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Abstract

In every state of a quantum particle, Wigner’s quasidistribution is the
unique quasidistribution on the phase space with the correct marginal distri-
butions for position, momentum, and all their linear combinations.

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as if

the probabilities would have to go negative . . . Okay, that’s the fundamental
problem. I don’t know the answer to it, . . . if I try my best to make the

equations look as near as possible to what would be imitable by a classical
probabilistic computer, I get into trouble.

— Richard Feynman,
Simulating Physics with Computers, 1982 [7, p. 480]
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1 Introduction

The story of negative probabilities starts with the 1932 article [13] by Eugene
Wigner. In quantum mechanics, probability distributions of the position and mo-
mentum of a particle make physical sense but their joint distribution doesn’t. Yet
Wigner exhibited such a joint distribution. It had some desired properties. How-
ever, some of its values were negative. “But of course,” wrote Wigner, “this must
not hinder the use of it in calculations.”

In 1987, Jacqueline and Pierre Bertrand proposed “a new derivation of
Wigner’s function based on the property of positivity of its integrals along straight
lines in phase space” [1]. In 2014, in this Bulletin [2], we sketched a mathematical
proof of a characterization of Wigner’s quasidistribution as the unique quasidis-
tribution on the phase space R2 that yields the correct marginal distributions not
only for position and momentum but for all their linear combinations. In 2021,
that sketch was developed into a complete proof that the characterization is valid
in “nice” states, namely the states given by smooth functions with compact sup-
port [3].

In this paper, we prove that the characterization is valid in all states, with no
exception. Furthermore, the new proof is simpler, conceptually and technically. In
particular, the uniqueness is derived from a purely measure-theoretic observation
that we prove in §3. The simplicity of the new proof gave us the idea to present
it in this Bulletin. We made an effort to give our readers a comprehensible and
maybe even enjoyable introduction to some foundational issues of science.

Quisani1: What are negative probabilities?

Authors: The axiomatic definition of probabilities readily generalizes to
quasiprobabilities, or signed probabilities, where negative values are allowed [3].
Basically, you drop the requirement that probabilities take values in the real seg-
ment r0, 1s and allow arbitrary real values.

Q: But what is the intuition behind negative probabilities? An urn cannot have
�3 red balls.

A: We don’t know. At this point, we find it more fruitful to think about what
quasiprobabilities are good for.

1A former student of the second author.



Q: You once compared the generalization of probabilities to quasiprobabilities
with the generalization of real numbers to complex ones. Complex numbers be-
came indispensable, e.g., in solving algebraic equations. Are there important the-
oretical problems that have been solved using negative probabilities?

A: We don’t know such problems, but we expect that quasiprobabilities will be
used to solve theoretical problems. They are already used in practice.

Q: Yes, you mentioned quantum tomography in our 2014 conversation [2]. Being
a software engineer, I realize the paramount value of practical applications. But
today I would like you to address basic questions. Some of these basic questions
you seemed to dodge during our 2014 conversation. For example, you spoke
about marginal distributions not only for the position and momentum but also
for all their linear combinations. But what are marginal distributions for linear
combinations? You never defined them properly.

A: Addressing basic questions is fine, and we will define those marginal distribu-
tions. We will try to explain things the best we can.

Q: Do explain. But please take into account that, in the meantime, I was busy with
computer engineering. I didn’t have time to study quantum mechanics or measure
theory.

A: Understood.

2 Preliminaries

2.1 Measures

We recall some basic definitions of measure theory.

A measurable space M is a pair pΩ,Σq where Ω is a nonempty set and Σ a
σ-algebra of subsets of Ω. In other words, Σ is a Boolean algebra closed under
countable unions. Members of Σ are measurable sets of M.

Example: The real line R with the collection of real Borel sets, which is the least
σ-algebra containing every open real interval pa, bq. �
Example: The real plane R2 with the collection of Borel subsets of R2, which is
the least σ-algebra containing every open rectangle pa, bq � pc, dq. �



A measure µ on a nonempty set Ω is a function such that

1. the domain of µ is a σ-algebra of subsets of Ω known as µ-measurable sets,

2. µ assigns a real number or 8 to each µ-measurable set, and

3. µ is countably additive which means that, for all pairwise disjoint measur-
able sets sn, we have

µ
� 8¤

n�1

sn

	
�

8̧

n�1

µpsnq.

Since the union
�

sn is independent of the order of the sets sn, so is the sum°
µpsnq. That implies absolute convergence by a well-known theorem of

Riemann.

If µ does not take value 8, then µ is finite. If µ has no negative values then it is
nonnegative. Every measure we consider in this paper is either finite or nonnega-
tive.

Example: The Lebesgue measure on Euclidean spaces Rk and finite-dimensional
Hilbert spaces Ck, called length in the case of R, called area in the cases of R2

and C, and called volume in the case of R3 and in general. A careful treatment of
the Lebesgue measure, with all the necessary proofs, is somewhat involved [12,
Chapter 11], but the definition itself is simple, and we give a version of it on the
example of the interval p0, 1q in R.

An open set O in p0, 1q is the disjoint union of its maximal intervals; define
the length of O to be the sum of the lengths of its maximal intervals. For any set
s � p0, 1q, the outer measure λ�psq of s is the infimum of the lengths of the open
sets O that cover s. The inner measure λ�psq is defined as 1 � λ�pp0, 1q � sq.

