
51 51

51 51

Bulletin of the EATCS no 107, pp. 43�71, June 2012

©c European Association for Theoretical Computer Science

The Computational Complexity Column
by

V. Arvind

Institute of Mathematical Sciences, CIT Campus, Taramani
Chennai 600113, India
arvind@imsc.res.in

http://www.imsc.res.in/~arvind

Ever since Reingold’s deterministic logspace algorithm [66] for undirected graph
reachability, logspace algorithms for various combinatorial problems have been
discovered and it is now a flourishing area of research. Notable examples in-
clude special cases of directed graph reachability and planar graph isomor-
phism [23].

In this interesting article, Johannes Köbler, Sebastian Kuhnert and Oleg
Verbitsky discuss the structural properties of interval graphs and other tech-
nical ingredients that go into their recent logspace isomorphism algorithm for
interval graphs, along with some generalizations and new directions.



52 52

52 52

BEATCS no 107 THE EATCS COLUMNS

44

Around and Beyond the Isomorphism Problem
for Interval Graphs

Johannes Köbler Sebastian Kuhnert∗ Oleg Verbitsky†

Humboldt-Universität zu Berlin, Institut für Informatik
{koebler,kuhnert,verbitsk}@informatik.hu-berlin.de

Abstract

The class of problems solvable in logarithmic space has recently replen-
ished with the isomorphism testing for interval graphs. We discuss this re-
sult, prospects of its extension to larger classes of graphs, and related issues
such as constructing canonical models of intersection graphs and solving the
Star System Problem for restricted classes of graphs.

1 Introduction
Graph Isomorphism (GI for short) is the problem of determining whether or not
two given graphs are isomorphic. The problem is in the class NP, but its com-
plexity status is open since decades; see, e.g., the surveys [64, 31, 77, 4, 48].
Structural complexity theory provides good evidence showing that GI is hardly
NP-complete; see the monograph [51]. The best known algorithm for GI, worked
out by Babai, Luks, and Zemlyachenko [6], has moderately exponential running
time 2O(

√
n log n). Here and throughout, n denotes the number of vertices in an input

graph. The best known lower bound is also surprisingly weak. Currently we do
not even know if GI is P-hard under logspace reductions. Torán [71] shows that
the problem is at least as hard as computing the determinant of an integer matrix
(which in terms of complexity classes implies DET-hardness.)

In view of the fact that the general graph isomorphism problem has so far
resisted all efforts to solve it more efficiently, it is natural to investigate its restric-
tions to particular classes of graphs or to reconsider the problem in other compu-
tational paradigms. An example of research in the latter direction is the search for

∗Supported by DFG grant KO 1053/7–1.
†Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied Problems of

Mechanics and Mathematics, Lviv, Ukraine.



53 53

53 53

The Bulletin of the EATCS

45

parameters making GI fixed-parameter tractable [46, 28, 76, 70, 52, 68]. An inter-
esting open problem in this area is whether or not GI is fixed-parameter tractable
with respect to tree-width [45].

GI for particular classes of graphs has a rich literature. A systematic overview
can be found in the monograph [69]. Like in the theory of NP-completeness, two
cases can be distinguished: isomorphism-complete graph classes, for which the
problem remains as hard as in general, and isomorphism-tractable graph classes,
for which it is solvable in polynomial time. As another resemblance to the the-
ory of NP-completeness, a dichotomic phenomenon can be observed: just a few
classes of graphs are discussed in the literature for which neither isomorphism-
completeness nor polynomial-time solvability is known; the most prominent ex-
amples are the classes of circular-arc and trapezoid graphs (see [41, 21] for dis-
cussions of the former and [69, 75] for the latter).

Well-known examples for isomorphism-complete classes include bipartite and
chordal graphs; see [13] for a comprehensive list of other basic examples and [7,
8, 75, 74] for some more advanced results.

A very powerful tractability result is recently obtained by Grohe and Marx [36]
who showed that GI is solvable in polynomial time for each class of graphs exclud-
ing a fixed topological subgraph. This includes graphs of bounded vertex degree
and graphs excluding a fixed minor. The polynomial-time algorithm by Luks [58]
for the former case is used in [36] as a subroutine. An earlier polynomial-time al-
gorithm for the latter case was designed by Ponomarenko [63]; see also [35]. Fur-
thermore, examples of minor-free classes include graphs embeddable into a fixed
surface (earlier polynomial-time algorithms are due to [29, 60, 34]) and graphs of
bounded tree-width (an earlier polynomial-time algorithm is due to [12]).

The tractable cases of GI admit a finer classification through the computa-
tional concepts of polylogarithmic parallel time or logarithmic space (logspace
for short). The first, and very important, logspace isomorphism algorithm was
designed by Lindell for trees [56].

Let L denote the class of recognition problems solvable in logspace. Recall
the hierarchy of low-complexity classes:

NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ TC1 ⊆ NC2, NL ⊆ DET ⊆ TC1.

Note that L occupies a lower position than DET. Thus, Lindell’s algorithm for
trees, together with Torán’s lower DET-bound for the general isomorphism prob-
lem, implies that isomorphism of trees is strictly easier than isomorphism of all
graphs unless, for instance, NL = L. Somewhat surprisingly, the same conclusion
holds for a number of much broader classes of graphs, in particular, for planar and
interval graphs.

A graph is interval if its vertices can be assigned to intervals such that two
vertices are adjacent if and only if their intervals have non-empty intersection.



54 54

54 54

BEATCS no 107 THE EATCS COLUMNS

46

Interval graphs have received persistent interest over the decades, finding appli-
cations (amongst others) in scheduling and computational biology; see e.g. [33].
Recognition of interval graphs played for example a role in establishing the linear
structure of DNA (Benzer [10]).

Classifying classes of graphs as isomorphism-complete or polynomial-time
solvable, an interesting phenomenon occurs: Once a particular isomorphism prob-
lem is put in P, it can often be put also in NC and, even more, in L. Exam-
ples of such a double jump are given by two classical classes of graphs, namely
planar graphs (polynomial-time algorithm by Hopcroft and Tarjan [39], parallel
AC1 algorithm by Miller and Reif [61], logspace algorithm by Datta et al. [23];
see also survey [72]) and interval graphs (linear-time algorithm by Lueker and
Booth [57], parallel AC2 algorithm by Klein [47], logspace algorithm by Köbler
et al. [49]). For graphs with bounded tree-width, the transition from P (Bodlaen-
der [12]) to TC1 was made by Grohe and Verbitsky [37], while the membership of
this problem in L remains open. An important step towards this goal was made by
Das, Torán, and Wagner [22] who put the problem in LOGCFL. A logspace iso-
morphism algorithm is known in the particular case of k-trees (Arvind et al. [2]).
The “new wave” of logspace results on GI includes also the isomorphism test
in [24] for graphs excluding one of the Kuratowski graphs K5 and K3,3 as a minor.

Note that in all cases where the isomorphism problem is solvable in logspace,
we actually have an L-completeness result. For trees it was obtained by Jenner
et al. [43].

A linear-time algorithm is also known for the isomorphism problem of planar
graphs (Hopcroft and Wong [40]). It should be stressed that linear-time bounds are
formally incomparable with L or NC bounds. On the other hand, the membership
of a computational problem in L implies the existence of logarithmic time parallel
algorithms for this problem (and then the next, practically important task is to
minimize the number of processors in such an algorithm).

The remaining part of this survey is organized as follows. In Section 2 we
establish several useful connections between graphs and hypergraphs. In Section 3
we describe recent logspace algorithms for computing canonical representations
for interval graphs, proper interval graphs and some special classes of circular-arc
graphs. We conclude this survey with a study of the Star System Problem and its
connections to isomorphism testing. In Section 4 we observe that some known
polynomial-time tractable cases of the Star System Problem can even be solved in
logspace.



55 55

55 55

The Bulletin of the EATCS

47

2 Graphs and hypergraphs
Recall that a hypergraph is a pair (V,H), where V is a set of vertices and H is a
family of subsets of V , called hyperedges. A graph is a hypergraph whose hyper-
edges are all of size 2. We will use the same notation H to denote a hypergraph
and its hyperedge set; this causes no ambiguity if V has no isolated vertex (i.e.,
a vertex that is not contained in any hyperedge). The vertex set V of H will be
denoted by V(H). An isomorphism from a hypergraphH to a hypergraph K is a
bijection φ : V(H) → V(K) such that X ∈ H if and only if φ(X) ∈ K for every
X ⊆ V(H). We allow multiple hyperedges; therefore, φ must also respect the
multiplicity of every hyperedge X.

