
The Computational Complexity Column
by

Michal Koucký

Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

https://www.mff.cuni.cz/en/iuuk
https://www.mff.cuni.cz/en
koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/~koucky/

Sorting Short Integers: The Exposition

Michal Koucký∗

Computer Science Institute
Charles University, Prague
koucky@iuuk.mff.cuni.cz

Abstract

This expository article reviews recent and some not so recent results
on sorting integers in various models of computation: from word RAM
to Boolean circuits, with the main focus on the latter. We hope that even
seasoned researcher will find our perspective refreshing.

1 Sorting using comparisons
Sorting is one of the most ubiquitous and versatile algorithmic primitives. It is
taught in introductory computer science courses around the globe. The classical
algorithms such as Heapsort and Quicksort take time O(n log n) [13]. They are
comparison based algorithms which means that they rely only on operations that
move the input items around and compare two individual items which one is larger.
There is a well known Ω(n log n) lower bound on the number of comparisons
needed by any comparison based algorithm to sort n distinct items. The lower
bound is derived from the number of different permutations of the items.

It is often overlooked that the lower bound is merely linear in the bit-size of the
input. Indeed, any reasonable binary encoding of a sequence of n distinct items
will use Ω(n log n) bits. So in terms of the bit-size of the input the lower bound
is linear. This fact can be exemplified in the following scenario which seemingly
breaks the lower bound: sorting n items from a domain K of size 2k < n. Using
ordinary balanced search trees of depth O(k) we can sort such a sequence using
O(nk) comparisons. (Each node in the tree contains a list of items of the same
value.) For k ∈ o(log n), this gives sorting using o(n log n) comparisons. One can
show using the standard argument that Ω(nk) comparisons are needed. The bit-size
of the input is nk, so in this case sorting is linear in the bit-size of the input.

∗Partially supported by the Grant Agency of the Czech Republic under the grant agreement no.
19-27871X.

koucky@iuuk.mff.cuni.cz

In a more general setting we have n items x1, x2, . . . , xn, each item xi encoded
using wi bits by some prefix-free code. Encoding of the whole input sequence
gives input of bit-size m = w1 + w2 · · ·wn. We claim that the sequence can be
sorted using O(m) comparisons. If there are K distinct values in the input sequence,
each appearing q1, q2, . . . , qK times, sorting the sequence using Splay trees leads to
O(K +

∑K
j=1 q j log(n/q j)) comparisons [34]. It follows from standard information

theoretic arguments on the entropy of the sequence that m ≥
∑K

j=1 q j log(n/q j) [14].
The use of a prefix-free encoding is natural. If the items are encoded individu-

ally by a code that can be uniquely decoded then there is a prefix-free encoding of
the same efficiency [14]. For example a fixed-size encoding is prefix-free but some
sequences might be encoded more efficiently: Consider a sequence consisting of
n−
√

n copies of 0 together with one copy of each number from 1 to
√

n in arbitrary
order. A fixed-size encoding would use O(n log n) bits but the sequence can be
encoded by a prefix-free code using O(n) bits in total, and we can sort the sequence
using O(n) comparisons.

Hence, sorting arbitrary sequence of n items can be done using a number of
comparisons that is linear in the bit-size of the encoding of the sequence. This
matches our intuition well — each comparison can extract one bit of entropy from
the input and there are at most m bits of entropy to extract. Bit-size of the input
will become an important measure later when we consider Boolean circuits.

1.1 Sorting networks
A special class of comparison based sorting algorithms is represented by sorting
networks. A sorting network is a collection of n horizontal wires which carry the
input values from left to right. At various places, two wires can be connected by a
vertical comparator which switches the values carried along the wires so that the
larger value continues on the lower wire and the smaller value on the upper wire.
The comparators should be organized so that the values leave the network sorted
top to bottom. See Fig. 1 for an example.

2
3
1

2
3

2

1 1
2
3

Figure 1: An example of a sorting network with three inputs (the horizontal lines),
and three comparators (the vertical lines) [24].