If λ�psq � λ�psq, then s is Lebesgue measurable and the outer (and also the
inner) measure λ�psq is called the Lebesgue measure λpsq.

The Lebesgue measure on R is defined by applying this construction to inter-
vals pi, i � 1q for all integers i and adding the resulting measures if all the pieces
are measurable.

Lemma 1. If µ, ν are finite measures on a measurable space M, then their differ-
ence pµ� νqpsq � µpsq � νpsq is a finite measure on M.



Proof. If measurable sets s1, s2, . . . are pairwise disjoint, then

pµ� νq
¤

n

sn � µ
¤

n

sn � ν
¤

n

sn �
¸

n

µpsnq �
¸

n

νpsnq

�
¸

n

pµpsnq � νpsnqq �
¸

n

pµ� νqpsnq.

The third equality holds because of absolute convergence. �

A function f : Ω1 Ñ Ω2 from a measurable space M1 � pΩ1,Σ1q to a mea-
surable space M2 � pΩ2,Σ2q is measurable for M1,M2 if the f -preimage of every
measurable set in M2 is measurable in M1. If M2 is the real line R or complex line
C endowed with the σ-algebra of Borel sets, then f is a measurable function on
M1. �

2.2 L2pRq, and test functions

If f is a measurable function on a Euclidean space Rk and µ is a nonnegative
measure on Rk, then »

f dµ �
»
Rk

f dµ �
»
Rk

f pxqdµpxq

means the Lebesgue integral of f with respect to measure µ. For real-valued f ,
the integral is defined by approximating f with so-called simple functions, i.e.
functions gpxq taking only finitely many values vi, each on a measurable set si.
The integral

³
gpxqdµpxq is simply

°
i viµpsiq. If the supremum of the integrals of

simple functions gpxq ¤ f pxq for all x coincides with the infimum of the integrals
of simple functions gpxq ¥ f pxq for all x, then their common value is the integral³

f dµ, in which case f is integrable with respect to measure µ. See details in
Chapter 11 of [12].

For C-valued functions f , just integrate the real and imaginary parts sepa-
rately. It is easy to check that every bounded continuous function is integrable
with respect to any finite measure µ.

If s is a measurable subset of Rk, we let χspxq be 1 for x P s and 0 otherwise.
Then

³
s f pxq dµpxq means

³
Rk χspxq f pxq dµpxq.

Proviso. By default, Euclidean spaces Rk come with the Lebesgue measure. �



L2pRq is the Hilbert space of square integrable functions ψ : R Ñ C with the

inner product xψ |ϕy given by the (Lebesgue) integral
»
R

ψ�pxqϕpxq dx.

Two L2pRq functions are considered equivalent if they differ only on a set of
measure zero. Strictly speaking, L2pRq vectors are the equivalence classes. It is
more convenient though to work with individual functions modulo the equivalence
relation.

The forward Fourier transform F sends an L2pRq function ψpxq to

pψpξq � 1?
2π

»
ψpxq e�iξx dx

provided that the integral exists. Similarly, the inverse Fourier transform F �1

sends a function ϕpξq to

qϕpxq � 1?
2π

»
ϕpξqeiξx dξ,

Mathematically x and ξ are real variables. In applications, the dimension of ξ is
the inverse of that of x so that ξx is a pure number. Here and in the rest of the
paper, integrals are by default integrals over R.

The forward and inverse Fourier transforms are defined also for functions of
several variables. In particular, provided the integrals exist, we have

pf pξ, ηq � 1
2π

¼
f px, yq e�ipξx�ηyq dx dy,

qgpx, yq � 1
2π

¼
gpξ, ηqeipξx�ηyq dξ dη.

If µ is a finite measure on R, its Fourier transform pµ is an RÑ C function:

pµpζq � 1?
2π

»
R

e�ixζdµpζq.

Similarly, if ν is a finite measure on R2, its Fourier transform pν is an R2 Ñ C

function: pνpξ, ηq � 1
2π

»
R2

e�ipξx�ηyq dνpx, yq.

An L2pRq function ψpxq is a Schwartz function if it is infinitely differentiable



and if it and its derivatives rapidly approach zero when x Ñ �8 in the sense that,
for all nonnegative integers j, k, we have

lim
xÑ�8

����x j d
kψpxq
dxk

���� � 0.

Schwartz functions are also known as test functions.

The Fourier transform of a test function is a test function. By the Plancherel
theorem [9, Theorem A.19], the Fourier transform F is a unitary operator on the
test functions. But these functions are dense in L2pRq. By continuity, F is (or
rather extends to) a unitary operator on the whole L2pRq.

2.3 Distributions, and exponential operators

Dirac introduced a “function” δpxq which is identically zero for all x � 0 while
δp0q is infinite, so infinite that

³
R
δpxqdx � 1. This makes no sense. δ is not a

function in the usual sense. But it does make sense in the context of integrals of the
form

³
R

f pxqδpxqdx which should be f p0q, at least for well behaved functions f .
Laurent Schwartz suggested viewing Dirac’s δ and similar “generalized functions”
as linear functionals on the space of test functions. Thus, Dirac’s δ-function would
be thought of as the linear functional on test functions f :

f ÞÑ
»

f pxqδpxqdx � f p0q. (1)

If 0 � c P R, then

δpxq � 1
|c| δ

� x
c

	
. (2)

Indeed, if we use the substitution y � x{c and keep integrating from �8 to 8,
then we have »

f pxq 1
|c| δ

� x
c

	
dx �

»
f pcyqδpyqdy � f p0q.

