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Abstract

A new representation of languages for multitape finite automata is con-
sidered based on a special binary coding of elements in a free partially com-
mutative semigroup. The mentioned coding was used previously for solution
of several problems in theory of automata. An overview of these results, as
well as, related works are presented.

Some new results based on this representation, which are currently un-
der review, are formulated. They include: a new characterization for com-
mutation classes of free partially commutative semigroups (trace monoids);
a metric, based on the introduced characterization, and a metric space for
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regular events over a free partially commutative semigroup; the synthesis of
a multitape finite automaton for a given regular expression; and a method for
the approximate calculation of distance between regular events for multitape
finite automata.

1 Introduction
A new representation of languages for multitape finite automata (MFA) and some
new results for the representation, which are currently under review, are adduced.

In 1959 M. O. Rabin and D. S. Scott introduced deterministic (DMFA) and
nondeterministic (NMFA) multitape finite automata and considered their equiva-
lence problem [1].

The equivalence problem for NMFAs turned out to be undecidable [2].
The equivalence problem of deterministic two-tape finite automata was proved

to be solvable in 1973 by M. Bird [3].
In 1991 T. Harju and J. Karhumäki proved the solvability of the equivalence

problem for DMFA without any restriction on the number of tapes via a purely
algebraic technique [4].

In 2010, a combinatorial proof of solvability was given [5], which led to a
polynomial algorithm for the problem [6]. The proof of solvability is similar to
the solution suggested by M. Bird, but instead of the transformation of source
automata to a commutative diagram, the commutativity assumptions are taken
into account via a multidimensional tape used for coding execution traces. The
referred combinatorial proof also led to a solution of the equivalence problem for
processes in specific object-oriented environments [7].

Automata with multidimensional tapes, where the motion of the heads is mo-
notone in all directions (no backward motion), were introduced earlier for the
solution of the equivalence problem of program schemata with nondegenerate op-
erators [8, 9, 10, 11, 12].

It was shown that the equivalence problem for program schemata with nonde-
generate basis of rank unity is reducible to the problem of automata with multi-
dimensional tapes. Later, in [13], it was proven that the equivalence problem of
multidimensional multitape automata can be reduced to the equivalence problem
of DMFA, thus, solving the open problem.

Coming back to the equivalence problem of DMFA, in 2013, J. Worrell proved
that a probabilistic polynomial bound exists for the problem. The proof is basing
on consideration of matrix algebras [14]. Directly compared, the used techniques
in [5] and [14] are di↵erent.

For the proof of solvability in [5], a special binary representation/coding of
an element in a free partially commutative semigroup is used, which brings to a



new characterization of commutation classes of free partially commutative semi-
groups, also called Cartier-Foata commutation monoids [15], or trace monoids af-
ter Mazurkiewicz [16] and his followers in computer science [17, 18, 19, 20, 21],
the connection of which with free partially commutative semigroups was first ob-
served in [17, 18]. This characterization is stronger than the already known one
[21] in the sense that it requires less information to characterize commutation
classes.

Problems, formulated in [22] as a synthesis problem, aka synthesizing a finite
automaton from a given regular expression, and an analysis problem, aka building
a regular expression for the set of words accepted by a given finite automaton,
were solved for one-tape automata by 1960 [23]. Then a natural question arises:
is there a way to have a similar to regular expressions representation for the set
of n-tuples of words accepted by a given MFA? In the case of a positive answer,
not less natural continuation is to consider a distance between regular events and
a metric space of regular events, similarly to the case of one-tape automata.

Some notable, from our point of view, attempts to consider in that way lan-
guages accepted by multitape automata are briefly discussed below.

In [24], B. G. Mirkin has considered a special coding for the sets of words
tuples accepted by multitape automata. The proofs and discussions are only for
the case of n = 2 and there are no explanations/proofs on how to extend this to the
case of n > 2. Meantime, the considerations in [5] show that a direct use of the
representation from [24] will not be su�cient for the case n > 2.

Another paper [25] by P. H. Starke is dedicated to the following result: "An
n-ary relation R over W(X) is representable by a finite deterministic n-tape au-
tomaton if and only if there exists an admissible regular expression T such that
R = Valn(T )". In the same paper, the author mentions that "Unfortunately there
are non-admissible regular expressions T such that Valn(T ) is representable by a
deterministic automaton".