The complexity of the network is the total number of comparators and the
depth of the network is the maximum number of comparators on any path from
left to right in the network. Comparator networks have been extensively studied

and are used in various practical applications. Most notable constructions are the
well-known construction of Batcher [8] of size O(n log2 n) and depth O(log2 n), and
the famous construction of Ajtai, Komlós and Szemerédi [6] of size O(n log n) and
depth O(log n). Up-to a constant factor the network of Ajtai, Komlós and Szemerédi
(AKS network) is clearly optimal for sorting n distinct items by the above lower
bound. However, it is also optimal for sorting input sequences consisting of only
zeros and ones, as shown by the zero-one principle for sorting networks [25]: Any
sorting network correctly sorting inputs of zeros and ones correctly sorts arbitrary
inputs. Hence sorting items using sorting networks might be less efficient than
sorting them by ordinary comparison based sorting algorithms.

Sorting networks are an example of an oblivious algorithm in which the se-
quence of performed operations does not depend on the actual input. Later we will
see another example — Boolean circuits.

1.2 Beyond comparison

Beyond comparison based algorithms there is the well known Radixsort. This
is an example of an algorithm that runs on the word RAM. In the word RAM
model the memory is organized into cells of w bits each (w ≥ log n). At each time
step the program executes some operation with a fixed number of memory cells.
Which memory cells are involved in the operation can be determined by the content
of special address cells of the machine. Usually we place a restriction on how
complex each operation can be. Known algorithms usually involve relatively simple
operations such as bit-wise Boolean operations, integer addition, multiplication,
perhaps division. The input to the machine are n integers each of w bits presented
in the first n memory cells. The output is expected to be there as well. When
w ∈ O(log n), Radixsort can sort n integers in time O(n), i.e., using O(n) operations.

For large w, where w ∈ Ω(log2 n log log n), there are also algorithms for word
RAM that run in time O(n) [4, 9]. These algorithms are based on word level
parallelism. They compress multiple input values into a single memory cell, and on
the compressed input they run a comparison based sorting implemented in parallel.
The parallel execution of the sorting algorithm provides the necessary speed-up
to obtain a linear-time word RAM algorithm. The compression is usually quite
involved and proceeds in several stages as the original input values have w bits.

For w in the range from ω(log n) to o(log2 n log log n) the fastest known al-
gorithm of Han and Thorup [22] is randomized and operates in expected time
O(n
√

log log n) or more precisely in time O(n
√

log n w
log n). The algorithm is a

clever combination of several techniques used for sorting algorithms running in
time O(n log log n) [4, 18].

The first algorithm running in O(n log log n) time was given by Andersson et

al. [4]. It is obtained by iterating a linear time reduction of sorting n items of
w bits each to sorting n items of w/2 bits each [4, 26]. The iteration stops when
the integers reach bit-size O(log n) and we can sort them in linear time using e.g.
Radixsort. The reduction splits the items into buckets based on their first w/2 most
significant bits, and then sorts each bucket based on the w/2 least significant bits.
The sorting of all the buckets can be done together by annotating each item by its
bucket index.

Han [17, 18] developed a different approach and gave a linear time splitting
procedure which takes n items of w bits and partitions them into sets X1, X2, . . . , Xt

each of size at most
√

n so that for any i < j, items in the set Xi are less or equal
to the items in X j. This procedure can be iterated for O(log log n) steps to sort the
integers completely. Han’s splitting technique is a clever traversal of the trie built
from the binary representations of the integers. The traversal is top to bottom and it
iteratively splits the formed buckets into smaller ones. The splitting is done using
hashing of prefixes into hash values of varying sizes depending on the entropy of
the emerging buckets. The splitting is done for many items in parallel using word
level parallelism which provides enough speed-up to finish the whole iterative
process in linear time.

If there were a technique that would split the integers into sets X1, X2, . . . , Xt of
size 2log1−ε n for some ε > 0, one could sort in linear time.