Schwartz developed these ideas into a theory of distributions, i.e. continuous lin-
ear real-valued functionals on the space of test functions (with the suitable topol-
ogy). Since then distributions play a major role in the theory of differential equa-
tions.



Some divergent integrals, e.g.
³

eitxdt, can be seen as distributions in that sense.
In fact, as distributions, »

eitxdt � 2πδpxq. (3)

Indeed, »
dx f pxq

»
eitxdt �

?
2π
»

dt
1?
2π

»
f pxqeitxdx

�
?

2π
» qf ptq dt

� 2π � 1?
2π

» qf ptqe�it0dt � 2π f p0q.

The exponential eA of an operator A on L2pRq is the operator

eA �
8̧

k�0

Ak

k!
� I � A � 1

2
A2 � 1

6
A3 � . . . (4)

provided that series converges.

If pXψqpxq � x � ψpxq, then

peXψqpxq �
8̧

k�0

1
k!
pXkψqpxq � ψ �

8̧

k�0

1
k!

xk � ψ � ex.

If D is the derivative operator d
dx and c a real number, then ecDψpxq � ψpx � cq.

Indeed,

ecDψpxq �
8̧

k�0

pcDqkψpxq
k!

�
8̧

k�0

Dk f pxq
k!

ck

� ψpxq � ψ1pxq
1!

c � ψ2pxq
2!

c2 � ψ3pxq
3!

c3 � . . .

which is the Taylor series of ψpx � cq around point x; think of c as ∆x.

Q: I worry about convergence of the Taylor series.

A: The Taylor series certainly converges on analytic functions, in particular on
Gaussian functions

exp
�
�px � aq2

2b2



.



The linear combinations of Gaussian functions are dense in L2pRq, and there is a
unique continuous extension of ecD to L2, namely the shift f pxq ÞÑ f px � cq.

3 Pushforward measures, and uniqueness theorem

We recall the definition of pushforward measures and then prove a measure-
theoretic uniqueness theorem used in the proof of our main theorem in §9.

Consider measurable spaces M1 � pΩ1,Σ1q and M2 � pΩ2,Σ2q. Let µ be a
measure on M1 and let a function f : Σ1 Ñ Σ2 be measurable for M1,M2.

Definition 2 (§3.6 in [5]). The pushforward of µ along f , a.k.a. the f -pushforward
of µ or the f -image of µ, is the measure

f�µpeq � µ
�

f�1peq�
on M2. �

It is easy to check that ν � f�µ is indeed a measure on M2.

Proposition 3. With notation as above, for every measurable function g : Ω2 Ñ C
on M2, if gp f pxqq is µ-integrable then g is ν-integrable and»

M2

gpyqdνpyq �
»

M1

gp f pxqqdµpxq.

For real-valued f , Proposition 3 is a modification of Theorem 3.6.1 in book
[5] as described in the comments following the proof of theorem in the book. The
generalization to C-valued functions is straightforward.

Recall that, by default, real Euclidean spaces Rk are equipped with the
Lebesgue measure. Accordingly, measurable subsets of Rk are Lebesgue mea-
surable, and integrals are Lebesgue integrals.

Theorem 4 (Uniqueness). Let µ1, µ2 be finite Borel measures on R2. If pax �
byq�µ1 � pax � byq�µ2 for all a, b not both zero, then µ1 � µ2.

Proof. Let a, b range over pairs of reals not both zero. By Lemma 1, µ � µ1 � µ2

is a measure on R2. It suffices to prove that µ is the zero measure R2. Let νab �
pax � byq�µ.



Every νab is the zero measure on R. Indeed, if s is a Borel subset s of R, let
S � tpx, yq : ax � by P su. We have

pax � byq�µpsq � µpS q � µ1pS q � µ2pS q
� pax � byq�µ1psq � pax � byq�µ2psq � 0.

We have.

pνabpζq �
»
R

eiζt dνabptq �
»
R2

eiζpax�byq dµpx, yq

�
»
R2

eipaζx�bζyq dµpx, yq,

where the second equality uses Proposition 3 with gptq � eiζt; the integrand
eiζpax�byq is a bounded continuous function and therefore is integrable with respect
to the (finite) measure µ.

Comparing this with the Fourier transform of µ,

pµpξ, ηq � »
R2

eipξx�ηyq dµpx, yq,

we get pµpaζ, bζq � pνabpζq.
Since every νab is the zero measure, every pνabpζq � 0 for all ζ. It follows that pµ is
the function zero.

By Proposition 3.8.6 in book [5], if two Borel measures on R2 have equal
Fourier transforms, then they coincide. Applying this to µ and the zero measure,
we conclude that µ is the zero measure. �

The theorem generalizes to higher dimensions, but we restrict our attention to
R2.