Hypergraphs can be used to represent certain graphs in a succinct way. For
example, we can associate with a hypergraph H the intersection graph I(H) on
vertex set H where X ∈ H and Y ∈ H are adjacent if and only if they have a
non-empty intersection. We call a hypergraph connected if its intersection graph
is connected. Of course,

H � K =⇒ I(H) � I(K), (1)

but the converse implication does not hold in general.
Another graph that can be derived from a hypergraphH is the incidence graph

I(H). This is a colored bipartite graph with the class of red vertices V(H), the
class of blue vertices H , and edges between all v ∈ V(H) and X ∈ H such
that v ∈ X. A hyperedge X of multiplicity k contributes k blue vertices in I(H)
(with the same adjacency pattern to the red part of the graph). In contrast to
the intersection graph, the incidence graph contains full information about the
underlying hypergraph, as we have

H � K ⇐⇒ I(H) � I(K). (2)

This equivalence reduces testing isomorphism of hypergraphs with n vertices and
m hyperedges to testing isomorphism of colored graphs with n+m vertices (where
colors can, in fact, be removed by using standard gadgets, for example, by con-
necting all red vertices to an auxiliary triangle). Although hypergraph isomor-
phism reduces to GI, in many cases it is preferable to solve it directly; see [59, 5, 3]
for the currently best algorithms. Though these algorithms have an exponential
running time, it turns out that some interesting cases of GI can be solved effi-
ciently by reducing them to the isomorphism problem for related hypergraphs.

An inclusion-maximal clique in a graph G will be called maxclique. The bun-
dle hypergraph B(G) has one node for each maxclique of G, and for each vertex v
of G a hyperedge Bv consisting of all maxcliques that contain v. We call Bv the
(maxclique) bundle of v. Since two vertices are adjacent if and only if they are



56 56

56 56

BEATCS no 107 THE EATCS COLUMNS

48

contained in a common maxclique, G is isomorphic to the intersection graph of
the bundle hypergraph I(B(G)). Hence, (1) implies that

G � H ⇐⇒ B(G) � B(H). (3)

Unlike (2), the equivalence (3) does not yield an efficient reduction in general
(because a graph can have up to 3n/3 maxcliques [62]). However, it does in the
case of interval graphs; see Section 3.1.

We notice that the bundle hypergraphB(G) is the dual of the clique hypergraph
of G. The clique hypergraph C(G) of a graph G has the same vertex set as G and
the maxcliques of G as its hyperedges. The dual of a hypergraphH is the hyper-
graph H∗ = {v∗ : v ∈ V(H)} on vertex set H , where v∗ = {X ∈ H : v ∈ X} con-
sists of all hyperedges in H containing v. Thus, taking the dual of a hypergraph
corresponds to transposing its incidence matrix.

Twins in a hypergraph are two vertices such that every hyperedge contains
either both or none of them. A hyperedge X ∈ H of multiplicity k contributes
k twin vertices in the dual hypergraphH∗. Conversely, if v and u are twins inH ,
then v∗ = u∗, and therefore, any class of k twins in H contributes a hyperedge of
multiplicity k in H∗. Clearly, the duals of isomorphic hypergraphs are again iso-
morphic. Since the two hypergraphsH and (H∗)∗ are isomorphic via the mapping
x 7→ x∗, it follows that the converse implication is also true, implying that

H � K ⇐⇒ H∗ � K ∗. (4)

Other useful hypergraphs that can be associated with a graph G are the open
and closed neighborhood hypergraphs, denoted byN(G) andN[G], respectively.
The open neighborhood of a vertex v in G consists of all vertices adjacent to v and
is denoted by N(v), whereas the vertex set N[v] = N(v) ∪ {v} is called the closed
neighborhood of v. Both hypergraphs N(G) and N[G] have the same vertex set
as G and the open (resp. closed) neighborhoods of these vertices as hyperedges,
i.e., N[G] = {N[v]}v∈V(G) and N(G) = {N(v)}v∈V(G). Note that in contrast to N[G],
which never contains isolated vertices,N(G) inherits all isolated vertices from G.

If N[u] = N[v], we call the vertices u and v twins in the graph G. Note that
u and v are twins in G if and only if they are twins in N[G]. Note also that the
closed neighborhoods of twins are equal and form a hyperedge of multiplicity
greater than one in the hypergraph N[G]. Twins in a graph are always adjacent
and their bundles Bu = Bv coincide, implying that the hyperedge Bu = Bv in B(G)
is also of multiplicity greater than one. Of course,

G � H =⇒ N[G] � N[H]. (5)

The converse implication is not true in general; for an example see Section 4.2.
However, it holds true (and is useful) for proper interval graphs; see Corollary 4.4.



57 57

57 57

The Bulletin of the EATCS

49

The applicability of the relationship N[G] � N[H] vs. G � H (stated in the
language of matrices) for isomorphism testing for particular graph classes was
discovered and exploited by Chen [16, 17, 18].

In more generality we will discuss the conditions under which implication (5)
can be reversed in Section 4.

3 Canonical representations for intersection graphs
We call a hypergraph H an intersection model of a graph G, if G is isomorphic
to the intersection graph I(H). Any isomorphism from G to I(H) is called a rep-
resentation of G by an intersection model. Every graph possesses an intersection
model since, as mentioned above,

G � I(B(G)) (6)

via the isomorphism v 7→ Bv. When we put natural restrictions to intersection
models, we obtain special classes of intersection graphs. Classical examples are
interval graphs (having intervals on a line as their intersection models), circular-
arc graphs (arcs on a circle), circle graphs (chords of a circle), permutation graphs
(segments with endpoints in two opposite parallel lines), and trapezoid graphs
(trapezoids with sides in two opposite parallel lines).

In order to represent interval graphs and circular-arc graphs by intersection
models it is more convenient to use integer intervals and arcs on a discrete cycle.
We refer to these intersection models as interval models and arc models, respec-
tively. It is not hard to see that this convention does not affect the resulting graph
classes.

The canonical representation problem for a class C of intersection graphs is
defined as follows: For a given graph G, either compute a representation ρG of G
by an appropriate intersection model (if G ∈ C) or determine that no such model
exists (if G < C). Moreover, it is required that isomorphic graphs G � H in C re-
ceive identical intersection models ρG(G) = ρH(H). For a specified algorithm, we
call its output ρG on input G ∈ C a canonical representation of G and the resulting
model ρG(G) a canonical model of G. Note that such an algorithm simultaneously
solves both the recognition (even model construction) and the isomorphism (even
canonical labeling) problems for C.

We quickly recall the canonical labeling problem for a graph class C. Given a
graph G ∈ C with n vertices, we have to compute a map λG : V(G)→ {1, . . . , n} so
that the graph λG(G), the image of G under λG on the vertex set {1, . . . , n}, is the
same for isomorphic input graphs. Equivalently, for any graph G ∈ C we have to
compute an isomorphism λG from G to a graph G? so that

G � H =⇒ G? = H?.



58 58

58 58

BEATCS no 107 THE EATCS COLUMNS

50

In fact, the condition V(G?) = {1, . . . , n} requires no special care as the vertices
of G? can be sorted and renamed. We say that λG is a canonical labeling and
λG(G) is a canonical form of G.

Note the similarity between the pairs of notions canonical labeling/canonical
form and canonical representation/canonical model for a class of intersection
graphs. Obviously, the former can be obtained from the latter by taking the in-
tersection graph of the canonical model.

3.1 Interval graphs
In this section we describe the logspace algorithm of [49] that computes a canoni-
cal interval model for any given interval graph G. The algorithm first transforms G
into its bundle hypergraph B(G) over the vertex set consisting of all maxcliques
of G. The maxcliques of G can be found in logspace by applying the following
lemma.

Lemma 3.1 (Laubner [54]). Every maxclique C of an interval graph G contains
vertices u and v such that C = N[u] ∩ N[v].

For adjacent vertices u and v in an arbitrary graph holds: If N[u] ∩ N[v] is a
clique, it is maximal. Lemma 3.1 shows that any maxclique in an interval graph
is of this kind and, hence, can be represented by a pair of vertices u and v (that
are adjacent and satisfy the condition that N[u] ∩ N[v] is a clique). An explicit
representation of the bundle hypergraph B(G) of G can be computed in logspace
by listing, for each bundle Bv, the maxcliques that contain v.

The following lemma shows that the bundle hypergraphB(G) is indeed a good
starting point for constructing an interval model for a given graph G. We call an
interval model I of G minimal if G admits no interval model that has fewer points
than I.

