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Abstract

We report on major progress in integer programming in variable dimension, asserting
that the problem, with linear or separable-convex objective, is fixed-parameter tractable pa-
rameterized by the numeric measure and sparsity measure of the defining matrix.

Integer linear programming, with data w, l, u ∈ Zn, A ∈ Zm×n, and b ∈ Zm, is the problem

min{wx : Ax = b, l ≤ x ≤ u, x ∈ Zn} . (1)

It has a very broad expressive power and numerous applications, but is generally NP-hard. A
well known result [4] asserts that integer linear programming is fixed-parameter tractable (see
[1]) when parameterized by the dimension (number of variables) n, but this does not help in
typical situations where the dimension is large and forms a variable part of the input.

Here we report on a recent powerful result in integer programming in variable dimension,
asserting that the problem is fixed-parameter tractable when parameterized by the numeric mea-
sure a := ‖A‖∞ := maxi, j |Ai, j| and the sparsity measure d := min{td(A), td(AT )} of A. Here td(A)
is the tree-depth of A, defined below, and AT is the transpose. The result holds more generally
for integer nonlinear programming where the objective function is separable-convex, that is, of
the form f (x) =

∑n
i=1 fi(xi) where each fi is a univariate convex function which takes on integer

values on integer arguments and which is given by an evaluation oracle. Below we denote by
L := log(‖u − l‖∞ + 1) the bit complexity of the lower and upper bounds, and the times are in
terms of the number of arithmetic operations and oracle queries.

Theorem The linear or separable-convex program (2) is fixed-parameter tractable on a, d; and
if d = td(AT ) and is fixed, it is polynomial time solvable even if unary encoded a is variable:

min{ f (x) : Ax = b, l ≤ x ≤ u, x ∈ Zn} . (2)

More specifically, there exist computable functions h1 and h2 such that the following hold:
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1. [3] When f (x) = wx is linear, the problem is solvable in fixed-parameter tractable time

h1(a, d)poly(n) if d = td(A) and (a + 1)h2(d)poly(n) if d = td(AT ) ;

2. [2] When f (x) is separable-convex, it is solvable in fixed-parameter tractable time

h1(a, d)poly(n)L if d = td(A) and (a + 1)h2(d)poly(n)L if d = td(AT ) .

The theorem concerns sparse integer programming in the sense that at least one of A and
AT has small tree-depth, a parameter which plays a central role in sparsity, see [5], and which
is defined as follows. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf. Given a graph G = (V, E), a rooted tree on V is valid for G if for each
edge { j, k} ∈ E one of j, k lies on the path from the root to the other. The tree-depth td(G) of G is
the smallest height of a rooted tree which is valid for G. The graph of an m × n matrix A is the
graph G(A) on [n] where j, k is an edge if and only if there is an i ∈ [m] such that Ai, jAi,k , 0.
The tree-depth of A is the tree-depth td(A) := td(G(A)) of its graph.

Here is a very rough outline of the proof. The complete details are in [2, 3].

1. Few Graver-best steps suffice. Define a partial order v on Rn by x v y if xiyi ≥ 0 and
|xi| ≤ |yi| for all i. The Graver basis of the integer m × n matrix A is defined to be the finite set
G(A) ⊂ Zn of v-minimal elements in {z ∈ Zn : Az = 0, z , 0}. Given a feasible point x in (2), a
Graver-best step at x is a step s ∈ Zn such that y := x + s is again feasible and has objective value
at least as good as any feasible x + cz with c ∈ Z+ and z ∈ G(A).

It can be shown that, starting from any feasible point, an optimal point can be reached using
a suitably bounded number of Graver-best steps. And, an initial feasible point can be found, or
infeasibility detected, by a suitable auxiliary integer program. See [6] for details.

2. Graver norm bounds. The parametrization by a = ‖A‖∞ and d = min{td(A), td(AT )} of the
matrix A enables to bound the norm of elements in its Graver basis G(A) as follows. It can be
shown that there exist functions g1 and g2 such that, if d = td(A) then ‖x‖∞ ≤ g1(a, d) for all
x ∈ G(A), whereas if d = td(AT ) then ‖x‖1 ≤ (a + 1)g2(d) for all x ∈ G(A).

3. Finding Graver-best steps. Let x be a feasible point in (2) and let c ∈ Z+ be a given step size.
Then a best step with step size c is a solution of one of the following auxiliary integer programs
in variables z, for each of the cases d = td(A) and d = td(AT ) respectively,

min{ f (x + cz) : Ax = 0, l ≤ x + cz ≤ u, ‖z‖∞ ≤ g1(a, d), z ∈ Zn} , (3)

min{ f (x + cz) : Ax = 0, l ≤ x + cz ≤ u, ‖z‖1 ≤ (a + 1)g2(d), z ∈ Zn} . (4)

Since the variables in these programs are bounded by functions of the parameters only, it can be
shown that each of these programs can be solved efficiently by recursion on a suitable tree of
small height, which certifies that either d = td(A) or d = td(AT ) respectively, is small. It can also
be shown that a small list of potential step sizes c ∈ Z+ can be produced, and then the suitable
program (3) or (4) is repeatedly solved for each step size in the list. Finally, the Graver-best step
at x is taken to be that s := cz which gives the best improvement over all.
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