Another algorithm running in time O(n log log n) is presented in [27]. This
algorithm selects a random subset of the input items of size O(n/ log n) and sorts
them. For each input item it then finds the proper interval in the sorted sample where
the item belongs to. Finding the interval can be done using binary search on the
longest common prefix shared with any of the sampled items in time O(log log n).
This creates small buckets corresponding to different intervals of the sample.
Sorting each bucket gives a sorting algorithm running in time O(n log log n).

1.3 Turing machines
Perhaps the most fundamental model of computation beside word RAM are Tur-
ing machines. Sorting n integers of w bits each can be done using comparison
based sorting algorithm such as Quicksort on two-tape Turing machine in time
O(nw log n). In the same time one can also implement Mergesort on three-tape
Turing machine. On a single-tape Turing machine one cannot sort faster than
Ω(n2/ log2 n) as otherwise one would break the quadratic lower bound on recogniz-
ing palindromes by one-tape Turing machines of Hennie [20].

For w ≤ log n, one can use binary Radixsort to sort integers on two-tape Turing
machines in time O(nw2). (Splitting a list of integers into two based on a particular
bit can be done by passing over the list twice.) It is believed that sorting on two-tape
Turing machines requires time ω(nw). For restricted classes of algorithms this was

proven by Stoss [35] and Paul [31].

2 Sorting by Boolean Circuits
Our main focus for the rest of the article is sorting using Boolean circuits. A
Boolean circuit is a directed acyclic graph in which each node (gate) has in-degree
at most two. Each node of in-degree zero is an input gate and it is labeled by one
of the input bits y1, . . . , ym. Each node of in-degree one is labeled by a Boolean
negation, and each node of in-degree two is labeled either by AND or OR. (The
in-degree of a node is the number of its incoming edges and the out-degree is the
number of its out-going edges.) On input y ∈ {0, 1}m the circuit is evaluated by
assigning values to gates and edges as follows: each edge of the circuit receives
the value of its starting node, each input gate labeled by an input bit yi is given the
value of yi, and each node labeled by a Boolean function g is assigned the value of
g applied on the values of edges incoming to the node. The output of the circuit is
given by the values of designated nodes.

The size of the circuit is the number of its gates and its depth is the length of
the longest path from an input gate to some output gate. We want to minimize
circuit size and depth. For more background on circuits see e.g. [23].

We will be interested in designing Boolean circuits computing the sorting
function SORTn,w : {0, 1}nw → {0, 1}nw which takes as its input n integers, each
encoded in binary using w bits, and outputs the same set of integers but sorted
according to the numerical order. A variant of this problem is a partial sorting
function according to k bits SORTn,w,k : {0, 1}nw → {0, 1}nw which takes the same
input as SORTn,w but outputs the set sorted according to the first k bits of the
integers. Integers with the same value of the first k bits can appear in arbitrary order.
Alternatively, one can think of a partial sort as sorting (key, value) pairs according
to k-bit keys with values being w− k bits long. Clearly, SORTn,w,w = SORTn,w. Our
goal is to design circuits computing those functions. Sorting circuits will refer to
such circuits.

Circuits are an oblivious model of computation as the sequence of performed
operations does not depend on the actual input. One can build a sorting circuit
from a sorting network by implementing each comparator by a small Boolean
circuit. Indeed, it is fairly easy to build a circuit of size O(w) and depth O(log w)
that compares two w-bit integers and outputs them in a sorted order. Replacing
each comparator in the AKS sorting network by a copy of such a circuit and
connecting the wires appropriately one can get a circuit of size O(nw log n) and
depth O(log n log w) that sorts n integers of w bits each. We will refer to this circuit
the AKS sorting circuit.

It was raised by Asharov et al. [7] whether one can design smaller circuits

when w is small compared to log n. Because of the zero-one law for sorting
networks this will necessarily require a different technique than used by sorting
networks. For every ε > 0, Asharov et al. [7] give a construction of circuits of size
O(nw2(1 + log∗ n − log∗ w)2+ε) and polynomial depth sorting n integers of w bits
each.