Lemma 3.2 ([49, Lemma 2.3]). Every minimal interval model I of an interval
graph G is isomorphic to the bundle hypergraph B(G).

Lemma 3.2 implies that the minimal interval model of G is unique up to hy-
pergraph isomorphism, and any such model can be obtained from the bundle hy-
pergraph B(G) by renaming its vertices to integers; Fig. 1 shows an example.

Given a hypergraph H , call a linear order < on V(H) interval if every hyper-
edge ofH forms an interval w.r.t. <. IfH admits an interval order, then it is called
an interval hypergraph. Equivalently, an interval hypergraph is a hypergraph iso-
morphic to a system of intervals of integers, which is then called an interval model
of this hypergraph. For an interval order < of H , let r<(v) denote the rank of a
vertex v ∈ V(H) w.r.t. <, and let H< denote the image of H under the map r<.



59 59

59 59

The Bulletin of the EATCS

51

G:

c

b

d

a
e

f

I:

Ib

Ia

Ic Id Ie I f

B(G) {b, c} {a, b, d} {a, e} {a, f }
Ba 0 1 1 1
Bb 1 1 0 0
Bc 1 0 0 0
Bd 0 1 0 0
Be 0 0 1 0
B f 0 0 0 1

Figure 1: An interval graph G, a minimal interval model I of G, and the bundle
hypergraph B(G) of G. The latter is given by its incidence matrix with columns
indexed by vertices (i.e., maxcliques) and rows indexed by hyperedges (i.e., bun-
dles).

Clearly, < is an interval order of H if and only if H< is an interval model of H
on the segment of integers {1, . . . , n}.

A binary matrix has the consecutive-ones property if its columns can be per-
muted so that in each row the ones are consecutive. Viewing the matrix as inci-
dence matrix of a hypergraph shows that testing for the consecutive-ones property
is equivalent to recognizing interval hypergraphs. Dom [26] surveys algorithmic
aspects of the consecutive-ones property.

The following theorem is an immediate consequence of Lemma 3.2 and the
general relation (6).

Theorem 3.3 (cf. [33, Theorems 8.1 and 8.3]). G is an interval graph if and only
if B(G) is an interval hypergraph.

Hence, in order to decide whether G is interval, it suffices to check whether
the bundle hypergraph B(G) is interval.

Moreover, from any interval ordering < of B(G), we an easily construct an
interval representation ρG. For any vertex v ∈ V(G), define ρG(v) = r<(Bv). Since
the mapping v 7→ Bv is a graph isomorphism from G to I(B(G)) and r< is a hy-
pergraph isomorphism from B(G) to the interval system B(G)<, the map ρG is an
isomorphism from G to I(B(G)<). Hence, ρG is indeed an interval representation
of G.

Since the bundle hypergraph B(G) and the map v 7→ Bv are constructible in
logspace due to Lemma 3.1, it follows that ρG is computable in logspace, provided
that an interval ordering <H for a given interval hypergraph H is computable in
logspace. Moreover, this reduction even gives a canonical interval representa-
tion ρG of G, if <H is a canonical ordering of H , meaning that H<H = K<K

whenever H � K are isomorphic interval hypergraphs. Indeed, G � H implies
thatB(G) � B(H) and hence the resulting interval systemsB(G)<B(G) andB(H)<B(H)

are equal.



60 60

60 60

BEATCS no 107 THE EATCS COLUMNS

52

Lemma 3.4. The canonical representation problem for interval graphs is re-
ducible in logspace to the canonical ordering problem for interval hypergraphs.

Computing an interval ordering for interval hypergraphs

In this subsection, we describe an algorithm for computing an interval ordering
for a given interval hypergraphH (or detecting thatH is not interval).

PQ-trees, introduced by Booth and Lueker [14], provide a succinct way to
represent all possible interval orderings of an interval hypergraph H . A PQ-tree
forH is an ordered rooted tree. Its leaves are the vertices ofH and its inner nodes
are classified as either P- or Q-nodes. Clearly, the ordering of the tree induces a
unique linear order on the leaves of the tree. It is possible to change the tree order
of a PQ-tree according to the following rules. The children of a P-node can be
reordered arbitrarily, while the ordering of the children of a Q-node can only be
reversed. A tree order is permissible if it can be obtained from a combination of
such reorderings. A PQ-tree represents the set of all linear orders on its leaves
which are induced by a permissible tree order.

Booth and Lueker [14] showed that a PQ-tree encoding all interval orderings
of a given interval hypergraph can be computed in linear time. Their algorithm
starts with the PQ-tree T for the empty hypergraph (where all leaves are attached
to a single P-node). Then it iteratively incorporates into T the restrictions caused
by each hyperedge. Klein [47] reduced the number of iterations from linear to
logarithmic by incorporating several hyperedges in one step. This results in a
parallel AC2 algorithm. In [49] it was shown that a PQ-tree for a given interval
hypergraph H can even be computed in logspace. The key observation behind
this is that the overlap component tree of H can be viewed as PQ-tree and is
constructible in logspace. This tree comprises of slot nodes, which are interpreted
as P-nodes, and overlap component nodes, which are interpreted as Q-nodes. To
give its precise definition we need some more notation.

We say that two sets A and B overlap and write A G B if A and B have
a nonempty intersection but neither of them includes the other. The overlap
graph O(H) of a hypergraph H is the subgraph of the intersection graph I(H),
where the vertices corresponding to the hyperedges A and B are adjacent if and
only if they overlap. Of course, O(H) can be disconnected even if I(H) is con-
nected. A subset O of the hyperedges of H spanning a connected component
of O(H) will be referred to as an overlap component of H . This is a subhyper-
graph ofH and should not be confused with the corresponding induced subgraph
of O(H). Note that a hyperedge of an overlap component inherits the multiplic-
ity that it has in H . In the case that O(H) is connected, H will be called an
overlap-connected hypergraph.



61 61

61 61

The Bulletin of the EATCS

53

Lemma 3.5 (Chen and Yesha [19]). Let H be an interval hypergraph. If H is
overlap-connected, then it has, up to permutation of twins and reversing, a unique
interval ordering.

Since the resulting interval model does not depend on the ordering of twins
inside a slot, it follows that an overlap-connected interval hypergraph has at most
two different interval models inside the range {1, . . . , n} and that these models are
mirror symmetric to each other.

In fact, such a model can be constructed in logspace as follows. In a pre-
processing step, compute a walk X1, . . . , XN in the overlap graph O(H) that visits
every hyperedge ofH at least once (this can be done in logspace using Reingold’s
universal exploration sequences [66]). Then iterate over the hyperedges Xi in this
walk, computing an interval Ii for each Xi. Once the first interval I1 = [1, |Xi|]
is fixed, the cardinality of X1 ∩ X2 leaves only two possibilities for I2 (resulting
in reflected representations), and once Ii−2 and Ii−1 are fixed, Ii is uniquely deter-
mined; see Fig. 2. As only the two previous intervals have to be remembered, this
computation is possible in logspace. In a post-processing step, verify that the re-
sult is indeed an interval model ofH and shift the model into the range {1, . . . , n}
if necessary.

A slot of H is an inclusion-maximal set S of twins, i.e., the slots are the
equivalence classes of the twin relation.

IfO andO′ are different overlap components, then either every two hyperedges
A ∈ O and A′ ∈ O′ are disjoint or all hyperedges of one of the two components are
contained in a single slot of the other component. (This follows from the simple
observation that the conditions B ⊂ A, B G B′, and ¬(B′ G A) imply B′ ⊂ A.) This
containment relation determines a tree-like decomposition of H into its overlap
components. Specifically, let S be a slot of an overlap component O of H . We
say that an overlap component Q of H is located at slot S of O if V(Q) ⊆ S and
there is no “intermediate” overlap component O′ , O such that V(O′) ⊆ S and
Q is contained in some slot of O′. Furthermore, a vertex v ofH is located at slot S
of O if v ∈ S and there is no overlap component O′ located at slot S of O such that
v ∈ V(O′).

Now we are ready to give a precise definition of the overlap component tree
of an interval hypergraph H . We assume that H is connected: To ensure this,
we add an additional hyperedge B0 = V(H) (this has no influence on the possible
interval orderings ofH).