The coding considered in [5] was used in [26] to define regular expressions and
regular events for multitape automata. The existing notation of regular expressions
for one-tape automata [22] was re-used as a notation for languages accepted by
MFA via interpreting di↵erently the "concatenation" operation.

For a given alphabet with n letters, a free semigroup G with a unit, Y =
{y1, . . . , yn} generators, where each letter corresponds to a unique generator of
G and a finite set of relations of type yiy j = y jyi is considered. Thus, every word
in the given alphabet has a corresponding element in the semigroup G. A ho-
momorphism is defined from G to n-element vector space of binary strings. The
concatenation of images of two words on n-element vector space of binary strings
is performed by pairwise concatenating i-th component of the second n-element
vector to the left of i-th component of the first n-element vector for all i = 1, . . . , n.
The formal definition of this new interpretation for the "concatenation" operation



is given in Section 2.
Results adduced in [26], allow us to state that already existing metrics defined

for regular languages for one-tape automata are applicable in the case of regular
languages over a free partially commutative semigroup. Some of them are pre-
sented below.

In 1965 V. G. Bodnarchuk has introduced a metric on the linear space of events
[27], which was later called the Bodnarchuk metric [28]. V. Vianu has investigated
many topological properties of this metric and its link with the topology of the
learning space [28].

The edit distance, specifically, Levenstein distance [29, 30], can also be ap-
plied to the regular languages for multitape automata. Though, in this case some
adjustment is necessary for d(w1,w2) = 0 , w1 ⌘ w2 axiom to take place. For
this reason, we redefine the edit distance to be L2 norm of a vector, in which at
each position i, the original edit distance between the sub-words of w1 and w2,
having all and only the letters from i-th tape, are written.

Other known metrics, e.g. [31], can also be considered in our case.
However, from the practical point of view, it is impossible to calculate these

metrics. In general case, it is impossible to answer the question: when is the
distance between two regular languages for multitape automata equal to 0? This
is due to the fact, that the intersection problem for MFA, hence the equivalence
problem as well, is not solvable [1, 2].

Due to that, a new approach is developed, taking the advantage of the intro-
duced coding in defining the distance function. The first attempt was to use the fact
that the introduced binary coded tuples were equivalent to some sub-semigroup of
n-dimensional space Nn [6]. This fact allows to consider the distance between
words over a free partially commutative semigroup as an Euclidean distance be-
tween them. Yet, the considered distance is inadequate in some boundary cases.

A new metric presented in this work, is basing on the newly introduced char-
acterization vectors of commutation classes.

An approximate method is proposed for calculating this distance, which in
some cases, precisely calculates the distance between regular events. In other
cases, it calculates the approximate distance, by performing those calculations on
finite subsets of regular events extracted from the algorithm for determining the
equivalence between DMFAs, adduced in [6]. The complexity of the later one is
bounded by k · sn+1, where k is some constant, n is the number of tapes and s is
the total number of states in the considered automata.

In Section 2, the mentioned and other results on regular events over a free
partially commutative semigroup and multitape automata are presented. Results
which are currently in the review process for publication are highlighted specially.



2 Formulation of Results on Regular Events for
Multitape Finite Automata

First, recall some basic definitions.
If X is an alphabet, then the set of all words in the alphabet X, including the

empty word, will be denoted X⇤, and the set of all n-element tuples of words will
be denoted (Xn)⇤.

Let G be a semigroup with a unit, generated by the set of generators Y =
{y1, y2, . . . , yn}. G is called free partially commutative semigroup, if it is defined
by a finite set of definitive assumptions of type yiy j = y jyi.

Let K : Y⇤ ! ({0, 1}n)⇤ be a homomorphism over the set Y⇤, which maps
words from Y⇤ to n-element vectors in binary alphabet {0, 1}. The homomorphism
K over the set of symbols of the set Y is defined by the equation:

K(yi) = (a1i, . . . , ani), where ai j =

8>>>>><
>>>>>:

1, i = j
e, yiy j = y jyi

0, yiy j , y jyi

At the same time K(e) = (e, . . . , e).
K(yiy j), i , j can be defined in any of the two alternative ways:

1. Right concatenation: K(yiy j) = (a1ia1 j, . . . , anian j).
2. Left concatenation: K(yiy j) = (a1 ja1i, . . . , an jani).

