
The Computational Complexity Column
by

V. Arvind
Institute of Mathematical Sciences, CIT Campus, Taramani

Chennai 600113, India
arvind@imsc.res.in

http://www.imsc.res.in/~arvind

The area of Geometric Complexity Theory, initiated by Ketan Mulmuley and
his collaborators in the late 1990’s, is an ambitious research project exploring
connections between algebraic geometry and circuit complexity with the aim of
proving superpolynomial arithmetic circuit lower bounds. This perspective on
complexity has been growing rapidly in recent years. In this interesting arti-
cle, Josh Grochow surveys complexity theory questions on polynomial ideals,
which is a fundamental object of study in algebra. He shows connections with
circuit complexity and algebraic proof systems and discusses a number of open
problems.

http://www.imsc.res.in
http://www.imsc.res.in
arvind@imsc.res.in
http://www.imsc.res.in/~arvind


Complexity in ideals of polynomials:
questions on algebraic complexity of

circuits and proofs

Joshua A. Grochow∗

Abstract

Given ideals In ⊆ F[x1, . . . xn] for each n, what can we say about
the circuit complexity of polynomial families fn in those ideals, that
is, such that fn ∈ In for all n? Such ideals and their cosets arise natu-
rally in algebraic circuit lower bounds, geometric complexity theory,
and algebraic proof complexity. For ideals generated by a single ele-
ment, this is the question of relating the complexity of a polynomial
to the complexity of its factors, which has a long and rich history. For
general ideals, essentially nothing beyond that is known, even for ide-
als generated by just 2 elements. For a few examples of speci�c ide-
als of interest coming from circuit lower bounds or proof complex-
ity, some lower bounds on polynomials in these ideals are known us-
ing succinct hitting sets (Forbes–Shpilka–Volk, Theory Comput., 2019)
and circuit techniques (Forbes–Shpilka–Tzameret–Wigderson, CCC
2016). In this survey, we review these connections &motivations, and
raise many questions that we hope will help shed light on the com-
plexity landscape of polynomials in ideals.

1 Introduction
Recent progress in algebraic circuit complexity and algebraic proof com-
plexity is starting to reveal that ideals of polynomials (and their cosets)
are key objects “behind the scenes” of many of the central questions in al-
gebraic computational complexity and proof complexity. My goal here is
to motivate these objects and their importance, to highlight our extreme
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lack of understanding of the complexity properties of ideals of polynomi-
als, and to put forward some open questions that I hope are fruitful for
building up our understanding of their structure.

As I’m hoping this column will serve not only seasoned researchers
but also beginning graduate students or even advanced undergraduates,
the main background I’ll assume is some knowledge of polynomials, such
as unique factorization. (Some standard knowledge of Boolean complexity
theory will help with motivation, but is not strictly speaking necessary.)
Toward this end, to make sure we’re all on the same page, we start with
the de�nitions.

De�nition of rings and ideals. A ringR is a set (also denotedR) endowed
with two operations +, · : R × R → R, called “addition” and “multipli-
cation” satisfying the axioms you might expect form ordinary numerical
addition and multiplication: both operations are associative, addition is
commutative, every element has a negative, there is an additive identity
called 0 ∈ R, there is a multiplicative identity 1 ∈ R, and multiplica-
tion distributes over addition. Examples include Z,Q,R,C, �nite �elds Fq,
polynomial rings R[x1, . . . , xn] (where R is another ring), and matrix rings
Mn(R). If multiplication is commutative, we call R a commutative ring.
Unless otherwise speci�ed, whenever we say “ring” we will mean “com-
mutative ring.”

An ideal is a subset I ⊆ R that is (1) closed under addition and negation,
and (2) closed under multiplication by arbitrary elements ofR: if i ∈ I and
r ∈ R, then ri ∈ I . An ideal I is generated by a set S = {f1, f2, . . . , } if it is
the smallest ideal containing S. In this case wewrite I = 〈S〉 = 〈f1, f2, . . . 〉.
It follows that I = {

∑k
i=1 figi : fi ∈ S, gi ∈ R, k ∈ N}. Examples include the

prime ideal 〈p〉 ⊆ Z or 〈x2, y〉 ⊆ F[x, y]. In general rings ideals need not be
generated by any �nite set, but in the rings we consider they will always
be. A coset of I is r + I = {r + i : i ∈ I} for some r ∈ R. The cosets of I in
R form the quotient ring R/I , where (r + I) + (r′ + I) = (r + r′) + I and
(r + I)(r′ + I) = rr′ + I .

Complexity in ideals of polynomials. Now to the topic at hand. LetRn =
F[x1, . . . , xν(n)] be a polynomial ring for each n and let In ⊆ Rn an ideal for
eachn. We refer to such a sequence as a family, andwhenwewant to refer to
the family as a whole we may writeR = (Rn) = (Rn)n=1,2,3,..., and similarly
I = (In). A family of elements f = (fn)n=1,2,3,... with fn ∈ Rn is said to be
in I if fn ∈ In for each n.

Main (meta-)question. Given a family of ideals I = (In)—or



more generally cosets (cn + In)—what can be said about the
complexity of polynomial families (fn) ∈ (cn + In)?