The nodes of the overlap component tree of H are the overlap components
of H , their slots, and the vertices of H . Since a slot S of O may belong also to
another overlap component, we denote the corresponding slot node by SO. The
children of an overlap component node O are the slots of O. The children of a
slot node SO are the vertices and the overlap components located at the slot S



62 62

62 62

BEATCS no 107 THE EATCS COLUMNS

54

Ii−2

Ii−1

Ii

Figure 2: Proof of Lemma 3.5: Let Xi G Xi−1 G Xi−2. If Ii−1 is already determined,
only two positions for Ii satisfy |Ii| = |Xi| and |Ii−1 ∩ Ii| = |Xi−1 ∩ Xi|. If also Ii−2 is
given, at most one of them additionally satisfies |Ii−2 ∩ Ii| = |Xi−2 ∩ Xi|.

of O. As H is connected, there is an overlap component O0 with V(O0) = V(H).
Thus, O0 is the root of the overlap component tree. An example for an overlap
component tree can be found in Fig. 3.

Suppose thatH is an interval hypergraph. To interpret its overlap component
tree as PQ-tree, treat all slot nodes as P-nodes, and all overlap component nodes
as Q-nodes. By Lemma 3.5, the slots of each overlap component can be ordered
uniquely up to reversing; this defines the order on the children of Q-nodes. It is
easy to verify that every rearrangement of this PQ-tree again induces an interval
ordering ofH . Using the uniqueness given by Lemma 3.5 and a simple inductive
argument on the depth of the overlap component tree, one can show that every
interval representation ofH can be obtained in this way (cf. [42]).

It is not hard to verify that the overlap component tree (and hence a PQ-tree)
for a given interval hypergraph H can be computed in logspace. Thus, we can
compute an interval ordering for H in logspace. In order to compute a canonical
interval ordering forH we have to do some more work.

Of course, isomorphic interval hypergraphs have isomorphic overlap compo-
nent trees (when considered as rooted trees but ignoring the order on the children).
As shown in Fig. 3, the converse is not true, since the overlap component tree does
not contain enough information on the underlying hypergraph. The idea is to re-
flect this missing information by coloring the nodes of the tree in such a way that
the underlying hypergraph can be reconstructed up to isomorphism from the re-
sulting tree. Roughly speaking, we will refine the tree in such a way that only
rearrangements of the corresponding PQ-tree become isomorphic to the refined
tree. Then selecting an interval ordering in a canonical way corresponds to select-
ing an isomorphic copy of the refined tree in a canonical way. For the latter task
we can use Lindell’s tree canonization algorithm.

Computing a canonical ordering for interval hypergraphs

In this subsection, we describe an algorithm for computing canonical orderings for
interval hypergraphs. Together with Lemma 3.4 this gives us a logspace algorithm
for computing a canonical representation for interval graphs.



63 63

63 63

The Bulletin of the EATCS

55

H1:

a b c d e f g h

A
B

C
D E F G H

H2:

a b c d e f g h

A
B

C
D EF G H

A, B,C

a, b

D

a, b

a b

c, d

E

c, d

c d

e, f

F

e

e

G

f

f

g, h

H

g

g

h

Figure 3: An interval hypergraph H1 and its overlap component tree. In the tree,
the node of an overlap component O is given by listing the hyperedges in O; a
slot node SO is given by listing the vertices contained in S (we omit the refer-

ence to O as it is understood from the tree structure). The hypergraph H2 is not
isomorphic toH1; yet both have isomorphic overlap component trees.

Theorem 3.6 ([49, Theorem 4.6]). The canonical ordering problem for interval
hypergraphs can be solved in logspace.

Corollary 3.7. The canonical representation problem for interval graphs is solv-
able in logspace.

As explained above, we reduce the task of computing a canonical interval or-
dering for H to computing a canonical labeling of an associated tree T(H). This
tree has the property thatH � K if and only if T(H) � T(K). To construct T(H)
from the overlap component tree ofH , we first compute canonical interval models
for each overlap component (using the lexicographically smaller of the at most two
that are possible by Lemma 3.5) and assign these models as colors to the overlap
component nodes. For an asymmetric overlap component, the chosen model al-
ready fixes the order of its slots, which can be enforced by assigning ascending
colors to the slot nodes. For a symmetric overlap component with at most two
slots, any ordering of its slots is fine; for one with more than two slots, we employ
a small gadget to ensure that the order of its slots can only be reflected: Between
the overlap component node O and its slots, we introduce three connector nodes
loO, miO and hiO. Fix an arbitrary interval order < of O; it induces an order <∗ on
the slots of O. For each slot S of O, denote its position from the left and right by

lO(S ) = |{S ′ : S ′ is a slot of O with S ′ ≤∗ S }|
rO(S ) = |{S ′ : S ′ is a slot of O with S ′ ≥∗ S }|

A slot node SO becomes a child of loO if lO(S ) < rO(S ), a child of miO if
lO(S ) = rO(S ), and a child of hiO if lO(S ) > rO(S ). (Choosing a different interval



64 64

64 64

BEATCS no 107 THE EATCS COLUMNS

56

H a b c d e f g h
A 1 1 1 1 1 1 0 0
B 1 1 1 0 1 1 0 1
C 0 1 0 0 0 0 0 0
D 0 1 0 0 1 0 0 0
E 0 0 1 0 0 1 0 0
F 0 0 0 1 0 0 1 0
G 0 0 0 0 0 0 1 0

I :

g d a b e f c h
H C

F
A

B
D

G
E

T(H) : F, A, B {[1, 2], [2, 7], [3, 8]}

g 1

H{[1, 1]}

g 1

g

d 2

d

a, b, c, e, f 3

a D,G, E {[1, 2], [2, 3], [3, 4]}

lo

b 1

C{[1, 1]}

b 1

b

e 2

e

mi hi

f 2

f

c 1

c

h 4

h

Figure 4: An interval hypergraphH and its tree representation T(H). Gray areas
in T(H) indicate the color of overlap components and their slots . An overlap
componentO is represented by listing the hyperedges inO (sorted, for the reader’s
convenience, by their corresponding intervals in the canon of O). We omit the
references from slot and connector nodes to their overlap components as they are
understood from the tree structure. The interval system I � H can be derived
from T(H) by reading the vertex nodes from left to right.

ordering for O would only result in exchanging the nodes loO and hiO, yielding
an isomorphic tree.) Fig. 4 shows an example for a tree representation T(H).
As indicated above, this construction ensures that a canonical labeling of T(H)
specifies a canonical rearrangement of the PQ-tree, which in turn determines a
canonical interval order ofH (see [49] for details).

3.2 Proper interval graphs

An intersection modelH is proper if the sets inH are pairwise incomparable by
inclusion. G is called a proper interval graph if it has a proper interval model. In
this section, we describe a logspace algorithm for computing a canonical proper
interval model for a given proper interval graph.

As a consequence of the following theorem, we can reduce the problem of
recognizing proper interval graphs to the problem of recognizing interval hyper-
graphs.

Theorem 3.8 (Roberts [67, 27]). G is a proper interval graph if and only if
N[G] is an interval hypergraph.



65 65

65 65

The Bulletin of the EATCS

57

Theorem 3.8 does not provide us with an appropriate interval model for a
proper interval graph, since N[G] need not even be an intersection model for G.
However, it is possible to convert an interval ordering of N[G] into a proper in-
terval model for G, if G is a proper interval graph. This is done via a tight interval
model for G.

An interval system is tight if the intervals have the following property: when-
ever A = [a−, a+] includes B = [b−, b+], we have a− = b− or a+ = b+. It is
not hard to see that any tight interval model for a graph G can be converted to a
proper interval model for G (cf. Tucker [73]): If several intervals start (resp. end)
at the same point, introduce new points to extend the shorter intervals so that
none is contained in the other anymore. In fact, this transformation is possible
in logspace (see [50] for details). Thus, the following lemma provides us with a
proper interval representation of G.

Lemma 3.9. Given an interval ordering of N[G], a tight interval representation
of G can be constructed in logspace.

Proof. Given an interval ordering < of N[G], for each vertex v of G we let
v− and v+ denote the two endpoints of the interval N[v] = [v−, v+] w.r.t. <. Define
ρ(v) = N+[v] = [v, v+]. The map ρ is an interval representation of G. Indeed, if
u and v are adjacent, either u ∈ N+[v] (if v < u) or v ∈ N+[u] (if u < v) holds. In ei-
ther case N+[u]∩N+[v] , ∅. If u and v are not adjacent, u < N+[v] and v < N+[u],
which implies that the intervals N+[u] and N+[v] are disjoint. See Fig. 5 for an
example.