In [5, 6], the left concatenation was used, which allows to consider the n-
tuples of binary coded words as vectors in Nn. Left concatenation will be used
throughout this paper as well, and will be called just concatenation.

Any element in K(G) can be represented in the form ki1 . . . kim , where 8 j, ki j 2
K(Y) [12]. Note that an element may have multiple representations of this form.
Hence, an equivalence ⇢K is defined over K(Y)⇤ - the set of all words in K(Y), i.e.,
if p, q 2 K(Y)⇤, then p⇢Kq if and only if p and q are the representations of the
same element in K(G). Denote the equivalence class of p by

⇥
p
⇤
.

Using the mapping K with the left concatenation, a regular event and a regular
expression over a free partially commutative semigroup of binary coded n-tuples
are defined, similarly to [22].

For a free partially commutative semigroup G with the set of generators Y , a
regular event over K(Y) is defined as follows [26]:

1. ; (empty set) is a regular event in K(Y).
2. Ẽ = {[e, . . . , e]} is a regular event in K(Y).
3. 8y 2 Y, {⇥K(y)

⇤} is a regular event in K(Y).



4. If P and Q are regular events in K(Y), then so are

(a) P + Q = P [ Q,
(b) PQ = {[s] |s = pq,

⇥
p
⇤ 2 P,

⇥
q
⇤ 2 Q}, where pq is the concatenation of

p and q as defined above,
(c) P⇤ =

S
n�0 Pn, where P0 = Ẽ, Pn = PPn�1, for n � 1.

5. There are no any other regular events in K(Y).

The above definition of regular event not only is di↵erent from the known
definition of regular events by the interpretation of the concatenation operation,
but it defines a regular event as a set of equivalence classes. For simplicity, we
will use the phrase "word p belongs to the regular event S " to indicate that "the
equivalence class

⇥
p
⇤

belongs to S ".
A regular expression over K(Y) is defined as follows [26]:

1. ; is a regular expression, denoting the regular event ;.
2. K(e) = (e, . . . , e) is a regular expression, denoting the regular event Ẽ.
3. 8y 2 Y,K(y) is a regular expression, denoting the regular event {⇥K(y)

⇤}.
4. If p and q are regular expressions in K(Y), denoting regular events P and Q

correspondingly, then so are

(a) p + q, denoting the regular event P + Q,
(b) pq, denoting the regular event PQ,
(c) p⇤ =

S
n�0 pn, where p0 = K(e), pn = ppn�1, for n � 1, denoting the

regular event P⇤.

5. There are no any other regular expressions in K(Y).

2.1 A New Characterization for Commutation Classes
A new characterization for commutation classes of free partially commutative
semigroups (trace monoids [16]), which is stronger than the already known one
(Projection Lemma [21]) in the sense that it requires less information to character-
ize commutation classes, is presented in this sub-section. This result is currently
under review.

Lemma 2.1 (Projection Lemma [21]). Let u and v be two traces of the trace
monoid M(⌃, I), then we have u = v if and only if ⇡{y,y0}(u) = ⇡{y,y0}(v) for all
yy0 = y0y, where ⇡A is a canonical homomorphism, which erases all the letters not
belonging to A from a trace.

We define Ocry(w) as the number of occurrences of the letter y in the word w,
and for a set of letters Z ⇢ Y , OcrZ(w) =

P
y2Z Ocry(w). Also, define �y,i, j(w), i < j

as the sub-word of the word w such that the first letter of that sub-word is the i-th



occurrence of the letter y in the word w and the last letter is j-th occurrence of the
letter y in w. For the case i = 0, �y,i, j(w) is a prefix of the word w, and for the case
j > Ocry(w), �y,i, j(w) is a su�x of w.