In particular, there are many situations where we have a family of ideal
cosets c + I = (cn + In), and we would like to prove complexity lower
bounds on all families f = (fn) in c + I (that is, fn ∈ cn + In for all n). In
Sections 4–6 we will outline some of these situations, and use them to mo-
tivate our questions about polynomials in ideals. Proving a lower bound
on all families in an ideal is di�erent in a crucial way from the usual setting
of lower bounds: if we wanted to show a separation of complexity classes
C 6= D, it su�ces to �nd one single family f such that f ∈ D but f /∈ C. But in
our setting we want to show that every family f ∈ c+ I is not in some com-
plexity class C. As hard as circuit lower bounds are to begin with, this is a
priori a much harder task, so it seems worth developing some theoretical
sca�olding to learn more generally whatever we can about structural com-
plexity in (cosets of) ideals of polynomials. But �rst, some preliminaries
on algebraic complexity.
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2 Algebraic complexity: why and what

In algebraic complexity we are primarily concernedwith questions such as
the minimum number of algebraic operations (+,×,−, /) needed to com-
pute a given polynomial. On the one hand, this is well-motivated in its
own right: there are many numerical and algebraic algorithms which deal
with numbers “on their own terms,” only using the basic arithmetic oper-
ations, and never opening up the machine representation in terms of bits.
On the other hand, it is now well-known (but worth repeating) that alge-
braic complexity theory has close relationships with Boolean complexity
theory. Before coming to these relationships, we beginwith the de�nitions.



2.1 De�nitions in algebraic complexity

We say a family f = (fn) is p-bounded if the number of variables and the
degree of fn are at most poly(n). We will mostly be concerned with p-
bounded families.

An algebraic circuit over a �eld F is a directed acyclic graph, whose
sources are labeled by (not necessarily distinct) variables xi or constants
fromF, whose internal nodes are labeled either+ or×, andwhose sinks are
the output nodes. Each node computes a polynomial in F[x1, . . . , xn] in the
natural manner. The size of a circuit is its total number of nodes (including
input nodes—while this is not exactly standard, it yields the same results
except for very low-level complexity classes, and it will simplify some of
our statements), and its depth is the largest distance between any source
and any sink. Given a polynomial f ∈ F[x1, . . . , xn], its circuit size is the
minimum size of any circuit computing f , denoted C(f). Here, even if F
is a �nite �eld, we mean computing f symbolically as a polynomial. For
example, if we consider the polynomial f(x) = xp − x, this evaluates to
zero at all elements of Fp, but even if we were working over Fp we would
not say that the 0 circuit computes f ; the circuit size of f is essentially log2 p,
by repeated squaring. A family of polynomials f = (fn) is in Valiant’s
class VP if it is p-bounded and C(fn) ≤ poly(n). VP is a (nonuniform)
algebraic analogue of P, or more accurately, NC2, because of the result that
any f ∈ VP can be computed by a poly-size family of circuits whose depth
is at most O(log2 n) [41].

To relate polynomial families to one another, we use standard notions
of reduction. A projection over a �eld F is a map from a set of variables
{x1, . . . , xn} to another set of variables and constants {y1, . . . , ym} ∪ F. A
polynomial f(~y) is a projection of a polynomial g(~x) if there is a projection
π : {x1, . . . , xn} → {y1, . . . , ym} ∪ F such that f(~y) = g(π(~x)). A polynomial
family (fn) is a p-projection of another family (gn) if there is a polynomial
r(n) such that fn is a projection of gr(n) for all n, and in this case we write
f ≤p g. Most reductions in the literature are p-projections. Two polynomial
families f, g are said to be of the same p-degree if f ≤p g and g ≤p f , in
which case we write f ≡p g. The p-degree of f is the set of all polynomial
families of the same p-degree as f .

A slightly more general notion of reduction—the algebraic analogue of
polynomial-time Turing reductions—is that of circuit reductions. Given
a polynomial family f , we use Cf (g) to denote the minimum size circuit
computing g using arithmetic gates as well as f gates. For two polynomial
families f = (fn), g = (gn), we say that g c-reduces to f , denoted g ≤c f , if
Cf (gn) ≤ poly(n). Two polynomial families f, g are c-equivalent, denoted



f ≡c g, if f ≤c g and g ≤c f ; the set of all polynomials c-equivalent to g is
its c-degree. VP is closed under both p-projections and c-reductions.

A family of polynomials f = (fn) is in Valiant’s class VNP if it there is
another family g ∈ VP and a polynomial r(n) such that

fn(~x) =
∑

~y∈{0,1}m
gr(n)(~x, ~y).

VNP is closed under p-projections. The permanent is VNP-complete un-
der p-projections, and computing the permanent of {0, 1}-matrices is #P-
complete, so VNP is often thought of as the algebraic analogue of NP or, a
bit more accurately, #P.

2.2 Connections between algebraic and Boolean complex-
ity

Now we come to some of the relationships between the Boolean and alge-
braic worlds. First, Bürgisser showed [3] that certain algebraic separations
are consequences of Boolean ones, so the algebraic separations are natu-
ral and necessary �rst targets. In particular, P/poly 6= NP/poly (or even
NC3/poly 6= PH/poly) implies VPF 6= VNPF over all �nite �elds Fpk and,
assuming the Generalized Riemann Hypothesis, over all �elds F of char-
acteristic zero as well.