Next we show that ρ is tight. Suppose that N+[u] ⊆ N+[v]. Since v ∈ N[v+],
we have also u ∈ N[v+]. Therefore, N+[u] = [u, u+] contains v+ and u+ = v+.

Finally, given G and an interval ordering < of N[G], the map ρ can be easily
computed in logspace. �

To obtain a canonical proper interval representation for the class of proper
interval graphs, we can combine any canonical labeling for this class with the
proper interval representation of the resulting canon. To compute a canonical
labeling for proper interval graphs we can for example use the algorithm provided
by Corollary 3.7 (which even works for all interval graphs). Alternatively, since
we anyway have to compute an interval ordering of N[G], we can also make use
of the following lemma.

Lemma 3.10 (cf. [25, Corollary 2.5]). If G is a connected proper interval graph,
then N[G] has, up to reversing and up to permutation of twins, a unique interval
ordering.

This result can also be derived from Lemma 3.5 and the fact that, for a con-
nected proper interval graph G, the hypergraphN[G]\{V(G)} is overlap-connected;
see [49].



66 66

66 66

BEATCS no 107 THE EATCS COLUMNS

58

G:

a

b

c

d

e

f

g

N[G]:
N+[G]:

a b c d e f g
N[a]
N[b]
N[c]

N[d]
N[e]

N[ f ]
N[g]

N+[a]
N+[b]

N+[c]
N+[d]
N+[e]

N+[ f ]
N+[g]

Figure 5: From an interval ordering ofN[G] to a tight interval modelN+[G] of G.

As the interval order of N[G] can be computed in logspace by Theorem 3.6,
Lemma 3.10 implies that we can easily compute canonical labelings for the con-
nected components of a given proper interval graph G and combine them to a
canonical labeling of the whole graph in a straightforward way.

This proves the following theorem.

Theorem 3.11 ([49, Theorem 6.3]). The canonical representation problem for
proper interval graphs can be solved in logspace.

A graph is a unit interval graph if it has an interval model over rationals in
which every interval has unit length. It is well known [67] that the class of proper
interval graphs is equal to the class of unit interval graphs. Corneil et al. [20]
show that unit interval representations of proper interval graphs can be computed
in linear time. Based on their methods, it has been shown in [49] that this task can
also be performed in logspace.

3.3 Circular-arc graphs
Though circular-arc graphs may at first glance appear close relatives of interval
graphs, essential differences between the two classes are well known. For exam-
ple, an interval graph has at most n maxcliques, and we used a succinct represen-
tation for each of them given by Lemma 3.1. For circular-arc graphs this is no
longer possible, because these graphs can have exponentially many maxcliques;
see Fig. 6 for an example. Note also that, unlike interval graphs, currently there
is no characterization of the class of circular-arc graphs in terms of forbidden in-
duced subgraphs; see [55] for an overview of circular-arc graphs and subclasses.
These facts may serve as some excuse for the status of GI for circular-arc graphs
staying open: Recently, Curtis et al. [21] published a counter-example to Hsu’s
algorithm [41], raising the following question.

Problem 3.12. Is the isomorphism problem for circular-arc graphs in P?

Furthermore, proper interval and proper circular-arc graphs also show struc-
tural distinctions. For example, while every proper interval graph is known to be



67 67

67 67

The Bulletin of the EATCS

59

A4:

Figure 6: The complement graph Gm of m disjoint edges is circular-arc and has
2m maxcliques. A4 is a circular-arc model for G4.

representable by an intersection model consisting of unit intervals, the analogous
statement for proper circular-arc graphs is not true. Another difference, very im-
portant in our context, lies in relationship to interval and circular-arc hypergraphs
that we will explain shortly.

A circular ordering of a hypergraphH is a circular successor relation � such
that all hyperedges X ∈ H are consecutive points w.r.t. �. A hypergraph is
circular-arc if it admits a circular ordering.

By Theorem 3.8, G is a proper interval graph if and only ifN[G] is an interval
hypergraph. The circular-arc world is more complex. While N[G] is a circular-
arc hypergraph if G is a proper circular-arc graph, the converse is not always
true. Proper circular-arc graphs are properly contained in the class of those graphs
whose neighborhood hypergraphs are circular-arc. Graphs with this property are
called concave-round by Bang-Jensen, Huang, and Yeo [9] and Tucker graphs by
Chen [16]. The latter name is justified by Tucker’s result [73] saying that all these
graphs are circular-arc (even though not necessarily proper circular-arc). Fig. 7
shows a circular-arc graph that is not concave-round.

In the context of hypergraphs, however, the similarity between circular-arc and
interval hypergraphs can be directly exploited, as first observed by Tucker [73].
For a circular-arc hypergraphH and a vertex v ∈ V(H), define the hypergraph

Hv = {X : v < X ∈ H} ∪ {V(H) \ X : v ∈ X ∈ H} .

This corresponds to complementing all hyperedges that contain v. Tucker ob-
served that Hv is interval if and only if H is circular-arc. The following theorem
is proved by iterating over all v ∈ V(H) and distinguishing non-complemented
and complemented hyperedges inHv with two different colors.

Theorem 3.13 ([50]). The canonical ordering problem for circular-arc hyper-
graphs can be solved in logspace.

In [50] we use the algorithm of Theorem 3.13 as a starting point to design
logspace algorithms for computing canonical proper circular-arc models of proper
circular-arc graphs and canonical circular-arc models of concave-round graphs.



68 68

68 68

BEATCS no 107 THE EATCS COLUMNS

60

G:

f

a

b

c d

e

A: Aa

Ab

Ac
Ad

Ae

A f

N[G] a b c d e f
N[a] 1 1 0 0 1 1
N[b] 1 1 1 0 0 1
N[c] 0 1 1 1 0 1
N[d] 0 0 1 1 1 1
N[e] 1 0 0 1 1 1
N[ f ] 1 1 1 1 1 1

Figure 7: A circular-arc graph G = I(A) that is not concave-round: Its closed
neighborhood hypergraph N[G] is not circular-arc.

4 Realizing Star Systems
The Star System Problem (to be abbreviated as SSP) consists in finding, for a
given hypergraph H , a graph G such that H = N[G]. We call any such graph G
a solution to the SSP on inputH . Note thatH can only have an SSP solution ifH
has an equal number of vertices and hyperedges. The terms star and star system
are synonyms for the closed neighborhood of a vertex and the closed neighbor-
hood hypergraph of a graph, respectively. The problem occurs in the literature
also under the name Closed Neighborhood Realization. The question on the com-
putational complexity of the SSP was posed by Sabidussi and Sós in the mid-70s.
Shortly afterwards, Babai observed that the problem is at least as hard as GI;
see [30] for a historical overview. Subsequently, Lalonde [53] showed that its
decision version is in fact NP-complete.

In the complementary version of the SSP, called co-SSP here and also known
as Open Neighborhood Realization problem in the literature, on inputH we have
to find a graph G with N(G) = H . Recall that the complement G of a graph G
has the same vertex set as G, and two vertices are adjacent in G if and only if they
are not in G. The complementH of a hypergraphH also has the same vertex set
as H , but hyperedges complementing the hyperedges of H , i.e., X ∈ H if and
only if V(H) \ X ∈ H . Now it is easy to verify that

N[G] = N(G) and N(G) = N[G]. (7)

Hence, finding for a given hypergraphH a graph G withN[G] = H is equivalent
to finding forH a graph G′ withN(G′) = H . Thus, the SSP and the co-SSP have
the same complexity.

The following simple observation characterizes open neighborhood hyper-
graphs of bipartite graphs.

Lemma 4.1. Suppose that G is a connected bipartite graph with vertex classes
U and W. Then the open neighborhood hypergraph N(G) is split into two con-



69 69

69 69

The Bulletin of the EATCS

61

nected componentsU andW, on the vertex sets U and W, respectively, such that
U �W∗.

In the notation of the lemma, note that the incidence graphs I(U) and I(W)
become isomorphic after interchanging the colors red and blue in one of them.
Moreover, the uncolored versions of both I(U) and I(W) are isomorphic to G.

4.1 Case study: NP-hardness, GI-completeness, and efficient
solvability

If we restrict the SSP to a particular graph class C, we only seek for a solution G
in the class C. As mentioned above, the restriction of the SSP to C is equivalent
to the co-SSP restricted to the co-class of C (consisting of the complements of all
graphs in C).

Fomin et al. [30] study the restrictions of the SSP to H-free graphs, that is, to
graph classes that are characterized by forbidding a single induced subgraph H.
They show that the SSP restricted to H-free graphs remains NP-hard if H is a path
or a cycle of at least 5 vertices, the claw graph, or any other graph obeying a set
of conditions specified in [30].