Their construction relies on a circuit for SORTn,w,1 which partially sorts the
input according to a single bit. Using such circuits one can sort the integers
completely bit by bit starting from the most significant bit. This recursive approach
requires certain care. We describe next a different approach which gives a circuit
of size O(nw2) and depth O(log n + w log w).

2.1 Fast counting
Here we describe an approach to sorting based on Counting Sort from [24] which
first counts the number of occurrences (frequency) of each possible integer value
and then reconstructs the sorted integer sequence corresponding to the frequencies.
This will give a sorting circuit of size O(nw2) and depth O(log n + w log w).

Slow Counting. Let W = 2w, where W < n1/20. For a given value y ∈
{0, . . . ,W −1} we can determine the frequency of y among x1, . . . , xn using a circuit
of size O(nw) and of depth O(log n+ log w). This is done by comparing y with each
xi for equality, and then summing up the resulting indicator vector. Comparing
two w-bit strings can be done using a circuit of size O(w) and of depth O(log w).
Summing up n bits can be done using a circuit of size O(n) and of depth O(log n).
Hence we can calculate the frequency of all the values from 0 to W − 1 using a
circuit of size O(Wnw) and of depth O(log n + log w). However, such a circuit is
too big so we proceed differently.

Fast Counting. We divide the integer sequence into blocks of size W8, and
we sort each of the blocks by the AKS sorting circuit of size O(W8w log W8) and
of depth O(log W8 log w). Hence the total size of this stage of the algorithm is
O((n/W8) ·W8w log W8) = O(nw2) and the depth is O(w log w). This fits within
our budget.

Now we partition each block into parts of W4 integers. There are only W
distinct integer values so except for W parts, integers in each part are the same.
Any such part is called monochromatic. Since each part is sorted we can easily
check whether it is monochromatic by comparing its first and last item.

At this stage it is also relatively inexpensive to compute the frequency of
all the items in monochromatic parts: For each value, compute the number of
monochromatic parts containing it, and multiply the number by W4. Multiplication
by W4 only requires to pad each count by 4w zeros on the right. This will use a
circuit of total size O((n/W4) ·W · w) ⊆ O(n) and depth O(log(n/W4)) ⊆ O(log n)
which is negligible for us.

It remains to count the number of items of each value in non-monochromatic
parts. In each block we replace all the values in monochromatic parts by 0 and we
sort each block again using the AKS sorting circuit. Except for the value 0, we
can count the frequency of each value in non-monochromatic parts by counting its
frequency in the last W5 items in all the blocks. This can be done using a circuit
of size O((n/W8) · W5 · wW) ⊆ O(n) and of depth O(log n). To properly count
the frequency of the value 0, we count zeros only in the first non-monochromatic
part of each block. Those zeros correspond to the original zeros in the first non-
monochromatic part of each originally sorted block. Counting those zeros can be
done easily using the same technique as for the other values. Hence, it does not
increase the circuit size beyond our budget.

At this point we have two frequency vectors, one counting all the values in
monochromatic parts and one counting them in non-monochromatic parts. We
can add them point-wise to obtain a vector of overall frequencies. This requires a
circuit of a negligible size and depth.

Decompression. Decompression of the frequency vector can be done in a mirror
fashion. We decompose the output positions into blocks of size n/W8. There will
be W8 blocks and at most W of them should become non-monochromatic. For
each output block we can determine whether it will be monochromatic and if so
what value it will contain. Given that W8 is substantially smaller than n this can be
done by a circuit of small size and depth.

To recreate the non-monochromatic blocks we subtract from the frequencies
the counts of items in monochromatic parts, and we use a naïve circuit of size
O((n/W7) · 2w · poly(w)) to recreate a sequence of (n/W7) integers corresponding
to those frequencies. We split this sequence into blocks of size (n/W8) and shuffle
them with the monochromatic blocks in correct order. This last step is done using
the AKS sorting circuit which sorts according to w bits but drags along each integer
a string consisting of (n/W8) integers. This last step requires a circuit of size
O(W8 · (nw/W8) log W8) and depth O(log W8 log w).