Second, Valiant [40] argued that “linear algebra o�ers essentially the
only fast technique for computing multivariate polynomials of moderate
degree,” suggesting that the algebraic question of whether the permanent
could be computed e�ciently bymeans of linear algebra (amoderate-sized
determinant) gets at the heart, or at least a key part of, the P versus NP
question.

Third, a celebrated line of research initiated by Kabanets and Impagli-
azzo [24], then continued by Jansen & Santhanam [21] and Carmosino, Im-
pagliazzo, Kabanets, and Kolokolova [7] says that if testing whether an al-
gebraic circuit computes the identically zero function can be done in P (or
even slightly sub-exponential deterministic time) rather than the current
upper bound of coRP, then one gets lower bounds on algebraic circuit size.

Taken together, these results are strong motivation for studying alge-
braic complexity as a way of getting at key issues in Boolean complexity.



3 What is known about complexity in ideals
In terms of complexity of ideals in general, essentially the only known re-
sults are about principal ideals: those generated by a single element. For
certain speci�c non-principal ideals of interest, more is known, which we
cover in Sections 4.1 and 5, but for general ideals we do not know of any
other results. The results on principal ideals were all originally phrased in
terms of factors, viz. pairs of polynomials f, P such that f divides P . We
will try to stick to this notation as much as possible: “f” for “factor” and P
for “polynomial.” In terms of ideals, this is the same as saying that P lies
in the principal ideal 〈f〉.

These results are stated for �elds of characteristic zero; they should all
still work for �elds of su�ciently large characteristic.

Theorem 3.1 (Kaltofen [22], Bürgisser [1, Thm. 8.14]; see also [9] for a new
proof). Over any �eld of characteristic zero, suppose P = f eg with f, g coprime
polynomials. Then

C(f) ≤ poly(C(P ), deg f, e)

In fact, if Pn = f enn gn for all n and en ≤ poly(n), then f ≤c P .

Because the preceding result really uses c-reductions and not just p-
projections, most of our questions on complexity in ideals will be about c-
degrees in ideals. Nonetheless, the corresponding questions for p-projections
are also interesting.

Bürgisser conjectured that the dependence on the exponent e could be
removed:

The Factor Conjecture (Bürgisser [1, Conj. 8.3]). If f is a factor of P , then

C(f) ≤ poly(C(P ), deg f).

Although this is how it was phrased in [1], it is natural to extend the
Factor Conjecture to conjecture that if fn is a factor of Pn for all n, then
f ≤c P . When we refer to the Factor Conjecture, we may mean either in its
original formulation, or in this natural strengthening.

While the Factor Conjecture remains open, Bürgisser proved the de-
pendence on the exponent e in Theorem 3.1 could be removed at the cost
of using approximative circuit complexity rather than plain circuit com-
plexity.

De�nition 3.2. We say that a polynomial f has approximative complexity≤ s,
or is in�nitesimally approximated by circuits of size s if there is a family of



circuits Cε, depending on a formal parameter ε, such that each of these
circuits has size at most s, and if we let fε be the polynomial computed by
Cε, then limε→0 fε = f . The approximative circuit complexity of f , denoted
C(f), is the minimum such s.

Theorem 3.3 (Bürgisser [2]). Over any �eld of characteristic zero, if f is a factor
of P , then

C(f) ≤ poly(C(P ), deg f).

As an additional interesting consequence, we get a polynomial equiv-
alence between the complexity of (approximatively) computing a polyno-
mial f , and decidingwhether a point (x, y) is in the graph of f , that is, given
x and y, deciding whether f(x) = y. The decision complexity of a set S ⊆ Fn,
denotedD(S), is the minimum number of arithmetic operations and com-
parison tests (=, 6=) su�cient to decide, for a given input ~x ∈ Fn, whether or
not ~x ∈ S. First, note that we trivially have D(graph(f)) ≤ C(f) + 1: given
x, y, evaluate f(x), then in one more operation check whether f(x) = y. In
the converse direction, the previous result yields:

Corollary 3.4 (Bürgisser [2]). Over any �eld of characteristic zero, C(f) ≤
poly(D(graph(f), deg f). The same holds if we replace deterministic decision tree
complexity D with randomized decision complexity two-sided error.

This result, in addition to its fundamental importance, will play a (small)
role in our discussion at the end.

More recently, these factorization theorems were strengthened to sev-
eral natural algebraic complexity classes (see Appendix A for de�nitions):

Theorem 3.5. If f is a factor of P , then:

1. Quasi-polynomial closure of ABPs, VPws [11]:

ABP(f) ≤ poly(ABP(P ), degP, (deg f)O(log deg f))

2. Quasi-polynomial closure of formulas, VPe = VF [11]:

F (f) ≤ poly(F (P ), degP, (deg f)O(log deg f))

3. Closure of formulas, VPe = VF, for polynomials of bounded individual de-
gree [31]:

F∆+5(f) ≤ poly(F∆(P ), (ideg(P )n)ideg(P ))



4. Square-root exponential closure of bounded-depth circuits VAC0 [8]:

C∆+O(1)(f) ≤ poly(C∆(P ), degP, (deg f)
√

deg f )

5. Closure of VNP [8]: if P (~x) =
∑

~y∈{0,1}m Q(~x, ~y), then there exists g such
that f(~x) =

∑
~y∈{0,1}m′ g(~x, ~y) where

C(g) ≤ poly(C(Q), degP, deg f).