4 Marginal distributions

Traditionally, for a (signed) probability distribution of several variables, the
marginal (signed) distributions are defined only for single variables or subsets



of the variables. We extend this definition to linear functions of the variables,
restricting attention to just two variables.

Let P be a quasiprobability distribution on real plane R2 with coordinate axes
x and y, and let pa, bq range over pairs of real numbers not both zero.

Definition 5. The pax � byq marginal of P is the pushforward measure (and in
fact quasidistribution) pax�byq�P of P along the function z � ax�bp : R2 Ñ R.
�

In particular, pxq�Ppsq � P
�

s � R�, and pyq�Ppsq � P
�
R� s

�
, so that pxq�P

and pyq�P are traditional marginals.

Now suppose that P is given by a density function f px, yq, so that Ppsq �´
s f px, yq dx dy for all measurable subsets s of R2. We show that in this case

every marginal pax � byq�P is given by a density function which will be denoted
pax � byq� f .

Lemma 6. For every pair pa, bq, the function

gpzq �

$''&''%
1
|b|
»

f
�

x,
1
b
pz � axq



dx if b � 0

1
|a|
»

f
� z

a
, y
	

dy otherwise

is the density function pax � byq� f .

Proof. We consider the case b � 0; the other case is similar (and a bit simpler). It
suffices to prove that pax� byq�Pru, vs �

³v
u gpzq dz on intervals ru, vs with u ¤ v.

We have
pax � byq�Pru, vs �

¼
u¤ax�by¤v

f px, yq dx dy.

Let z � ax � by, so that y � 1
bpz � axq. Change variables in the integral, from

x, y to x, z. The absolute value of the Jacobian determinant of this transformation
is 1

|b| , so we obtain

pax � byq�Pru, vs �
¼

u¤z¤v

1
|b| f

�
x,

1
b
pz � axq



dx dz

�
» v

u
dz
»
R

1
|b| f

�
x,

1
b
pz � axq



dx �

» v

u
gpzq dz. �



Lemma 7. pax � byq�Ppu, vq � pacx � bcyq�Ppcu, cvq for every real c � 0 and
every open interval pu, vq of R.

Proof.

pax � byq�Ppu, vq � P tpx, yq : u   ax � by   vu
� P tpx, yq : cu   acx � bcy   cvu
� pacx � cbyq�Ppcu, cvq. �

Lemma 8 (Lemma 6.4 in [3]). For all real a, b not both zero and every function
g : RÑ R, the following claims are equivalent.

1. g is the density function pax � bpq� f .

2. pgpζq � ?
2π � pf paζ, bζq where pf and pg are (forward) Fourier transforms of

f and g respectively.

The computation that proves the lemma was essentially done in our proof of
the uniqueness theorem above.

5 Position, momentum, and their linear combina-
tions

Consider one particle moving in one dimension. A generalization to more parti-
cles in more dimensions is relatively straightforward.

In classical mechanics, the position x and momentum p of the particle deter-
mine its current state. The set of all possible classical states is the phase space of
the particle. In quantum mechanics, the state space of the particle is the Hilbert
space L2pRq.

Using Dirac’s bra-ket notation, we write |ψy for the vector given by function
ψ. Unit vectors |ψy represent states of the particle, and two unit vectors represent
the same state if and only if they differ by a scalar factor eiθ.

Q: How come a whole R Ñ C function is needed to represent just one quantum
state?



A: Because, in quantum mechanics, a particle is also a wave. If it is in state |ψy,
then |ψpxq|2 is the probability density at x for finding the particle. xψ |ψy is the
total probability. Accordingly, xψ |ψy must be 1, and this is why unit vectors are
used to represent states.

In quantum mechanics, observable quantities are represented by Hermitian op-
erators on the state space. In particular, the position observable X and momentum
observable P are (represented by) operators

pXψqpxq � x � ψpxq,
pPψqpxq � �i~

dψ
dx

where ~ � h{2π is the reduced Planck constant; h is the (unreduced) Planck
constant. We will simplify notation by assuming (by proper choice of units) that
~ � 1.

Q: Functions Xψ and Pψ may fail to be square integrable.

A: Indeed, the operators X, P are undefined in some states.

Q: The formula for P looks mysterious to me. Is momentum also related to the
wave character of our particle?

A: Yes, it is. The momentum p corresponds to the wavelength λ � h{p (de
Broglie relation). So, if a particle had an exact value p of the momentum, its wave
function would be (up to a scalar factor)

ψpxq � e2πix{λ � eipx{~ � eipx,

which is an eigenfunction of P with eigenvalue p. (Yes, this ψ isn’t in our Hilbert
space. We’ll return to this point in §6.) P is designed to be the operator whose
eigenvalues are momenta, just as X is the operator whose eigenvalues (correspond-
ing to “eigenfunctions” δpx � qq) are positions q.

There is a simple mathematical connection between the two operators:
F PF �1 � X where F is the Fourier transform. It suffices to verify this equality



on test functions.

F Ppψqpξq �
»

Pψpxqe�iξxdx �
»
�i

dψpxq
dx

e�iξxdx

� i
»
ψpxqde�iξx

dx
dx � ξ

»
ψpxqe�iξxdx �

� ξ � F pψqpξq � XF pψqpξq.

The third equality uses integration by parts; the extra terms disappear because
e�iξx is bounded and the test function ψ approaches zero when the argument goes
to �8.