Aigner and Triesch [1] showed that the SSP for co-bipartite graphs is equiv-
alent to GI, provided that the bipartition of the vertices is given along with the
input hypergraph H . Boros et al. [15] observed that this remains true, if only H
is given as input.

Theorem 4.2 ([1, 15]). The SSP for co-bipartite graphs is equivalent to GI.

Proof-sketch. We show the equivalent statement that the co-SSP for bipartite
graphs is equivalent to GI. Recall that GI is equivalent with its restriction to con-
nected graphs (because G � H if and only if G � H, and if G is disconnected, then
its complement G must be connected). Consider an even more general problem
of deciding whether two connected hypergraphsH andK are isomorphic. By (4)
and Lemma 4.1,

H � K ⇐⇒ H∗ � K ∗ ⇐⇒ H ∪K ∗ = N(G) for a bipartite graph G,

and hence, the reduction (H ,K) 7→ H ∪ K ∗ shows that the co-SSP for bipartite
graphs is at least as hard as (hyper)graph isomorphism.

In order to show a reduction in the other direction, assume first thatH consists
of two connected componentsU andW. By Lemma 4.1,

H = N(G) for a bipartite graph G ⇐⇒ U �W∗,



70 70

70 70

BEATCS no 107 THE EATCS COLUMNS

62

giving the desired reduction of the co-SSP for bipartite graphs to hypergraph iso-
morphism. Moreover, we can also compute a solution G to the co-SSP instanceH ,
since G is isomorphic to the incidence graph G′ = I(U) � I(W), where the red-
blue coloring is disregarded. In order to compute G, it suffices to establish an
isomorphism π from N(G′) toH and take the image of G′ under π.

In general, H = N(G) for a bipartite G if and only if the components of H
can be arranged into pairs U1,W1, . . . ,Um,Wm such that Ui � W

∗
i . Thus, the

co-SSP for bipartite graphs is no harder than GI.

In several cases the SSP is known to be efficiently solvable. Polynomial-
time algorithms are worked out for H-free graphs with H being a cycle or a
path on at most 4 vertices (Fomin et al. [30]) and for bipartite graphs (Boros et
al. [15]). In [50] we give a logspace solution for the SSP for proper circular-arc
and concave-round graphs. An analysis of the algorithms in [30] for C3- and C4-
free graphs shows that the SSP for these classes is also solvable in logspace, and
the same holds true for the class of bipartite graphs.

C3-free graphs and bipartite graphs. The approach of Fomin et al. [30] to
C3-free graphs is based on the following observation. If G is C3-free, then for any
pair of vertices u and v adjacent in G there are exactly two hyperedges X and Y
in N[G] containing both u and v. Moreover, N[v] ∈ {X,Y} and the assumption
that N[v] = X forces the equality N[u] = Y .

Let us show how to derive from here the logspace solvability of the SSP
for C3-free graphs. Since the composition of logspace computable functions is
logspace computable, we can split the whole algorithm into a few steps, each
doable in logspace. We can assume that the input hypergraphH is connected; oth-
erwise we apply the procedure below to each of its components. We first construct
an auxiliary graph F. The vertices of F are all pairs (v, X) such that v ∈ X ∈ H .
Two vertices (v, X) and (u,Y) are adjacent in F if and only if v , u, X , Y , and
X and Y are the only two hyperedges ofH containing both v and u.

Fix an arbitrary vertex v ofH . For each vertex of the form (v, X) of F, we now
try to construct a vertex-hyperedge assignment AX as follows. Assign X to v. To
each other u we assign an Y such that (u,Y) is reachable from (v, X) along a path
in F. At this step we use the Reingold reachability algorithm [66]. For some u,
the choice of Y may be impossible or ambiguous.

For each successfully constructed one-to-one assignment AX, we then try to
construct a graph GX by connecting each u with all other vertices in the as-
signed hyperedge Y . For each successfully constructed GX, it remains to check
ifN[GX] = H and if GX is C3-free. We will succeed at least once, unless the SSP
onH has no C3-free solution. This completes the description of the algorithm.

Note a useful fact that follows from the above discussion: If a hypergraph H



71 71

71 71

The Bulletin of the EATCS

63

is connected, then for any hyperedge X ∈ H and vertex v ∈ X there is at most
one C3-free graph G such that H = N[G] and X = N[v]. Thus, the SSP on H
has at most minX∈H |X| triangle-free solutions, and all of them can be computed in
logspace. It readily follows that the SSP is solvable in logspace for any logspace
recognizable class consisting of C3-free graphs. In particular, this applies to the
class of bipartite graphs.

C4-free graphs. The algorithm of Fomin et al. [30] for C4-free graphs is im-
plementable in logspace in a straightforward way. It is based on the following
argument.

Suppose that G is C4-free. Given two vertices u and v in G, let X1, . . . , Xt be
all hyperedges in N[G] containing both u and v. If u and v are adjacent, then

2 ≤
∣∣∣⋂t

i=1 Xi

∣∣∣ ≤ t. (8)

This follows from the observation that u and v have exactly t − 2 common neigh-
bors, and every vertex in

⋂t
i=1 Xi ⊆ N[u] ∩ N[v] must be one of them or one of u

and v.
If u and v are not adjacent, then

t = 0 or
∣∣∣⋂t

i=1 Xi

∣∣∣ ≥ t + 2.

Indeed, in this case u and v have exactly t common neighbors. Let t > 0. By the
assumption that G is C4-free, these t vertices form a clique. Therefore,

⋂t
i=1 Xi

contains all of them as well as u and v themselves.
Thus, the graph G can be reconstructed from the hypergraph H = N[G] by

joining two vertices u and v by an edge whenever the condition (8) is true for this
pair. Solving the SSP on an input H , we first construct G by this rule and then
check ifH = N[G] and if G is C4-free. In the case of failure, no solution among
C4-free graphs exists.

Proper interval graphs. As we will discuss in more detail in Section 4.2, the
SSP for proper interval graphs is solvable in logspace because these graphs form
a logspace-recognizable subclass of C4-free graphs. We now outline a different
argument exemplifying our approach from [50] to the SSP for the broader classes
of proper circular-arc and concave-round graphs.

Three important ingredients of our argument already appeared in Section 3.1.
By Theorem 3.8, G is a proper interval graph if and only if N[G] is an inter-
val hypergraph, i.e., this hypergraph admits an interval order of its vertices. By
Lemma 3.10, if G is, moreover, connected, then such an interval order is unique
(up to reversing and up to permutation of twins). The interval order of N[G] can



72 72

72 72

BEATCS no 107 THE EATCS COLUMNS

64

be computed in logspace by Theorem 3.6. We now state another key element of
our analysis. Given a linear order < on a set V , we introduce the linear order <∗ on
the set of all intervals in V by comparing the endpoints of intervals lexicographi-
cally w.r.t. <.

Lemma 4.3 (cf. [50, Lemma 5.8.1]). Suppose that a graph G (and hence N[G])
is twin-free. If < is an interval order for N[G], then

u < v ⇐⇒ N[u] <∗ N[v]. (9)

Putting it together, we come to the following logspace algorithm for the SSP
for proper interval graphs on input hypergraph H . We first consider the case that
H is twin-free.

Compute an interval order < for H . If this fails, no solution among proper
interval graphs exists; otherwise, any solution will be surely a proper interval
graph.

Next, sort the hyperedges of H according to the lexicographic order <∗. The
equivalence (9) allows us to establish the v-to-N[v] correspondence, that is, for
each hyperedge X ∈ H , to find a vertex v such that N[v] = X (assuming that a
solution G to the SSP onH exists).

Finally, we have to check that this correspondence really defines a graph, that
is, whenever two vertices v and v′ receive hyperedges X and X′ as their neighbor-
hoods, we have to check that v ∈ X and that v ∈ X′ if and only if v′ ∈ X. If this is
not true, the SSP on inputH has no solution.

The general case, when H may have twins, reduces to the twin-free case by
considering the quotient-hypergraph H ′ w.r.t. the equivalence relation of being
twins, where the vertices are the twin-classes of H , and a set of twin-classes is
a hyperedge in H ′ if and only if the union of these twin-classes is a hyperedge
inH .