While the following result is not explicitly about factorization nor com-
plexity of ideals, it is the key technical result in [8], and may have further
uses in studying complexity in ideals of polynomials.

Theorem 3.6 (Chou, Kumar, and Solomon [8]). Over any �eld of characteristic
zero, let P (x0, . . . , xn) and f(x1, . . . , xn) be polynomials such that P (f(~x), ~x) =
0. Then

C∆+3(f) ≤ poly(C∆(P ), degP, (deg f)
√

deg f ).

There is also a signi�cant body of literature around algorithms for fac-
torization of multivariate polynomials, some of which has fed into some
of the above results. We refer the reader to Kaltofen’s survey [23], as well
as to some of the more recent results on the equivalence between factoring
polynomials and polynomial identity testing [25, 12, 14].

4 Ideals in algebraic circuit lower bounds
Essentially all lower bounds in algebraic complexity theory either use the
substitution/restriction method, or a “rank-like” method, or sometimes a
combination of the two. See, e. g., the surveys [39, 10]. Rank-like meth-
ods take the following form: to each polynomial f we associate a matrix
M(f) (which might be exponentially large). For example, a matrix of par-
tial derivatives of f . Then, to show a lower bound like Chard 6⊆ Ceasy, the
method proceeds by:

1. Showing that for every f ∈ Ceasy,M(f) has low rank

2. Finding some fhard ∈ Chard for whichM(fhard) has high rank.

Thus, the rank ofM(f) is used to show that there is some fhard ∈ Chard that
is not in Ceasy.

Rank-like methods are particular instances of a more general “polyno-
mial method,” as follows. In all examples we are aware of, the entries of



M(f) are in fact polynomials in the coe�cients of f (in fact, even just linear
combinations thereof). Recall that rkM(f) < r if and only if the r×rminors
(=determinants of r×r submatrices) vanish. If each entry ofM(f) is a poly-
nomial in the coe�cients of f , then theseminors are also polynomials in the
coe�cients of f . We refer to such polynomials—whose variables are the co-
e�cients of the polynomials f we are studying—as “meta-polynomials.”
Let coeff(f) denote the vector of coe�cients of f . The rank method then
proceeds by showing that certain meta-polynomials vanish on coeff(f) for
every f ∈ Ceasy, and that at least one of these meta-polynomials does not
vanish on coeff(fhard).

The more general polynomial method is to then search for such meta-
polynomials that can separate the complexity classes, not necessarily re-
stricted to those coming from the rank ofM(f) for someM . Asmentioned,
all lower boundswe are aware of either use the polynomial method or sub-
stitution, or both. It is thus reasonable to study the power of the polynomial
method, and learn what we can about its structure and limitations. For us,
the key observation (going back a century or more) is that the collection of
polynomials that vanish everywhere on a given set S (e. g., S = Ceasy) is an
ideal! For if f, g vanish on S, then so does f+g, and so does fh for any poly-
nomial h. Studying the complexity of these meta-polynomials thus brings
us back to complexity in ideals.

4.1 Algebraic natural proofs
One way of proving lower bounds on certain ideals of (meta-)polynomials
is by exhibiting succinct hitting sets; this is themain content of the algebraic
natural proofs connection [16, 17], which we discuss next.

We can formalize the above polynomial method in the following de�-
nition:
De�nition 4.1 (D-natural against C, [17, De�nition 4] and [16, De�nition 1.1]).
Let C be a class of polynomials, and D a class of meta-polynomials (whose
variables are the coe�cients of polynomials in C). A property Π = (Πn),
where Πn is a collection of polynomials for each n, is D-natural against C if
it contains a subset Π∗n ⊆ Πn satisfying:

1. Largeness: Π∗n is the complement of the zero-set of a meta-polynomial
Tn;

2. D-Constructivity: The meta-polynomial family T = (Tn) is in D; and

3. Usefulness against C: Any family of functions f = (fn) with fn ∈ Π∗n
for all n is not contained in C.



Asmentioned above, essentially all knownalgebraic circuit lower bounds
to date are natural in this sense, see, e. g., [19]; Appendix B of ibid. also gives
a discussion ofwhy this polynomialmethodmay be one of the easiest ways
to prove such lower bounds.

Note that Largeness and Usefulness together imply that Tn vanishes on
{coeff(f) : f ∈ C}. Now, since the set of meta-polynomials that vanish on
C is an ideal, the question of whether there is a D-natural property against
C is the same as asking whether the ideal of polynomials that vanish on C
contains any families in D.

We now come to the connection with succinct hitting sets.

De�nition 4.2 (Succinct hitting set [17, De�nition 5] and [16, De�nition 1.3]).
A set C of families of polynomials is a succinct hitting set against a set of
meta-polynomials D if for every nonzero T ∈ D, there is some f ∈ C such
that T (coeff(f)) 6= 0.

It is then straightforward to observe:

Theorem4.3 (Algebraic natural proofs [17, Theorem1] and [16, Theorem1.4]).
For any two algebraic complexity classes C,D, there is no property which is D-
natural against C if and only if C is a succinct hitting set against D.

A central question thus arises:

Open Question 4.4 ([16, 17]). Is VP a succinct hitting set against VP? Con-
versely, do there exist meta-polynomials that vanish on VP and that can be com-
puted by polynomial-sized circuits?