Q: The equality F PF �1 � X makes me worry about the dimensions. You men-
tioned earlier that, when x is a length, as here, then the variable ξ of the Fourier
transform is a reciprocal length. But here the variable of the Fourier transform
seems to be a momentum. How do you reconcile these dimensions?

A: By convention, we’re using units where ~ � 1, and the dimension of ~ is
momentum times length, so our convention makes reciprocal length the same as
momentum. Thus, our P is dimensionally correct.

6 Dirac’s kets

The spectral theory of self-adjoint operators in finite dimensional Hilbert spaces
is relatively simple. Suppose thatH is n-dimensional, and consider a self-adjoint
operator A on H . Since H is self-adjoint, all its eigenvalues are real. There
exists an orthonormal basis |1y, . . . , |ny forH composed of eigenvectors of A. Let
λ1, . . . , λn be the corresponding eigenvalues.

For simplicity of exposition, we assume that all eigenvalues λk are distinct (and
thus non-degenerate since the number of them equals the dimension of H). This
suffices for our purposes in this paper, and it allows us to label the eigenvectors
with the corresponding eigenvalues. We may write |λky instead of |ky.

It will be convenient, in the infinite dimensional case, to use an alternative
characterization of the “distinct eigenvalues” assumption. The operator A is called
cyclic if there is a vector |ψy inH such that the vectors

|ψy, A|ψy, A2|ψy, . . . , An�1|ψy



span the whole spaceH ; such vector |ψy is A-cyclic.

Claim 9. A is cyclic if and only if the eigenvalues λ1, . . . , λn are all distinct.

Proof. If the values are distinct, then
°n

k�1 |ky is A-cyclic. If, on the other hand,
λi � λ j, then for any vector |ψy � °

ck|ky, all linear combinations of vectors
Al|ψy have coefficients of |iy and | jy in the same ratio ci : c j. Thus these linear
combinations fail to spanH . �

Think of H as the state space of a quantum system where unit vectors repre-
sent states of the system (and two unit vectors represent the same state if and only
if they are collinear). Then every state |ψy can be written as

|ψy �
¸

j

|λ jy xλ j |ψy (5)

where scalars xλ j |ψy are probability amplitudes of the wave function |ψy, so that
the corresponding probabilities are |xλ j |ψy|2. Accordingly,

A|ψy �
¸

j

A|λ jy xλ j |ψy �
¸

j

λ j|λ jy xλ j |ψy

and the expectation of A in a state |ψy is

xψ|A|ψy �
¸

j

λ jxψ | λ jy xλ j |ψy �
¸

j

λ j |xλ j |ψy|2 .

The infinite dimensional case is much more involved. Let A be a self-adjoint
operator on a infinite-dimensional space H . If you measure A, you still receive
some real number but it is not necessarily an eigenvalue. It is just an element of
the spectrum

σpAq � tλ : operator A � λI is not invertibleu

of A. Notice that the set of eigenvalues is

tλ : operator A � λI is not one-to-oneu .

In finite dimensions, any one-to-one linear operator is invertible, but this principle
fails in infinite dimensions.



As in the finite dimensional case, we make the simplifying assumption that
the spectrum is simple in the sense that A is cyclic. That is, there is a vector |ψy,
called an A-cyclic vector, such that the vectors

|ψy, A|ψy, A2|ψy, . . .

are dense in whole Hilbert spaceH .

How to generalize the spectral theory of self-adjoint operators in the finite
dimensional case to the infinite dimensional case? Paul Dirac came up with an
elegant heuristic generalization [6] which works for operators like aX � bP on
L2pRq. We sketch Dirac’s generalization, restricting attention to the Hilbert space
L2pRq and to cyclic self-adjoint operators A on L2pRq with σpAq � R.

For each spectrum value r P R, there is a generalized eigenvector, in short
eigenket, |ry for A, so that A|ry � r|ry. As in the finite dimensional case, we take
advantage of the cyclicity assumption to label eigenkets |ry by the corresponding
spectrum value r.

Q: What do you mean by eigenvector being generalized?

A: That it does not necessarily belong to L2pRq.

Q: That is confusing. Give me an example.

A: If A is the momentum operator P, then |ry is the function x ÞÑ eirx{?2π.
Indeed,

P
�

eirx

?
2π



� �i

d
dx

eirx � r
�

eirx

?
2π



.

The finite-dimensional orthonormality requirement is replaced by δ-normality:

xs | ry � δpr � sq.

In the case of P, using (3) we have»
e�isx

?
2π

� eirx

?
2π

dx � 1
2π

»
eipr�sqxdx � δpr � sq.

The finite-dimensional expansion (5) with respect to the eigenvectors becomes



the Dirac basis expansion:

|ψy �
»
|ry xr |ψy dr

where xr |ψy is the density of probability amplitude, so that the corresponding
probability density is

DAprq � |xr |ψy|2 . (6)

The probability distribution on R, given by the probability density function DAprq,
will be denoted PA.

We have A|ψy � ³
A|ry xr |ψy dr � ³

r|ry xr |ψy dr, and the expectation of A
in state |ψy is

xψ|A|ψy �
»

r |xr |ψy|2 dr. (7)

In the case A � P, the density of probability amplitude is

xr |ψy � 1?
2π
xeirx |ψpxqy � 1?