Let w be a word on a partially commutative alphabet Y . For an element
y 2 Y , define the vector of numbers Cy(w) = (n0, n1, . . . , nk) such that ni =

Ocr{y02Y |yy0,y0y}(�y,i,i+1(w)), where k = Ocry(w) and i = 0, . . . , k. In other words,
Cy(w) is a vector having length equal to the number of occurrences of the symbol
y in the word w plus 1. It is also greater by 1 from the number of 1s in the binary
word corresponding to the symbol y in K(w). The elements of the vector Cy(w)
are the numbers of 0s between each pair of successive 1s, except the first and last
elements, which are the maximum numbers of consecutive 0s as a su�x and as a
prefix correspondingly.

Theorem 2.2. Let g1 and g2 be elements of partially commutative semigroup G
with generators {y1, y2, . . . , yn}, then g1 = g2 if and only if

Cyi(g1) = Cyi(g2) for all i = 1, . . . , n.

Theorem 2.2 shows that the vectors Cyi(w) characterize commutation classes.

Lemma 2.3. The characterization vectors Cy can be directly obtained from the
projections ⇡{y,y0}.

Lemma 2.3 means that the characterization of commutation classes given in
Theorem 2.2 is stronger than the one given by Projection Lemma.

2.2 A Metric Space for Free Partially Commutative Semi-
groups

Next, basing on this characterization, we define a metric space. The results on this
metric are currently under review.

For a letter y and semigroup elements g1, g2, the vectors Cy(g1) and Cy(g2)
might have di↵erent lengths. To be able to perform vector operations on them, we
add �1-s in the end of the smaller vector. Denote the new vectors by C0y(g1) and
C0y(g2). Define the distance between g1 2 G and g2 2 G, where G is a free partially
commutative semigroup with the set of generators {y1, y2, . . . , yn}, as follows:

d(g1, g2) =
����
⇣���C0y1

(g1) �C0y1
(g2)
���

2 , . . . ,
���C0yn

(g1) �C0yn
(g2)
���

2

⌘����
2
,

where kvk2 is L2 norm of the vector v.

Lemma 2.4. The distance function d is metric for any free partially commutative
semigroup.



Lemma 2.4 allows us to define Hausdor↵ distance [32] on the set of all, except
empty, regular events over a free partially commutative semigroup. Let E1 , ;
and E2 , ; be regular events over a free partially commutative semigroup. dH

distance between E1 and E2 is the quantity

dH(E1, E2) = max
(

sup
r12E1

inf
r22E2

d(r1, r2), sup
r22E2

inf
r12E1

d(r1, r2)
)
.

The calculation of dH, generally, is not solvable. For this reason, a method for
the approximate calculation of dH is introduced in Section 2.4.

2.3 Synthesis of Multitape Finite Automata
We consider two models of MFAs: the Rabin-Scott model [1] and the one called
mixed-state model [33]. The di↵erence between them is that unlike in Rabin-Scott
model (MFA), each state of automata in mixed-state model (MFA-MSM) is not
bound to a specific tape and can have transitions using symbols from di↵erent
tapes. The formal definitions of these two models are given below.

Let Q be a finite set of states, X be an input alphabet, � : Q ⇥ X ! 2Q be the
transition function, q0 2 Q be the initial state and F ✓ Q is the set of final states.
Suppose that X can be divided into disjoint, ordered subsets X = X1 [ . . . [ Xn,
such that Xi

T
i, j X j = ; and 8x, x0

⇣
x 2 Xi, x0 2 Xj(i , j), xx0 = x0x

⌘
. Each subset

Xi corresponds to i-th tape.

Definition 2.5 (Rabin-Scott model [1]). Let T : Q! {1, . . . , n} be a tape function,
which associates each state from Q with a certain tape. An n-tape automaton is
called a tuple A = (Q,T, X, �, q0, F), where Q =

Sn
i=1 Qi, such that Qi = {q|q 2

Q,T (q) = i} 8i = 1, . . . , n.

Definition 2.6 (Mixed-state model [33]). An n-tape automaton is called a tuple
A = (Q, X, �, q0, F).

In order to calculate the approximate distance between two regular events over
a free partially commutative semigroup R1 and R2 using the polynomial equiva-
lence algorithm [6], we first need to transform those regular expressions to DM-
FAs accepting similar languages to the ones recognized by R1 and R2.