While this question still remains open, Forbes, Shpilka, and Volk [16]
upgraded many of the known hitting sets in the literature to succinct hit-
ting sets, thereby proving lower bounds on the corresponding ideals. Here
we brie�y summarizemany of their results; for notation not de�ned in Ap-
pendix A, we refer to their paper [16].

Theorem 4.5 (Forbes–Shpilka–Volk [16]). Let In be the ideal whose vanishing
de�nes the set of poly(log s, n)-size multilinear ΣΠΣ formulas, within the space
of all multilinear formulas on n variables. Then every family f = (fn) ∈ I = (In)
is not computable by size-s computations of the form

• ΣO(1)ΠΣ formulas

• ΣΠΣ formulas of transcendence degree O(1)

• Sparse polynomials (=ΣΠ circuits)



• Σm ∧ ΣΠO(1) formulas

• Commutative roABPs

• Constant-depth, constant-occur formulas

• Arbitrary circuits composed with sparse polynomials of transcendence de-
gree O(1)

Remark 4.6. Geometric Complexity Theory (GCT) (see, e. g., [29, 28] and
references therein and thereto) also aims to produce suchmeta-polynomials,
but to �nd them by additionally taking advantage of the symmetries most
complexity classes have. For example, most complexity measures do not
change under permutation of the variables, leading to an action of the
symmetric group Sn on the corresponding complexity classes. Many com-
plexity measures do not change signi�cantly under invertible linear com-
binations of the variables, leading to an action of the general linear group
GLn(F). These actions organize the meta-polynomials into representations
of the corresponding groups, and we may now ask about the circuit com-
plexity of certain representation-theoretically-de�nedpolynomial families.
See [17, Section 4.1] for details.

5 Algebraic proof complexity
While proof complexity is now a vast �eld of its own, the question which
perhaps de�ned the �eld is: given an unsatis�able Boolean formula ϕ,
what is the length of the shortest proof of ¬ϕ in a standard, line-by-line
(Frege) deduction system? This very natural question, seemingly limited
in scope, leads to a �eld with connections to many others. From the point
of view of Logic, one can see proof complexity as being about the strength
of di�erent proof systems for proving tautologies (equivalently, refuting
unsatis�able formulas). From the point of view of Structural Complex-
ity, proof complexity lower bounds are stepping stones towards proving
NP 6= coNP. From the point of view of Algorithms, proof complexity lower
bounds can prove limitations on some of our current best practical SAT
solvers. We encourage the reader to consult some of the excellent surveys
such as [5, 34, 30, 36] for more, but for now we want to walk briskly from
here to complexity in ideals of polynomials.

One approach to proof complexity which seems to di�er from the stan-
dard, line-by-line deduction systems is the following algebraic approach.
(Though, in a surprising twist, Li, Tzameret, and Wang [26] proved that



a noncommutative version of this algebraic approach is actually quasi-
polynomially equivalent to standard Frege deduction systems!) First, we
translate Boolean formulasϕ into “equivalent” systems of polynomial equa-
tions, such that the roots of the system of equations are in bijective corre-
spondence with the satisfying assignments to ϕ. This is achieved by the
following standard transformation:

Boolean algebraic
x 1− x
¬f 1− T (f)
f ∨ g T (f) · T (g)

Note that the Boolean formula consisting of a single variable x is satis-
�ed if and only if x = 1 if and only if the polynomial equation 1 − x = 0
is satis�ed. Similarly, T (f)T (g) = 0 if and only if T (f) = 0 or T (g) = 0,
thus multiplication of polynomials corresponds to disjunction of Boolean
formulas. To force the only solutions to our systemof equations to be {0, 1}-
valued, we also include the equations xi(1− xi) = 0 for each variable xi.

Now, by the correspondence above, we have that ϕ is unsatis�able if
and only if the system of equations just described, which we’ll denote Fϕ,
has no roots. (Because any roots must be {0, 1}-valued by construction, we
can work over any �eld F we like, though complexity results may depend
on the �eld.) We are then aided by the following germinal theorem (see,
e. g., Eisenbud [13] for a textbook treatment):

Theorem 5.1 (Hilbert’s Nullstellensatz [20]). Let F be an algebraically closed
�eld. Then a system of equations f1(~x) = · · · = fm(~x) = 0 has no solution if and
only if 1 is in the ideal 〈f1, . . . , fm〉 ⊆ F[~x].

There are several di�erent proof systems based on this principle [6, 4,
32, 33, 18], with the current strongest being the Ideal Proof System (IPS),
�rst introduced byPitassi [32, 33] and expandeduponbyGrochow&Pitassi
[18]. IPS starts by introducing new placeholder variables yi for the equa-
tions we are showing unsatis�able.

De�nition 5.2 (Ideal Proof System [32, 33, 18]). An IPS certi�cate that a sys-
tem of polynomial equations over a �eld F, f1(~x) = · · · = fm(~x) = 0 is un-
satis�able over the algebraic closureF is anF-polynomialC(x1, . . . , xn, y1, . . . , ym)
such that

1. C(~x,~0) = 0, and



2. C(~x, ~f(~x)) = 1.

The �rst condition here is equivalent to C being in the ideal generated
by the yi. Combining with the second condition, this then implies that 1
is in the ideal generated by the fi, and thus that the system of equations
is unsatis�able, by the Nullstellensatz. Although there is no “line-by-line”
deduction here (intermediate gates in C may computed polynomials out-
side the ideal of the yi), an IPS certi�cate nonetheless serves as a proof that
the system of equations is unsatis�able.