Hence, we obtain a circuit of size O(nw2) and depth O(log n + w log w) for
sorting n integers w bits each. Lin and Shi [29] give an incomparable result
discussed in the next section.

3 Partial Sorting
In this section we will focus on partial sorting of w-bit integers according to k
most significant bits. This corresponds to sorting (key, value) pairs where key has
k bits and value has w − k bits. Here, w can be large. Comparison based sorting
on such an input would use O(nk) comparisons as seen in the first section. Hence,
one could hope for partially sorting circuits of size O(nwk). When k ∈ Ω(w) the

result of previous section already provides a circuit of size O(nw2). For small k,
one wants smaller circuits.

For arbitrary constant ε > 0, Asharov et al. [7] give a construction of circuits
of size O(nwk(1 + log∗ n − log∗ w)2+ε) sorting n integers of w bits each according
to their first k bits. First, they design a circuit of size O(nw(1 + log∗ n − log∗ w)2+ε)
that sorts the integers according to a single bit. Then they use the circuit to sort the
integers by successive bits from the most significant to the least significant. Koucký
and Král [24] use the same strategy to first build a circuit for sorting according to
one bit (see the next section) and then they apply it iteratively similarly to [7]. This
gives a circuit of size O(nwk(1 + log∗ n − log∗ w)) and depth O(log3 n) that sorts
w-bit integers according to their first k bits. In a subsequent work, Lin and Shi [29]
get circuits of depth O(log n + log k) and size O(nkw · poly(log∗ n − log∗ w)) for
k ∈ O(log n). Lin and Shi use for their construction the sorting strategy of Ajtai,
Komlós and Szemerédi [6] along with the techniques of Asharov et al. [7].

3.1 Sorting according to one bit
In this section we will look at sorting w-bit integers according to a single bit. Sorting
a sequence of w-bit integers according to one bit corresponds to the problem of
moving designated set of input integers to the beginning or end of the sequence.
The set is indicated by the bit according to which we sort. This problem is closely
related to routing in graphs and in particular, to routing in superconcentrators.

A superconcentrator is a directed acyclic graph with n input nodes and n output
nodes that satisfies the property: For any pair of subsets of A and B of input nodes
and output nodes, respectively, of the same size `, there are ` vertex disjoint paths
from vertices in A to vertices of B. Such a superconcentrator can serve as a skeleton
of a circuit sorting according to one bit as it can move designated items to their
desired positions.

Aho, Hopcroft and Ullman [5] were among the first to observe the connection
between routing and various algorithmic problems, and they defined the supercon-
centrators. Furst, Chandra and Lipton [11] have shown that many natural functions
such as addition of two n bit integers require Boolean circuits to have some weak su-
perconcentrator property. It follows from a simple information theoretic argument
that the same must be true for sorting circuits. The original motivation to study
superconcentrators was to prove lower bounds on their size (number of edges), and
hence derive non-linear lower bounds on the size of Boolean circuits for specific
functions. The hope was that the superconcentrator property requires graphs to
have super-linear number of edges. This turns out not to be the case as shown by
Valiant [36]. Indeed, there are superconcentrators with O(n) edges which allow to
route any set of items placed on selected inputs to any selected set of outputs (of
the same size) along non-intersecting vertex disjoint paths [32,36]. Moreover those

graphs have in-degree and out-degree bounded by a constant. Known constructions
of superconcentrators rely heavily on expander graphs [21].

One could use any off-the-shelf superconcentrator to solve the sorting problem
according to one bit by turning the superconcentrator into a Boolean circuit: One
could replace each node of the superconcentrator by a selector circuit which would
select from among the values coming into the node the one which comes along
the edge of a routed path, and propagate the value further. Using a linear size
superconcentrator and linear size selector circuits would give a circuit of size
O(nw). The only issue is who will tell the selector which edge is active so which
value should be propagated.