2π

»
e�irxψpxq dx � pψprq,

the probability density is
DPprq �

��pψprq��2 , (8)

and PP is the corresponding probability distribution.

Q: Is there mathematical justification of Dirac’s heuristic generalization?

A: The theory of rigged Hilbert spaces, see [4] for example, mathematically jus-
tifies the use of generalized eigenvectors2. The operators A are subject to some
constraints which are satisfied by the operators X, P and their linear combinations.
See §3 in [10] in this connection.

Q: It this “rigged” as in rigged elections? What witty guy came up with this term?

A: This is a translation of a Russian term3 meaning equipped or rigged as in
“rigging a ship for sailing.”

Q: Will you tell me more about rigged Hilbert spaces?

A: Rigged Hilbert spaces deserve a separate column article, but the basic idea

2An alternative justification is provided by the spectral theory of operators [9].
3îñíàùåííûé; see [8].



is that a Hilbert space H is augmented with two additional spaces to obtain a
so-called Gelfand triple.

In our case, the triple is

Φ � L2pRq � Φ�

where Φ comprises test functions and Φ� comprises distributions. Recall that we
touched upon distributions in§2.3.

Q: What kind of distributions are the eigenkets |ry � eirx of P?

A: An antilinear functional

x f | ry � 1?
2π

»
f �pxqeirxdx

on test functions f [11].

Q: I am confused. Earlier, in §2.3, you said that distributions are linear, not anti-
linear, functionals.

A: Yes, the elements of Φ� are antilinear functionals serving as generalized kets
while distributions are linear functionals serving as generalized bras. In our case,
it is safe to ignore the distinction and call both of them distributions.

Q: Explain.

A: To see what goes on, consider the finite dimensional case. View elements of Cn

as column vectors, so the inner product xϕ |ψy is given by the matrix product ϕ: �ψ.
Thus ψ acts antilinearly on ϕ whereas ϕ acts linearly on ψ, but both are column
vectors in the same space Cn. The same entities serve as linear and antilinear
functionals.

From this point of view, an eigenket of an operator A : Cn Ñ Cn for the
eigenvalue λ is a column vector ψ such that A � ψ � λψ. An eigenbra is a column
vector ϕ such that ϕ: �A � λϕ:; equivalently, A: �ϕ � λ�ϕ. When A is self-adjoint
and its eigenvalues λ are therefore real, the eigenbras and eigenkets coincide.

The situation is similar in infinite dimensions, and the operators whose eigen-
kets and eigenbras we use are (essentially) self-adjoint. Thus we can safely use
the same entities as eigenkets and eigenbras.



7 Linear combinations of position and momentum
operators

In this section, we apply Dirac’s machinery to linear combinations aX�bP of the
operators X and P where a, b are real numbers not both zero.

One can argue that, from physical considerations, the spectrum of every aX �
bP is R. This is supported by theory. Every operator aX � bP is self-adjoint4.
The spectrum of every self-adjoint operator consists of reals [9, Theorem 9.17].
Hence, for every aX� bP, the spectrum σpaX� bPq � R. Furthermore, for every
aX � bP, we will provide an eigenket |ry of aX � bP for every real r, so that
σpaX � bPq � R.

Lemma 10. Let Z � aX � bP where a, b are real numbers not both zero, let
0 � c P R, and let pu, vq be an interval in R. Then, in every state |ψy,

PrZ P pu, vqs � PrcZ P tcr : u   r   vus �
#

PrcZ P pcu, cvqs if c ¡ 0,

PrcZ P pcv, cuqs if c   0.

Q: This seems obvious. The two events are the same and so have the same prob-
ability.

A: Z is an observable, and the probabilities are determined by the rules of quantum
mechanics.

Q: But we can view Z also as a random variable by repeatedly measuring it in a
given state. It is gratifying that both views give the same result, isn’t it?

A: Agreed.

Proof. We consider the case c ¡ 0; the case c   0 is similar.

As we saw in the previous section, there is a δ-normal system x f pr, xq : r P Ry
where f pr, xq is an eigenket of Z for spectrum value r. Then

A
1?

c f p r
c , xq : r P R

E
is a δ-normal system for cZ. Indeed,

pcZq
�

1?
c

f
�r

c
, x
�
 � ?

c Z f
�r

c
, x
� � ?

c
r
c

f
�r

c
, x
� � r � 1?

c
f
�r

c
, x
�
,

4More exactly, aX � bP is essentially self-adjoint [9, Proposition 9.40], and every essentially
self-adjoint operator has a unique self-adjoint extension [9, Proposition 9.11].



and, using the δ-normality of x f pr, xq : r P Ry and using (2), we haveA 1?
c

f
� s

c
, x
� ��� 1?

c
f
�r

c
, x
�E � 1

c
δ
� s

c
� r

c

	
� δpr � sq.

By (6), in a state |ψy, the probability density functions for Z and cZ are

|x f pr, xq |ψpxqy|2 and |x f pr{c, xq |ψpxqy|2

Using the substitution r � cs, we have

PrcZ P pcu, cvqs �
» cv

cu
dr
����»
R

dx
1?

c
f �pr

c
, xqψpxq

����2
�
» v

u
ds
����»
R

dx f �ps, xqψpxq
����2 � PrZ P pu, vqs. �

For every real r, the eigenket |ry of X for spectrum value r is the delta function
δpx � rq, which acts on test functions according to

f pxq ÞÑ x f | ry �
»

f �pxqδpx � rq dx � f �prq.