The fact that C is just an ordinary circuit, and not a line-by-line deduc-
tion, is partly what creates a close relationship between IPS and ordinary
algebraic circuit lower bounds. Namely, super-polynomial lower bounds
on IPS imply that VP 6= VNP [18]. We expect such lower bounds to hold,
because if NP 6⊆ coMA, then some tautologies (after being translated into
polynomial systems as above) require super-polynomial-sized IPS proofs
[32].

To draw the connectionwith complexity in cosets of ideals, we rephrase
the de�nition of IPS certi�cate in terms of ideals. We’ve alreadymentioned
that condition (1) of the de�nition implies that C ∈ 〈y1, . . . , ym〉. Condi-
tion (2) of the de�nition says that C is congruent to 1 modulo the ideal
〈y1 − f1(~x), . . . , ym − fm(~x)〉, as modding out by this ideal is the same as
substituting in the Fi(~x) in place of the yi.

Thus, the set of IPS certi�cates is a coset of an ideal:

(1 + 〈y1 − f1(~x), . . . , ym − fm(~x)〉) ∩ 〈y1, . . . , ym〉.

(The intersection of two ideal cosets is either empty or a coset of an ideal.)
The question of lower bounds on IPS is thus precisely a question of the
complexity of polynomial families in this ideal coset. We will refer to this
ideal coset as the “coset of IPS certi�cates.”

As in the case of algebraic natural proofs, Forbes, Shpilka, Tzameret,
andWigderson showed lower bounds on restricted forms of IPS for certain
simple families of unsatis�able systems of equations:

Theorem5.3 (Forbes–Shpilka–Tzameret–Wigderson [15]). AnyΣ∧Σ circuit
computing an IPS certi�cate for the following systems of unsatis�able equations
must have at least exponential size:

1.
∑
xiyi − β, {x2

i − xi}, {y2
i − yi}, where β > n.

2. x1x2 · · · xn − 1,
∑
xi −m, {x2

i − xi}

Similarly, any read-once algebraic branching program computing an IPS certi�cate
for the following systems of equations must have exponential size:



1.
∑
zijxixj − β, {x2

i − xi}, {z2
ij − zij}, where β >

(
2n
2

)
.

2. 1 +
∏

(zij(xi + xj − xixj) + (1− zij)) , {x2
i − xi}, {z2

ij − zij}.

This furnishes our last known examples of lower bounds on polyno-
mials in a coset of an ideal. It is worth noting that all these examples are
essentially one equation together with the Boolean axioms. It would be in-
teresting to extend these results to more complicated systems of equations.

6 Open questions
As a starting point for better understanding complexity of polynomials in
(coset of) ideals, I’d like to propose several open questions. Of course, most
of these fall back in one way or another on Bürgisser’s Factor Conjecture.
While the Factor Conjecture itself remains an important question, I would
still be very happy to see any of these questions resolved either assuming
the Factor Conjecture, or with some of the same caveats that appear in pre-
vious results (such as those in Section 3).

It is worth emphasizing the following:

Every one of these questions is even open for ideals with only
2 generators.

How far is 2 generators from the general case? Naively, one might ex-
pect ideals in n variables to be generated by at most n polynomials, since—
if we consider the zeros of the polynomials—each additional polynomial
“should” reduce the dimension of the set of solutions by 1. However, this
is in fact quite far from the truth. There are examples [37, 38] of ideals in
n variables, generated by polynomials of degree ≤ n, such that the min-
imum number of generators needed is a function in En+1, the (n + 1)-st
level of the Grzegorczyk hierarchy, and n + 1 is sharp. To recall, E1 is all
linear functions, E2 is all polynomials, E3 contains all towers of exponen-
tials of �xed height such as 222

n

, and in general En+1 is gotten from En by
adding on more layer of primitive recursion. For the closures of complex-
ity classes (Zariski or Euclidean closure, as in Section 4) or for cosets of IPS
certi�cates (Section 5) probably the number of generators needed is much
closer to this upper bound than it is to 2, yet even for 2-generated ideals
we know almost nothing. My hope is that we will learn structural results
about ideals in general that might be useful for understanding these more
complicated examples.



In standard circuit complexity, we are aided by the fact that many nat-
ural complexity classes have complete problems. Thus, for example, to
prove VP 6= VNP, it su�ces to show that the permanent is not in VP. If
an ideal I (or coset) had a unique “easiest” polynomial family f (say, of
minimum c-degree), then to prove that every polynomial family in I was
not in some class C, it would su�ce to show that f /∈ C, thus returning us
to the “ordinary”, seemingly easier world of proving circuit lower bounds
on an individual polynomial family.

I do not actually have signi�cant hope that this will hold in general.
But when it does it should be useful, and answering questions about it will
hopefully help us learn more about the structure of c-degrees in ideals, in
a way that the techniques involved might help in other ways.