Pippenger [33] resolved this routing issue in a rather efficient way. He gives a
construction of linear size superconcentrator together with an efficient algorithm
that determines the routing. The algorithm can be implemented by a small size
circuit namely, there is a circuit of size O(n log n) and depth O(log2 n) that gets as
its input indicator vectors of sets A and B and outputs a vector indicating which
edges should be used to connect A to B by |A|-many vertex disjoint paths in the
accompanying superconcentrator. Put together, this gives a Boolean circuit of size
O(nw + n log n) and depth O(log2 n) that sorts w-bit integers according to one bit.
We call this Pippenger’s partially sorting circuit.

To get a smaller circuit Asharov et al. [7] open up the construction of Pippenger
[33] and use his technique to build a smaller circuit from scratch. We will use
Pippenger’s partially sorting circuit as a black-box to build more efficient circuits.

The cost of Pippenger’s partially sorting circuit is dominated by the size of the
circuitry to calculate the routing. This takes a circuit of size O(n log n) but we can
afford only O(nw). So we use a similar technique as in Section 2.1 and we will
apply this circuit only to blocks of inputs of 2O(w) items.

Say we divide the input into blocks of integers of size n′ = 22w, and we sort
each block by Pippenger’s partially sorting circuit. This will give a circuit of total
size O((n/n′) · [n′w + n′ log n′]) = O(nw). Now we partition each block into parts
of 2w integers. All but one part in each block will be monochromatic meaning that
each part contains items with the same value of the bit according to which we sort.
Now we could try to use a similar technique as in Section 2.1 and apply some naïve
algorithm on monochromatic and non-monochromatic parts. Unfortunately, that
does not work here as even the items in monochromatic parts may vary. So we will
proceed iteratively from here.

The iterative procedure will use parameters W0,W1, . . . ,Wlog∗ n−log∗ w−1 where
W0 = w and Wi+1 = 2Wi . At iteration i > 0, we divide the current sequence into
parts consisting of Wi items, and we form blocks of 22Wi/Wi parts. Hence, each
block contains 22Wi integers. Within each block there will be at most 2 · 22Wi/W2

i
non-monochromatic parts. In each block we will move the non-monochromatic
parts to a side using Pippenger’s partially sorting circuit that will consider each

part as an item consisting of W · w bits. Then in each block we sort the items in
non-monochromatic parts together using Pippenger’s partially sorting circuit. The
number of those items is at most 2 · 22Wi/Wi. We repartition those items into parts
of size Wi, and sort all the parts (again as units) within the block using Pippenger’s
partially sorting circuit according to the appropriate bit of their first item. (We
do not care where the single non-monochromatic part ends up.) Notice, if we
repartition the block into parts of size 2Wi = Wi+1 then at most two parts in the
block out of Wi+1 parts will be non-monochromatic. At this point we are ready for
next iteration i + 1.

After the last iteration the total number of parts will be relatively small and the
number of items in the non-monochromatic parts will be also small. So we can use
few extra Pippenger’s partially sorting circuits to finish the sorting. An interested
reader might consult [24] for precise details.

The parameters Wi are chosen so that at each iteration the number of items
in non-monochromatic parts within a block is 1/Wi faction of all the items in the
block so we can afford to sort them using Pippenger’s partially sorting circuit.
Similarly for the number of parts where we are concerned about the logarithmic
term in the complexity of Pippenger’s partially sorting circuit used to sort the parts.
In total, each iteration requires a circuit of size O(nw) and depth O(log2 Wi).

Thus we obtain a circuit sorting n w-bit integers according to one bit of total
size O(nw(1 + log∗ n − log∗ w)) and depth O(log2 n). It can be used along the lines
of Asharov et al. [7] to build a circuit of size O(nwk(1 + log∗ n− log∗ w)) and depth
O(log3 n) that sorts w-bit integers according to their first k bits.