4.2 Uniqueness of a solution

The argument employed in the proof of Theorem 4.2 leads us to the following
observation: If we know that a graph is bipartite, then it is reconstructible from
its open neighborhood hypergraph up to isomorphism. More precisely, if two
graphs G and H are both bipartite, then the equality N(G) = N(H) implies the
isomorphism G � H. (See Fig. 8 below for an example of an hypergraph that
is the open neighborhood hypergraph of a bipartite and of a non-bipartite graph.)
Equivalently, if G and H are both co-bipartite, then

N[G] = N[H] =⇒ G � H. (10)



73 73

73 73

The Bulletin of the EATCS

65

In other words, any instance of the SSP for co-bipartite graphs has at most one
solution up to isomorphism. The argument of Fomin et al. [30] presented above
leads to the same conclusion in the case that both G and H are C4-free. Moreover,
in this case the equality N[G] = N[H] even implies the equality G = H. For
a smaller class of chordal graphs this was observed earlier by Harary and Mc-
Kee [38]. Due to Boros et al. [15], the implication (10) is also known to be true if
both G and H are bipartite.

Chen [16, 18] showed an even stronger fact for any concave-round graph G:

for any graph H, N[G] = N[H] =⇒ G � H. (11)

In other words, each concave-round graph is reconstructible from its closed neigh-
borhood hypergraph up to isomorphism. Earlier such a reconstructibility result
was shown for complements of forests by Aigner and Triesch [1].

Our treatment of the SSP for proper interval graphs reveals a fact that is yet
stronger than (11).

Corollary 4.4. Let G be a proper interval graph. Then, for any graph H,

N[G] = N[H] =⇒ G = H.

In this stronger form, the reconstructibility from the closed neighborhood hy-
pergraph was earlier known only for complete graphs; see Aigner and Triesch [1].

The implication (10) can be rephrased as the equivalence of the isomorphisms
G � H and N[G] � N[H]. This provides the shortest way to testing isomor-
phism of concave-round graphs in logspace, if we do not care of coming up with a
canonical arc model. Given concave-round graphs G and H, it suffices to compute
the canons of N[G] and N[H] by the algorithm of Theorem 3.13 and to check if
they are equal.

Moreover, the implication (10) has important consequences for the SSP. In
general, the logspace solvability of the SSP for a class of graphs C does still not
imply the logspace solvability of the SSP for any subclass C′ of C. However, it
does if C′ is recognizable in logspace and (10) holds true for all G and H in C. This
observation applies to the classes of chordal, interval, and proper interval graphs,
which are subclasses of C4-free graphs. Each of these classes is recognizable in
logspace by Reif [65] in combination with Reingold [66] or by methods of [49].
Therefore, the results of Fomin et al. [30] about C4-free graphs imply that the
SSP for the classes of chordal, interval, and proper interval graphs is solvable in
logspace.

While the case of interval graphs is therewith efficiently solvable, note that the
complexity status of the SSP for circular-arc graphs remains open.

Problem 4.5. Is the SSP for circular-arc graphs solvable by a poly-time algo-
rithm?



74 74

74 74

BEATCS no 107 THE EATCS COLUMNS

66

H :
a

b

c

d

e

f

C6:
a

b

c

d

e

f

C3 + C3:
a

b

c

d

e

f

Figure 8: The open neighborhood hypergraph H of the two non-isomorphic
graphs C6 and C3 + C3.

By Corollary 4.4 and Theorem 3.8, the SSP on a given interval hypergraph
has either none or exactly one solution. In general, the problem can have different
solutions. For example, on a given set of 4 vertices we can draw a cycle C4 in
3 different ways, and all three graphs will have the same closed neighborhood
hypergraph. Moreover, the SSP can even have non-isomorphic solutions. This is
especially easy to see after switching to the co-SSP. Fig. 8 shows an example of
two non-isomorphic graphs with the same open neighborhood hypergraph.

This is an instance of the following general construction in Aigner and Tri-
esch [1]. Given an arbitrary graph G, take two copies of its vertex set, V =

{v1, . . . , vn} and V ′ = {v′1, . . . , v
′
n}, and define two graphs on the 2n vertices. Let

G + G consist of two disjoint copies of G, one on V and the other on V ′. Further-
more, let G ×G be a bipartite graph with vertex classes V and V ′, where vi and v′j
are adjacent if and only if vi and v j are adjacent in G. ThenN(G+G) = N(G×G).

Call a hypergraph H uniquely realizable if there is a unique G such that
H = N[G], that is, the SSP has a unique solution on H . Thus, any realizable
interval hypergraph is uniquely realizable.

The recognition problem of uniquely realizable hypergraphs belongs to the
complexity class US (abbreviated from Unique Solution) introduced by Blass and
Gurevich [11].

Problem 4.6. Is the unique realizability problem US-complete?

A related hardness result is obtained by Aigner and Triesch [1]: Given a con-
nected bipartite graph G, deciding whether or notN(G) = N(H) for some H � G
is NP-complete.

References
[1] M. Aigner and E. Triesch. Reconstructing a graph from its neighborhood lists. Com-

binatorics, Probability & Computing, 2:103–113, 1993.



75 75

75 75

The Bulletin of the EATCS

67

[2] V. Arvind, B. Das, J. Köbler, and S. Kuhnert. The isomorphism problem for k-trees
is complete for logspace. Information and Computation, 217:1–11, 2012.

[3] V. Arvind, B. Das, J. Köbler, and S. Toda. Colored hypergraph isomorphism is fixed
parameter tractable. In Proc. 30th FSTTCS, volume 8 of LIPIcs, pages 327–337,
Dagstuhl, 2010. Leibniz-Zentrum für Informatik.

[4] V. Arvind and J. Torán. Isomorphism testing: Perspective and open problems. Bul-
letin of the EATCS, 86:66–84, 2005.

[5] L. Babai and P. Codenotti. Isomorhism of hypergraphs of low rank in moderately
exponential time. In Proc. of the 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 667–676. IEEE Computer Society, 2008.

[6] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the 15-th
Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[7] L. Babel and S. Olariu. On the isomorphism of graphs with few P4s. In M. Nagl, ed-
itor, Proceedings of the 21st International Workshop on Graph-Theoretic Concepts
in Computer Science, volume 1017 of LNCS, pages 24–36. Springer, 1995.

[8] L. Babel, I. N. Ponomarenko, and G. Tinhofer. The isomorphism problem for di-
rected path graphs and for rooted directed path graphs. J. Algorithms, 21(3):542–
564, 1996.

[9] J. Bang-Jensen, J. Huang, and A. Yeo. Convex-round and concave-round graphs.
SIAM J. Discrete Math., 13(2):179–193, 2000.

[10] S. Benzer. On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences of the United States of America, 45(11):1607–1620, 1995.

[11] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and
Control, 55(1–3):80–88, 1982.

[12] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms, 11(4):631–643, 1990.

[13] K. Booth and C. Colbourn. Problems polynomially equivalent to Graph Isomor-
phism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo, 1979.

[14] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976.

[15] E. Boros, V. Gurvich, and I. E. Zverovich. Neighborhood hypergraphs of bipartite
graphs. Journal of Graph Theory, 58(1):69–95, 2008.

[16] L. Chen. Graph isomorphism and identification matrices: Parallel algorithms. IEEE
Trans. Parallel Distrib. Syst., 7(3):308–319, 1996.

[17] L. Chen. Graph isomorphism and identification matrices: Sequential algorithms. J.
Comput. Syst. Sci., 59(3):450–475, 1999.

[18] L. Chen. A selected tour of the theory of identification matrices. Theor. Comput.
Sci., 240(2):299–318, 2000.



76 76

76 76

BEATCS no 107 THE EATCS COLUMNS

68

[19] L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with
applications. J. Algorithms, 12(3):375–392, 1991.

[20] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear
time recognition of unit interval graphs. Inform. Proc. Lett., 55:99–104, 1995.

[21] A. Curtis, M. Lin, R. McConnell, Y. Nussbaum, F. Soulignac, J. Spinrad, and
J. Szwarcfiter. Isomorphism of graph classes related to the circular-ones property.
E-print, http://arxiv.org/abs/1203.4822v1, 2012.

[22] B. Das, J. Torán, and F. Wagner. Restricted space algorithms for isomorphism on
bounded treewidth graphs. In J.-Y. Marion and T. Schwentick, editors, Proceedings
of the 27th International Symposium on Theoretical Aspects of Computer Science,
volume 5 of LIPIcs, pages 227–238, Dagstuhl, 2010. Leibniz-Zentrum für Infor-
matik.

[23] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar Graph
Isomorphism is in Log-Space. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, pages 203–214. IEEE Computer Society, 2009.

