-45061-0_36
http://dx.doi.org/10.1016/j.ic.2012.11.001
http://dx.doi.org/10.1007/s00224-013-9465-0
http://dx.doi.org/10.1007/s00224-013-9465-0
http://dx.doi.org/10.1007/s00224-014-9560-x
http://dx.doi.org/10.1007/978-3-030-23247-4_16
http://dx.doi.org/10.1016/0304-3975(83)90026-9
http://dx.doi.org/10.1016/0304-3975(83)90026-9
http://dx.doi.org/10.1016/S0019-9958(64)90120-2
http://dx.doi.org/10.1016/S0019-9958(64)90120-2
http://dx.doi.org/10.1016/j.ic.2017.09.005
http://dx.doi.org/10.1142/S0129054105003418

[34] Carlo Mereghetti and Giovanni Pighizzini. “Two-Way Automata Simula-
tions and Unary Languages”. In: Journal of Automata, Languages and Com-
binatorics 5.3 (2000), pp. 287–300.

[35] Albert R. Meyer and Michael J. Fischer. “Economy of Description by Au-
tomata, Grammars, and Formal Systems”. In: Switching Automata Theory
(SwAT) 1971. IEEE Computer Society, 1971, pp. 188–191.

[36] Alexander Okhotin. “Non-erasing Variants of the Chomsky-Schützenberger
Theorem”. In: Developments in Language Theory (DLT) 2012. Vol. 7410.
Lecture Notes in Computer Science. Springer, 2012, pp. 121–129. doi: 10.
1007/978-3-642-31653-1_12.

[37] Giovanni Pighizzini. “Limited Automata: Properties, Complexity and Vari-
ants”. In: Descriptional Complexity of Formal Systems (DCFS) 2019. Vol.
11612. Lecture Notes in Computer Science. Springer, 2019, pp. 57–73. doi:
10.1007/978-3-030-23247-4_4.

[38] Giovanni Pighizzini. “Nondeterministic One-Tape O↵-Line Turing Ma-
chines”. In: Journal of Automata, Languages and Combinatorics 14.1 (2009),
pp. 107–124.

[39] Giovanni Pighizzini. “Two-Way Finite Automata: Old and Recent Results”.
In: Fundamenta Informaticae 126.2-3 (2013), pp. 225–246. doi: 10.3233/
FI-2013-879.

[40] Giovanni Pighizzini and Andrea Pisoni. “Limited Automata and Context-
Free Languages”. In: Fundamenta Informaticae 136.1-2 (2015), pp. 157–
176. doi: 10.3233/FI-2015-1148.

[41] Giovanni Pighizzini and Andrea Pisoni. “Limited Automata and Regular
Languages”. In: International Journal of Foundations of Computer Science
25.7 (2014), pp. 897–916. doi: 10.1142/S0129054114400140.

[42] Giovanni Pighizzini and Luca Prigioniero. “Limited Automata and Unary
Languages”. In: Information and Computation 266 (2019), pp. 60–74. doi:
10.1016/j.ic.2019.01.002.

[43] Giovanni Pighizzini and Luca Prigioniero. “Non-Self-Embedding Gram-
mars and Descriptional Complexity”. In: Non-Classical Models of Autom-
ata and Applications (NCMA) 2017. 2017, pp. 197–209.

[44] Giovanni Pighizzini and Luca Prigioniero. “Pushdown Automata and Con-
stant Height: Decidability and Bounds”. In: Descriptional Complexity of
Formal Systems (DCFS) 2019. Vol. 11612. Lecture Notes in Computer Sci-
ence. Springer, 2019, pp. 260–271. doi: 10.1007/978-3-030-23247-
4_20.

http://dx.doi.org/10.1007/978-3-642-31653-1_12
http://dx.doi.org/10.1007/978-3-642-31653-1_12
http://dx.doi.org/10.1007/978-3-030-23247-4_4
http://dx.doi.org/10.3233/FI-2013-879
http://dx.doi.org/10.3233/FI-2013-879
http://dx.doi.org/10.3233/FI-2015-1148
http://dx.doi.org/10.1142/S0129054114400140
http://dx.doi.org/10.1016/j.ic.2019.01.002
http://dx.doi.org/10.1007/978-3-030-23247-4_20
http://dx.doi.org/10.1007/978-3-030-23247-4_20

[45] Giovanni Pighizzini, Je↵rey O. Shallit, and Ming-wei Wang. “Unary Con-
text-Free Grammars and Pushdown Automata, Descriptional Complexity
and Auxiliary Space Lower Bounds”. In: Journal of Computer and System
Sciences 65.2 (2002), pp. 393–414.

[46] Luca Prigioniero. “Regular Languages: To Finite Automata and Beyond
- Succinct Descriptions and Optimal Simulations”. PhD thesis. Università
degli Studi di Milano, Dipartimento di Informatica, Jan. 2020.

[47] Daniel Průša. “Weight-Reducing Hennie Machines and Their Descriptional
Complexity”. In: Language and Automata Theory and Applications (LATA)
2014. Vol. 8370. Lecture Notes in Computer Science. 2014, pp. 553–564.

[48] Michael O. Rabin and Dana Scott. “Finite Automata and Their Decision
Problems”. In: IBM Journal of Research and Development 3.2 (1959), pp.
114–125. doi: 10.1147/rd.32.0114.

[49] William J. Sakoda and Michael Sipser. “Nondeterminism and the Size of
Two Way Finite Automata”. In: Symposium on Theory of Computing (SToC)
1978. ACM, 1978, pp. 275–286. doi: 10.1145/800133.804357.

[50] John C. Shepherdson. “The Reduction of Two-Way Automata to One-Way
Automata”. In: IBM Journal of Research and Development 3.2 (1959),
pp. 198–200. doi: 10.1147/rd.32.0198.

[51] Michael Sipser. “Halting Space-Bounded Computations”. In: Theoretical
Computer Science 10.3 (1980), pp. 335–338. issn: 0304-3975.

[52] Kohtaro Tadaki, Tomoyuki Yamakami, and Jack C. H. Lin. “Theory of
One-Tape Linear-Time Turing Machines”. In: Theoretical Computer Sci-
ence 411.1 (2010), pp. 22–43. doi: 10.1016/j.tcs.2009.08.031.

[53] Klaus W. Wagner and Gerd Wechsung. Computational Complexity. Dor-
drecht: D. Reidel Publishing Company, 1986.

http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1145/800133.804357
http://dx.doi.org/10.1147/rd.32.0198
http://dx.doi.org/10.1016/j.tcs.2009.08.031

	Introduction
	Optimal Simulations Between nse Grammars, h-pdas, and 1-las
	Limited Automata: A Time Constraint
	Two-Way Automata and One-Tape Machines
	Pushdown Automata and Space Restrictions
	Future Work