4 Lower bounds
Sorting is one of the most popular candidate functions for which people try to prove
lower bounds. This is rather natural as sorting deals with transfer of information,
and information is an aspect of computation that is quantitatively relatively well
understood compared to computation itself. Already in 70’s researchers tried
to prove lower bounds for sorting on Turing machines. Stoss [35] proved an
Ω(n log2 n) lower bound for sorting on Turing machines by algorithms that only
move items around. This was extended by Paul [31] to algorithms which do not
perform any “magic” defined in terms of Kolmogorov complexity. For Turing
machines there was only little progress since then.

A modern take on excluding the “magic” is the Network Coding Conjecture
of Li and Li [28]. Network coding is a problem in a communication network
with ` source nodes s1, . . . , s` and target nodes t1, . . . , t` where each source si

wants to be transmitting a stream of information to target ti. The intermediate
nodes in the network can combine received messages in arbitrary manner before

transmitting them further. The question is at what rate can the source-target pairs
communicate when each link has some restricted capacity, and how this rate relates
to the multicommodity flow in the corresponding network.

There are well known examples where the information rate can exceed the
multicommodity flow in directed networks [1, 3]. The Network Coding Conjecture
postulates that such situation cannot occur in undirected graphs [28]. So far the
conjecture was established only in restricted settings. It is a compelling formulation
of the “no magic” assumption.

There are multiple recent results establishing conditional lower bounds for
sorting under the assumption that the Network Coding Conjecture is true such as
lower bound for sorting in external memory [16] or for Boolean circuits [2, 7, 30].
Asharov et al. [7] show that under the Network Coding Conjecture, Boolean
circuits sorting n integers w bits each partially according to k bits require size
Ω(nk(w − log n)) even with no restriction on the depth of the circuits. Thus under
the Network Coding Conjecture the Boolean circuits described in previous sections
are almost optimal.

Sorting lower bound can also be derived from other assumptions. For example,
Boyle and Naor [10] show that Ω(log n) lower bound on the overhead of offline
oblivious RAM would imply the super-linear lower bound Ω(n log2 n) on the size of
sorting circuits. (It was erroneously thought that such lower bounds for oblivious
RAM were already established.) Super-linear lower bounds on the size of sorting
circuits of logarithmic depth would also follow from a non-adaptive nε lower bound
on the number of queries for the function inversion problem with preprocessing of
Hellman [12, 15, 19, 37].

All these partial results witness the centrality of sorting problem. In many
ways, sorting seems to be the right candidate for proving super-linear size lower
bounds for logarithmic depth circuits. Proving such a bound would constitute a
major progress in computational complexity and we invite interested readers to
take on this challenge. As Andrew Yao puts it: You cannot win if you don’t buy a
lottery ticket.

References

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network information flow.
IEEE Trans. Inf. Theory, 46(4):1204–1216, 2000.

[2] P. Afshani, C. B. Freksen, L. Kamma, and K. G. Larsen. Lower Bounds
for Multiplication via Network Coding. In Proceedings of the 46th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132 of LIPIcs, pages 10:1–10:12, 2019.

[3] M. Adler, N. J. A. Harvey, K. Jain, R. D. Kleinberg, and A. R. Lehman. On the
capacity of information networks. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 241–250,
2006.

[4] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time?
Journal of Computer and System Sciences, 57(1):74–93, 1998.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

[6] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log(n) parallel steps.
Combinatorica, 3(1):1–19, 1983.

[7] G. Asharov, W.-K. Lin, and E. Shi. Sorting short keys in circuits of size
o(n log n). In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA’21), pages 2249–2268. SIAM, 2021.

[8] K. E. Batcher. Sorting networks and their applications. In American Feder-
ation of Information Processing Societies: AFIPS Conference Proceedings:
1968 Spring Joint Computer Conference, volume 32 of AFIPS Conference
Proceedings, pages 307–314, 1968.

[9] D. Belazzougui, G. S. Brodal, and J. S. Nielsen. Expected linear time sorting
for word size Ω(log2 n log log n). In Proceedings of the 14th International
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014,
volume 8503 of Lecture Notes in Computer Science, pages 26–37. Springer,
2014.