What can we say about the possibility of minimum c-degrees? Well, of
course, assuming the Factor Conjecture, every principal ideal family In =
〈fn〉 has f = (fn) as its unique minimum c-degree. It is also not hard to
construct “uninteresting” non-principal ideals with unique minimum c-
degree:

Observation 6.1. Let f = (fn) be a multivariate polynomial family such that
the factorization of fn into irreducibles is square-free. Let X(1), X(2), X(3), . . .
denote disjoint sets of variables. Then, over a su�ciently large �eld, the ideal family
In = 〈fn(X(1)), fn(X(2)), . . . 〉 has f as its unique minimum c-degree, assuming
the Factor Conjecture.

Proof. Let gn ∈ In for all n; We will give a c-reduction from f = (fn) to g =

(gn). Any polynomial gn ∈ In is of the form
∑

i fn(X(i))g
(i)
n (X(1), X(2), . . . ).

Without loss of generality, let us assume that we have written this so that
g

(1)
n is not in the ideal generated by fn(X(2)), fn(X(3)), . . . . Let C be a point
such that fn(C) = 0 and g(1)

n (X(1), C, C, · · · , C) is not identically zero; such
aC exists over any su�ciently large �eld, since g(1)

n /∈ 〈fn(X(2)), fn(X(3)), . . . 〉
by construction, and the latter ideal is radical, by the assumption of square-
freeness of f (this guarantees that if g(1)

n is not in the ideal, then neither
is any power of it). Then setting X(2) = X(3) = · · · = C, we get that
g(X(1), C, C, . . . , C) = fn(X(1))g1(X(1), C, C, . . . , C), of which fn(X(1)) is a
factor.

To avoid the above kind of triviality, we add an intentionally vague ad-
jective to the following question:

Open Question 6.2. Are there interesting non-principal ideals with a unique
minimum c-degree?



In particular, we conjecture the following positive example:

Conjecture 6.3. For each n, let X be an n× n matrix with independent variable
entries xij , and let In be the ideal generated by all

(
n
n/2

)2 minors ofX of size (n/2)×
(n/2). Then the ideal family (In) has the determinant as its unique minimum c-
degree.

The main reason we think this might hold is the close connection be-
tween matrix rank and determinants; in particular, a matrix X has rank
< r if and only if the determinant of every r × r submatrix vanishes. In
general, computing the rank of a matrix should have the same complex-
ity as computing the determinant; at the very least, we can say that testing
whether det(X) = 0 (equivalently, testing whether X has full rank) is es-
sentially equivalent to computing det(X), by Corollary 3.4.

One might also conjecture the analogous results for the permanent and
the ideal of all permanents of n/2×n/2 sub-matrices. While this is certainly
an interesting question worth answering, I feel less certain about which
way it should resolve, precisely because we have no such connection as we
have in the determinant case. (Though this is still the n/2-nd Jacobian ideal
of the permanent hypersurface.)

Conversely, we also ask:

OpenQuestion 6.4. Must every ideal family have a unique minimum c-degree?

Surely the answer here is negative, but we have not yet constructed a
counterexample.

However, even if there is not a uniqueminimum c-degree, from the per-
spective of proving lower bounds we would still be in good shape if there
were only �nitely many. Here we recall that a polynomial family f is of
minimal (not minimum) c-degree in an ideal family I if any f ′ ∈ I such that
f ′ ≤c f in fact has f ′ ≡c f .

OpenQuestion 6.5. Does every ideal have only �nitelymanyminimal c-degrees?

Open Question 6.6. Is it the case that every ideal has at least one minimal c-
degree? Can an ideal have an in�nite descending chain of c-degrees?

Next, instead of consideringminimal c-degrees in an ideal, we consider
what happens near the “top” of the c-degree structure of an ideal. First,
we note that there is no “top,” as a family of ideals can contain arbitrarily
complicated families:



Proposition 6.7. Assume the (circuit reduction) Factor Conjecture. Let c ∈ VP,
and let I be any ideal in unboundedly many variables. Then the ideal coset c + I
is dense among all c-degrees realized by p-bounded families. That is, for every
such ideal coset c + I in unboundedly many variables, and every c-degree d of a
p-bounded family (not necessarily occurring in c+I), there is some c-degree d′ ≥ d
such that d′ occurs in c+ I .

We note that the ideal cosets arising as cosets of IPS certi�cates have
cn = 1 for all n, so they satisfy the hypothesis of this result.

Proof. We assume the Factor Conjecture. First we show the result for ide-
als. Let I be a family of ideals, and let g be a p-bounded family of poly-
nomials, not necessarily in I ; we’ll show that the some c-degree at least
that of g occurs in I . We assume for simplicity that gn and In are both in
Rn = F[x1, . . . , xpoly(n)]. (If this is not the case it can easily be remedied
because we assume g is p-bounded.)

Now, let f be a family in I , and de�ne h = (hn) as hn = fngn. Since
fn ∈ In, we have that hn ∈ In as well. And since gn is a factor of hn, by
the Factor Conjecture we get that g ≤c h. Thus a c-degree at least that of g
occurs in I .

Now, suppose c+ I is an ideal coset as in the statement of the proposi-
tion, and g is any p-bounded family of polynomials. Let f ∈ I , de�ne h as
before, and de�ne hn = cn + hn. Since c is in VP, we have that h ≤c h, since
our circuit reduction can simply compute cn in polynomial size and then
subtract it from hn to get hn. Sincewe have g ≤c h (as before), by transitivity
we get g ≤c h, as desired.