[24] S. Datta, P. Nimbhorkar, T. Thierauf, and F. Wagner. Graph Isomorphism for K3,3-
free and K5-free graphs is in Log-Space. In R. Kannan and K. N. Kumar, editors,
Proceedings of the IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, volume 4 of LIPIcs, pages 145–156,
Dagstuhl, 2009. Leibniz-Zentrum für Informatik.

[25] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403,
1996.

[26] M. Dom. Algorithimic aspects of the consecutive-ones property. Bulletin of the
EATCS, 98:27–59, 2009.

[27] P. Duchet. Classical perfect graphs. An introduction with emphasis on triangulated
and interval graphs. Perfect graphs, Ann. Discrete Math. 21, 67–96 (1984)., 1984.

[28] S. Evdokimov and I. N. Ponomarenko. Isomorphism of coloured graphs with slowly
increasing multiplicity of jordan blocks. Combinatorica, 19(3):321–333, 1999.

[29] I. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the isomor-
phism of graphs of fixed genus (working paper). In Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, pages 236–243, 1980.

[30] F. V. Fomin, J. Kratochvíl, D. Lokshtanov, F. Mancini, and J. A. Telle. On the
complexity of reconstructing H-free graphs from their Star Systems. Journal of
Graph Theory, 68(2):113–124, 2011.

[31] G. Gati. Further annotated bibliography on the isomorphism disease. J. Graph
Theory, 3:95–109, 1979.

[32] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357–369, 1974.



77 77

77 77

The Bulletin of the EATCS

69

[33] M. C. Golumbic. Algorithmic graph theory and perfect graphs. 2nd ed. Amsterdam:
Elsevier, 2004.

[34] M. Grohe. Isomorphism testing for embeddable graphs through definability. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages
63–72, 2000.

[35] M. Grohe. From polynomial time queries to graph structure theory. Commun. ACM,
54(6):104–112, 2011.

[36] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs
with excluded topological subgraphs. In Proceedings of the 44th Annual
ACM Symposium on Theory of Computing, 2012. To appear. Preprint at
http://arxiv.org/abs/1111.1109.

[37] M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a
game. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Proceedings
of the 33rd International Colloquium on Automata, Languages and Programming,
Part I, volume 4051 of LNCS, pages 3–14. Springer, 2006.

[38] F. Harary and T. A. McKee. The square of a chordal graph. Discrete Mathematics,
128(1–3):165–172, 1994.

[39] J. Hopcroft and R. Tarjan. A V2 algorithm for determining isomorphism of planar
graphs. Inf. Process. Lett., 1:32–34, 1971.

[40] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proceedings of the 6th Annual ACM Symposium on
Theory of Computing, pages 172–184, 1974.

[41] W.-L. Hsu. O(m · n) isomorphism algorithms for circular-arc graphs and circle
graphs. In R. Kannan and W. R. Pulleyblank, editors, Proceedings of the 1st In-
teger Programming and Combinatorial Optimization Conference, pages 297–311.
University of Waterloo Press, 1990.

[42] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements. Theo-
retical Computer Science, 296(1):99–116, 3 2003.

[43] B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph
isomorphism. J. Comput. Syst. Sci., 66(3):549–566, 2003.

[44] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwarcfiter. Linear
time recognition of Helly circular-arc models and graphs. Algorithmica, 59(2):215–
239, 2 2011.

[45] K.-I. Kawarabayashi and B. Mohar. Graph and map isomorphism and all polyhedral
embeddings in linear time. In Proc. of the 40th Ann. ACM Symp. on Theory of
Computing, pages 471–480, 2008.

[46] M. Klawe, D. Corneil, and A. Proskurowski. Isomorphism testing in hookup classes.
SIAM J. Algebraic Discrete Methods, 3:260–274, 1982.



78 78

78 78

BEATCS no 107 THE EATCS COLUMNS

70

[47] P. N. Klein. Efficient parallel algorithms for chordal graphs. SIAM J. Comput.,
25(4):797–827, 1996.

[48] J. Köbler. On graph isomorphism for restricted graph classes. In A. Beckmann,
U. Berger, B. Löwe, and J. V. Tucker, editors, Logical Approaches to Computational
Barriers, Proceedings of the 2nd Conference on Computability in Europe, volume
3988 of LNCS, pages 241–256. Springer, 2006.

[49] J. Köbler, S. Kuhnert, B. Laubner, and O. Verbitsky. Interval graphs: Canonical
representations in Logspace. SIAM J. on Computing, 40(5):1292–1315, 2011.

[50] J. Köbler, S. Kuhnert, and O. Verbitsky. Solving the canonical representation
and star system problem for proper circular-arc graphs in logspace. E-print,
http://arxiv.org/abs/1202.4406, 2012.

[51] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Progress in Theoretical Computer Science. Birkhäuser, 1993.

[52] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex
set number. In H. Kaplan, editor, Proc. of the 12th Scandinavian Symposium and
Workshops on Algorithm Theory, volume 6139 of LNCS, pages 81–92. Springer,
2010.

[53] F. Lalonde. Le probleme d’etoiles pour graphes est NP-complet. Discrete Mathe-
matics, 33(3):271–280, 1981.

[54] B. Laubner. Capturing polynomial time on interval graphs. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science, 2010.

[55] M. C. Lin and J. L. Szwarcfiter. Characterizations and recognition of circular-arc
graphs and subclasses: A survey. Discrete Mathematics, 309(18):5618–5635, 2009.

[56] S. Lindell. A logspace algorithm for tree canonization. In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pages 400–404, 1992.

[57] G. Lueker and K. Booth. A linear time algorithm for deciding interval graph iso-
morphism. J. ACM, 26(2):183–195, 1979.

[58] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[59] E. M. Luks. Hypergraph isomorphism and structural equivalence of boolean func-
tions. In J. S. Vitter, L. L. Larmore, and F. T. Leighton, editors, Proc. of the 31st
Ann. ACM Symposium on Theory of Computing, pages 652–658. ACM, 1999.

[60] G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of
the 12th Annual ACM Symposium on Theory of Computing, pages 225–235, 1980.

[61] G. L. Miller and J. H. Reif. Parallel tree contraction. Part 2: Further applications.
SIAM J. Comput., 20(6):1128–1147, 1991.

[62] J. Moon and L. Moser. On cliques in graphs. Isr. J. Math., 3:23–28, 1965.



79 79

79 79

The Bulletin of the EATCS

71

[63] I. Ponomarenko. The isomorphism problem for classes of graphs that are invari-
ant with respect to contraction. In Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov., 174 (Teor. Slozhn. Vychisl. 3), pages 147–177. LOMI, 1988. Translation
from Russian in J. Soviet Math. 55(2):1621–1643 (1991).

[64] R. C. Read and D. G. Corneil. The graph isomorphism disease. J. Graph Theory,
1:339–363, 1977.

[65] J. Reif. Symmetric complementation. J. ACM, 31(2):401–421, 1984.

[66] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[67] F. Roberts. Indifference graphs. Proof Tech. Graph Theory, Proc. 2nd Ann Arbor
Graph Theory Conf. 1968, 139-146 (1969)., 1969.

[68] P. Schweitzer. Isomorphism of (mis)labeled graphs. In Proc. of the 19th Ann. Euro-
pean Symposium on Algorithms, volume 6942 of LNCS, pages 370–381. Springer,
2011.

[69] J. Spinrad. Efficient graph representations. Number 19 in Field Institute Mono-
graphs. AMS, 2003.

[70] S. Toda. Computing automorphism groups of chordal graphs whose simplicial com-
ponents are of small size. IEICE Transactions, 89-D(8):2388–2401, 2006.

[71] J. Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–
1108, 2004.

[72] J. Torán and F. Wagner. The complexity of planar graph isomorphism. Bulletin of
the EATCS, 97:60–82, 2009.

[73] A. Tucker. Matrix characterizations of circular-arc graphs. Pac. J. Math., 39:535–
545, 1971.

[74] R. Uehara. Simple geometrical intersection graphs. In S.-I. Nakano and M. S.
Rahman, editors, Proceedings of the 2nd International Workshop on Algorithms and
Computation, volume 4921 of LNCS, pages 25–33. Springer, 2008.

[75] R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs. Discrete Applied Mathematics,
145(3):479–482, 2005.

[76] K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for
graphs of bounded distance width. Algorithmica, 24(2):105–127, 1999.

[77] V. Zemlyachenko, N. Kornienko, and R. Tyshkevich. Graph isomorphism problem.
J. Sov. Math., 29:1426–1481, 1985.