[10] E. Boyle and M. Naor. Is there an oblivious RAM lower bound? In Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science (ITCS’2016), pages 357–368, 2016.

[11] A. K. Chandra, S. Fortune, and R. J. Lipton. Unbounded fan-in circuits and
associative functions. J. Comput. Syst. Sci., 30(2):222–234, 1985.

[12] H. Corrigan-Gibbs and D. Kogan. The function-inversion problem: Barriers
and opportunities. In Proceedings of the 17th International Conference on
Theory of Cryptography, TCC 2019, pages 393–421, 2019.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2nd edition, 2001.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, USA, 2006.

[15] P. Dvořák, M. Koucký, K. Král, and V. Slívová. Data Structures Lower
Bounds and Popular Conjectures. In Proceedings of the 29th Annual European
Symposium on Algorithms (ESA 2021), volume 204 of LIPIcs, pages 39:1–
39:15, Dagstuhl, Germany, 2021.

[16] A. Farhadi, M. Hajiaghayi, K. G. Larsen, and E. Shi. Lower bounds for
external memory integer sorting via network coding. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19),
STOC 2019, pages 997–1008, 2019.

[17] Y. Han. Improved fast integer sorting in linear space. Inf. Comput., 170(1):81–
94, 2001.

[18] Y. Han. Deterministic sorting in o(n log log n) time and linear space. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC’02), pages 602–608, 2002.

[19] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, 1980.

[20] F. C. Hennie. One-tape, off-line turing machine computations. Inf. Control.,
8(6):553–578, 1965.

[21] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43:439–561, 2006.

[22] Y. Han and M. Thorup. Sorting integers in O(n
√

log log n) expected time
and linear space. In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS’02), 2002.

[23] S. Jukna. Boolean function complexity: advances and frontiers, volume 27.
Springer Science & Business Media, 2012.

[24] M. Koucký and K. Král. Sorting Short Integers. In Proccedings of the
48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021), volume 198 of LIPIcs, pages 88:1–88:17, Dagstuhl, Germany,
2021.

[25] D. E. Knuth. The Art of computer programming, Volume 3: Sorting and
searching. Addison-Wesley, Reading, MA, 1973.

[26] D. G. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random
access machines. Theor. Comput. Sci., 28:263–276, 1984.

[27] K. Král. Complexity of dynamic data structures. PhD Thesis. Charles Univer-
sity, 2021.

[28] Z. Li and B. Li. Network coding: The case of multiple unicast sessions.
Proceedings of the 42nd Allerton Annual Conference on Communication,
Control, and Computing, 2004.

[29] W.-K. Lin and E. Shi. Optimal sorting circuits for short keys. arXiv preprint
arXiv:2102.11489, 2021.

[30] W. Lin, E. Shi, and T. Xie. Can we overcome the n log n barrier for oblivious
sorting? In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’19), pages 2419–2438, 2019.

[31] W. J. Paul. Kolmogorov complexity and lower bounds. In Proceedings of the
Conference on Algebraic, Arithmetic, and Categorial Methods in Computation
Theory: Fundamentals of Computation Theory, FCT 1979, pages 325–334,
1979.

[32] N. Pippenger. Superconcentrators. SIAM J. Comput., 6(2):298–304, 1977.

[33] N. Pippenger. Self-routing superconcentrators. J. of Comp. Syst. Sci., 52(1):53–
60, 1996.

[34] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985.

[35] H. Stoß. Rangierkomplexität von permutationen. Acta Informatica, 2:80–96,
1973.

[36] L. G. Valiant. Graph-theoretic properties in computational complexity. J.
Comput. Syst. Sci., 13(3):278–285, 1976.

[37] E. Viola. Lower bounds for data structures with space close to maximum
imply circuit lower bounds. Theory of Computing, 15(18):1–9, 2019.

	Sorting using comparisons
	Sorting networks
	Beyond comparison
	Turing machines

	Sorting by Boolean Circuits
	Fast counting

	Partial Sorting
	Sorting according to one bit

	Lower bounds