X|ry is the distribution that sends a test function f pxq to»
f �pxqxδpx � rq dx �

»
f �px � rqpx � rqδpxq dx

� r f �prq � rx f | ry.

Thus, X|ry � r|ry. In particular, σpXq � R. Furthermore, these eigenkets form a
δ-normal system:

xs | ry �
»
δpx � sqδpx � rq dx � δpr � sq.

The density of probability amplitude is xr |ψy � ³
δpx � rqψ dx � ψprq, the

probability density function is

DXprq � |ψprq|2 . (9)

and PX is the corresponding probability distribution.



Next we consider a case Z � �cX�P. It is still a special case, but the general
case Z � aX� bP easily reduces to that special case; we return to this issue in the
next section.

The mapping defined by U|ψy � eicx2{2|ψy is a unitary operator on the test
functions:

xUψ |Uϕy � xψ|U:U|ϕy � xψ |ϕy.
We have UPU�1 � Z on test functions [3, §6]. Indeed,

�
UPU�1

�
ψ � eicx2{2 �

�
�i

d
dx

�
e�icx2{2ψ

�
 � �cxψ� i
dψ
dx

� �cXψ� Pψ � Zψ.

Accordingly, one may expect that U transforms generalized eigenvectors of P into
those of Z. This intuition happens to be correct.

For each real r, the distribution eirx�icx2{2 is a generalized eigenvector of Z for
r:

Zeirx�icx2{2 � p�cX � Pqeirx�icx2{2 � �cxeirx�icx2{2 � i
d
dx

eirx�icx2{2

� eirx�icx2{2�� cx � ipir � icxq� � reirx�icx2{2.

It follows that the spectrum of Z is R.

For each real r, let |ry be the eigenket 1?
2π

eirx�icx2{2 of Z for generalized eigen-
value r. These eigenkets form a δ-normal system:»

e�isx�icx2{2
?

2π
� eirx�icx2{2

?
2π

dx � 1
2π

»
eipr�sqxdx � δpr � sq.

Accordingly, the density of probability amplitude is

xr |ψy � 1?
2π
xeirx�icx2{2 |ψpxqy � 1?

2π

»
e�irx�icx2{2ψpxq dx,

the probability density is

DZprq � 1
2π

���xeirx�icx2{2 |ψpxqy
���2 , (10)

and the corresponding probability distribution is PZ.



8 Wigner’s quasiprobability distribution

In every L2pRq state |ψy, Wigner’s quasiprobability PW is given by probability
density function

wpx, pq � 1
2π

»
R

ψ�px � γ~

2
qψpx � γ~

2
qeiγp dγ. (11)

The integral converges in every L2pRq state |ψy. According to Wigner, the x-
marginal and p-marginal of his distribution are the probability distributions for X
and P respectively [13].

Q: You don’t take advantage of using units where ~ � 1. I guess it doesn’t hurt to
keep ~ in this case.

A: Exactly.

Q: Is this obvious that the x-marginal and p-marginal of Wigner’s distribution are
the probability distributions for X and P ?

A: It is certainly easier to verify than the claim that an arbitrary pax�byq-marginal
of Wigner’s distribution is the probability distribution for aX � bY .

Lemma 11. In every state |ψy, pxq�PW � PX.

Proof. It suffices to prove that, in every state |ψy, the x-marginal x�w of Wigner’s
density is the density function |ψ|2. Since two density function coincide if they
are proportional, we may neglect constant factors.

By Lemma 6, up to constant factors, the x�w density function is

x�w �
»

wpx, pqdp � by Lemma 6» �»
ψ�px � γ~

2
qψpx � γ~

2
q eiγp dγ

�
dp �» �»

eiγpdp
�
ψ�px � γ~

2
qψpx � γ~

2
q dγ � by (3)»

δpγqψ�px � γ~

2
qψpx � γ~

2
q dγ � by (1)

ψ�pxqψpxq � |ψ|2 �



Lemma 12. wpx, pq �
» pψpp � γ

2
q� pψpp � γ

2
q e�iγx dγ

up to a constant factor.

Proof. Ignoring constant factors and using the formula

ψpxq �
» pψpξq eiξx dξ

for the inverse Fourier transform, we get

wpx, pq �
»
ψpx � γ

2
q� ψpx � γ

2
q eiγp dγ

�
½ pψpξq� e�iξpx� γ

2 q pψpηq eiηpx� γ
2 q eiγp dξ dη dγ

�
¼ �

e�iγp ξ2� η
2�pqdγ

� pψpξq� pψpηq e�ixpξ�ηq dξ dη

�
¼ pψpξq� pψpηq e�ixpξ�ηq δpξ

2
� η

2
� pq dξ dη.

The δ function makes it easy to perform the integration with respect to η. Just
substitute 2p � ξ for η in the remaining factors.

wpx, pq �
» pψpξq� pψp2p � ξq e�ixp2ξ�2pq dξ.