Theorem 2.7 (On synthesis of multitape automata). There exists an algorithm
which, for a given regular expression over a free partially commutative semigroup
R, synthesizes a NMFA with " transitions A (NMFA-"), such that the language
accepted by A is the same language recognized by R.



The proof of the theorem is straightforward. It is necessary to apply "Thomp-
son’s construction" [34] and verify at each step that the constructed automaton
accepts the same language.

Lemma 2.8. For every NMFA-" there exists an equivalent NMFA-MSM.

Indeed, after applying the "Subset construction" algorithm [34] on an NMFA-
", the resulting automaton is an equivalent NMFA-MSM. Its worth noticing, that
after this transformation the resulting NMFA-MSM does not have any two transi-
tions from the same state with the same letter.

Let A = (Q, X, �, q0, F) be an n-tape NMFA-MSM obtained from "Subset con-
struction". We introduce a new set of symbols Xn+1 = X" = {"1, "2, . . . , "n} as a
new n + 1-th tape. We call this tape control tape, and the other n tapes - infor-
mation tapes. Each symbol in the control tape ("i) corresponds to an information
tape (Xi).

The introduced tape allows us to transform the given NMFA-MSM A to a
DMFA A(D), so that the language accepted by A(D) di↵ers from the language ac-
cepted by A only by additional symbols of the (n + 1)-th tape. The transforma-
tion is done as follows: for each state q 2 Q, if there exist transitions from q
with letters from di↵erent tapes (Xi1 , . . . , Xik), create new states for each such tape
(qi1 , . . . , qik). For each (q, x, q0) transition from q, such that x 2 Xj, add transition
(qj, x, q0) and then remove (q, x, q0). Afterwards, for each added state qj add a
transition (q, " j, qj).

2.4 An Approximate Method for Calculating the Distance Be-
tween Regular Events over a Free Partially Commutative
Semigroup

The proposed method presented in this sub-section, currently, is under review as
well.

Let R1 and R2 be regular expressions over a free partially commutative semi-
group, and E1, E2 be regular events denoted by R1 and R2 correspondingly. Let
A1, A2 be NMFA-MSMs and A(D)

1 , A
(D)
2 be DMFAs constructed from R1 and R2

correspondingly, using the techniques described in Section 2.3.
Apply the algorithm "Congruence Builder" from [6] on A(D)

1 and A(D)
2 by taking

the union of their final states as F and the union of all their states as Q. This algo-
rithm checks the equivalence between DMFAs. After the algorithm completes, if
the starting states of A(D)

1 and A(D)
2 belong to the same equivalence class, then A(D)

1
and A(D)

2 are equivalent, hence R1 and R2 recognize the same language and the dis-
tance between them is 0 (dH(E1, E2) = 0). Otherwise, if the starting states belong



to di↵erent equivalence classes, the following method is used to approximately
calculate dH(E1, E2) distance.

1. During the execution process, the "Congruence Builder" algorithm stores
the (n+1)-tuples of words accepted by the automata (not all accepted tuples)
as coordinates of the equivalence classes containing the starting states q10

of A(D)
1 and q20 of A(D)

2 are found. These tuples can be obtained from the
coordinates of the classes [6]. Denote the finite sets of these (n + 1)-tuples
of words corresponding to q10 state by P(D)

1 , and to q20 - by P(D)
2

2. Delete the last words from each tuple in P(D)
1 and P(D)

2 , obtaining sets of n-
tuples of words P1 and P2 correspondingly. The deleted words contained
only letters "i added in the process of constructing the DMFAs.

3. For every p 2 P1 \ P2, if p is accepted by A2, add the tuple p to P2.
4. For every p 2 P2 \ P1, if p is accepted by A1, add the tuple p to P1.
5. Compute the distance dH(P1, P2) for the finite sets P1 and P2.

3 Conclusion
In this work, some results in theory of automata are presented, which are achieved
basing on a special binary coding for elements of a partially commutative semi-
group. This coding leads to a new more e↵ective characterization of commutation
classes.

It is shown, that an MFA can be synthesized from a given regular expression
over a free partially commutative semigroup.

A new metric and metric space are introduced for measuring the distance be-
tween regular events for MFA. An approximate method for calculating this dis-
tance is described.
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