The structure of the preceding proof suggests that once we go up high
enough in the poset of c-degrees in an ideal I , everything is possible. This
suggests to explore the bottom of the top, or the last places (as we go up
the poset of c-degrees) where it’s not the case that absolutely anything can
happen. Towards this end, we introduce the following de�nition:

De�nition 6.8 ([18, Question 7.4]). Let c + I be a family of cosets of ideals
of polynomials. We say that a c-degree d is satured in c + I if every d′ ≥c d
occurs in c+ I .

As we imagine ourselves climbing up the poset of c-degrees in an ideal,
once we’ve hit a saturated degree we can stop. In ideals, this really lets us
focus on the lowest c-degrees:

Proposition 6.9. Every c-degree realized by a p-bounded family in an ideal is
saturated, assuming (the circuit reduction version of) the Factor Conjecture.



Proof. We assume the Factor Conjecture. Let I be a family of ideals, f ∈ I
a family of polynomials. Let g be a family of polynomials, not necessarily
in I , such that f ≤c g; we’ll show that the degree of g occurs in I . More
speci�cally, let r(n) be a polynomial such that Cgr(n)(fn) ≤ poly(n). Let
h = (hn) be the family de�ned by hn = fngr(n). Since both f ≤c g and
g ≤c g, we get that h ≤c g. Conversely, since gr(n) is a factor of hn, by the
Factor Conjecture we get that g ≤c h. Thus g ≡c h, and h ∈ I , so the degree
of g occurs in I .

However, in ideal cosets we no longer know this to be the case. We thus
ask:
OpenQuestion 6.10 ([18, Question 7.4]). In every ideal coset, is it the case that
every c-degree is saturated? Or at least that every c-degree is below some saturated
c-degree in the coset?

Finally, we note that most complexity classes are usually the image of
a pretty simple polynomial map, an observation that goes back to Raz [35]
(see also [19, Section 3 & Appendix B.2] for further discussion), leading to
Raz’s de�nition and proposal to use so-called elusive functions to prove
lower bounds. Can we use this observation to get some mileage when
thinking about the ideals that vanish on these complexity classes?

We hope we have convinced the reader of the interest and utility of
studying complexity in ideals of polynomials (and their cosets), and that
some of our readers will try their hand at some of themany open questions
proposed here.

A Other algebraic complexity measures
WeuseCd(f) to denote the size of the smallest circuit of depth≤ d comput-
ing f . A subscript on other complexity measures restricts depth similarly.

A ΣΠΣ circuit is a depth-3 circuit with a linear combination gate at the
output (which may have fan-in more than 2, and may have nontrivial, but
still constant, coe�cients in the linear combination), preceded by a layer of
product gates (of unbounded fan-in), preceded by a layer of linear combi-
nations of the inputs. Superscripts in such notation are used to restrict the
fan-in, e. g. Σ≤dΠΣ means a linear combination gate of fan-in at most d at
the output. A∧maybe used in place ofΠ, inwhich case instead of a general
product gate, only powering gates are used. For example, ΣO(1)∧dΣ means
a constant fan-in linear combination at the output, preceded by powering
gates (which take their inputs to the d-th power), preceded by linear com-
binations of the input variables. A Σm denotes a linear combination gate



where the coe�cients in the linear combination are allowed to be mono-
mials.

A formula is a formula in the usual sense: using +,× and parentheses.
The size of a formula is the number of +,× it uses. Formulas may equiv-
alently be viewed as algebraic circuits in which the underlying directed
acyclic graph is in fact a tree. The formula size of f , denoted F (f), is the size
of the smallest formula computing f . A family of polynomials (fn) is in
VPe (“e” for “expression”, a synonym for “formula” in this context) or VF
if it is p-bounded and F (fn) ≤ poly(n). As with circuit size, Fd(f) denotes
the size of the smallest formula of depth at most d computing f .

An algebraic branching program or ABP is a directed acyclic graph with
a single source node s and a single sink node t, where each edge has a
weight which is an a�ne linear combination a0 +

∑
i aixi of the input vari-

ables xi (where each ai ∈ F, and the weights on di�erent edges can di�er).
An ABP “computes” the sum over all directed s → t paths of the prod-
uct of the edge weights on that path. The size of an ABP is its number
of nodes. We write ABP (f) for the size of the smallest ABP computing
f . It is well-known that C(f) ≤ ABP (f)O(1) ≤ F (f)O(1), and conversely,
F (f) ≤ ABP (f)O(logABP (f)) and ABP (f) ≤ C(f)logC(f) (the latter follows
from the fact that VP = VNC2 [41]). Up to polynomials, ABP (f) is equiva-
lent to the determinant complexity of f , the size of the smallest skew circuit
computing f , and the size of the smallest weakly-skew circuit computing
f (Malod & Portier [27] and references therein).

A read-once oblivious ABP is a directed acyclic graph where the internal
nodes are partitioned into layers V0, . . . , VN with V0 = {s} (the source),
VN = {t} (the sink), and such that every edge goes from Vi−1 to Vi for some
i, and there is a permutation π ∈ SN such that the edges in layer i are each
labeled by a polynomial of degree at most d in the variable xπ(i). The size
of the smallest read-once ABP computing f is denoted roABP (f).
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