Change variables in the integral to γ � 2ξ � 2p, so ξ becomes p � γ

2 .

wpx, pq �
» pψpp � γ

2
q� pψpp � γ

2
q e�iγx dγ. �

Corollary 13. The ppq-marginal of Wigner’s distribution is the probability distri-
bution PP for P.

The proof is similar to that of Lemma 11, except the formula of Lemma 12 is
used.

The generalization to arbitrary pax � bpq-marginals will be proved in §9. A
key role in that proof is played by the following lemma.

Lemma 14 (Lemma 6.6 in [3]). For all test functions ψ and real numbers α, β,



not both zero,

xψ|e�ipαX�βPq|ψy � eiαβ~{2
»
ψ�pyqe�iαyψpy � β~q dy.

Actually, Lemma 6.6 in [3] speaks about states |ψy that are “nice” in the sense
that the function ψ is smooth and compactly supported. But the lemma and its
proof obviously remain valid for test functions ψ.

9 Characterization theorem

Theorem 15. In every state |ψy in L2pRq, Wigner’s quasidistribution PW is the
unique quasidistribution on R2 such that, for all real numbers a, b not both zero,
the marginal pax� bpq�PW is correct in the sense that it coincides with the prob-
ability distribution PZ of the observable Z � aX � bP.

Proof. The uniqueness follows from Theorem 4.

We need to prove the equality pax � bpq�PW � PZ for every pair of reals a, b
not both zero and in every state |ψy. By virtue of Lemmas 7 and 10, we restrict
attention to two cases:

1. a � 1 and b � 0, so that Z � X,

2. b � 1, so that Z � aX � P.

Case (1) is taken care of by Lemma 11. In the rest of the proof we consider
case (2). Even though b � 1, we sometimes write aX � bP and ax � bp anyway.

Fix an arbitrary real number a. We prove that, in every state,

pax � bpq�PW � pax � pq�PW � PZ. (12)

In every state |ψy, the quasidistribution PW is given by the probability density
function wpx, pq specified by formula (11). By Lemma 6, the marginal quasidis-



tribution pax � pq�PW is given by quasiprobability density function

gprq �
»

wpx, r � axq dx

� 1
2π

¼
ψ�px � γ~

2
qψpx � γ~

2
q eiγpr�axq dγ dx.

The probability distribution PZ is given by the probability density function DZ of
Z specified in (10). To prove (12), it suffices to prove

gprq � DZprq. (13)

Both sides of (13) are continuous as functions of the state in the L2pRq metric.
By continuity, it suffices to prove that the equality (13) holds in every “nice” state
|ψy provided that the nice states are dense in L2pRq.

Theorem 6.2 in [3] does just that. In that theorem, a state |ψy is nice if ψ is
smooth and compactly supported. While Theorem 6.2 addresses both, the unique-
ness and the correctness aspects, the emphasis in its proof is on uniqueness, and
the correctness proof may be a bit confusing. We explain it here. Notice that
two density functions coincide if they are proportional. Accordingly, we ignore
constant factors in equations below.

Since (ignoring the factor 1{2π)

wpx, pq �
»
ψ�px � γ~

2
qψpx � γ~

2
q eiγp dγ,

its Fourier transform is

pwpα, βq �½
dx dp dγ ψ�px � γ~

2
qψpx � γ~

2
q eiγp e�iαx e�iβp.

Here p occurs only in two of the exponential factors, so the integration over p
produces »

dp eipγ�βqp � δpγ � βq.

The delta function now makes the integral over γ trivial; just substitute β for γ in
the integrand. Thus,

pwpα, βq � »
dxψ�px � β~

2
qψpx � β~

2
q e�iαx.



Introducing a new integration variable y � x � β~

2 , we get

pwpα, βq � »
dyψ�pyqψpy � β~q e�iαy eiαβ~{2.

By Lemma 14, pwpα, βq � xψ|e�ipαX�βPq|ψy.
In particular, if Z is defined as aX � bP and if we substitute aζ and bζ for α and
β, we get pwpaζ, bζq � xψ|e�iζZ|ψy.
By Lemma 8, xψ|e�iζZ|ψy is the Fourier transform of the marginal gpzq � pax �
bpq�wpx, pq. But this same xψ|e�iζZ|ψy is also, up to a constant factor, the Fourier
transform of the density function DZ of Z in the state ψ. Indeed, by (4),

e�iζZ �
¸

k

1
k!
p�iζZqk,

and we restrict attention to test functions ψ, so that convergence is no problem.
We have

xψ|e�iζZ|ψy �
A
ψ
��� ¸

k

1
k!
p�iζZqk

���ψE �
¸

k

p�iζqk

k!
xψ|Zk|ψy

Now we use Dirac’s machinery. Let |ry be the eigenket 1?
2π

eirx�icx2{2 of Z for
spectrum value r. We have Z2|ry � Zpr|ryq � r2|ry and similarly for other powers
of Z. By the preceding computation, (7), and (10), we have

xψ|e�iζZ|ψy �
¸

k

p�iζqk

k!

»
rk|xr |ψy|2 dr �

» ¸
k

p�iζqk

k!
rk|xr |ψy|2 dr

�
»

e�iζr|xr |ψy|2 dr �
»

e�iζrDZprq dr,

as required. �
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