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In this issue of the distributed computing column, Michel Raynal and Gadi Tauben-
feld revisit a classical question: what can we accomplish in shared memory sys-
tems that are anonymous and symmetric? The article is a nice introductory pre-
sentation of symmetry and anonymity. It differentiates symmetry and anonymity
in the context of processors, and looks at both process and memory anonymity.
The article uses two fundamental problems to illustrate: mutual exclusion and
consensus. In each case, it illustrates what can be accomplished, giving a good
illustration of both what is feasible and the limitations in symmetric and anony-
mous systems. This new distributed computing column is a great way to start the
new year, looking back at a classic problem!
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1 Introduction
More than forty years ago, Dana Angluin asked the following question at one of
the first symposia on the theory of computing (STOC 1980) [2]:

“How much does each processor in a network of processors need
to know about its own identity, the identities of other processors, and
the underlying connection network in order for the network to be able
to carry out useful functions?"

If addressing computability issues was mainly perceived as a theoretical ques-
tion in 1980, due to the fantastic boom in the development of concurrent and
distributed systems (whether the communication is through shared memory or
message-passing), today this question is becoming more and more important. In
such a context, this technical article visits three important anonymity-related no-
tions. The first two concern restrictions on the identities of the processes (namely,
symmetry and anonymity). The third one is relatively new: it concerns the notion
of an anonymous shared memory [32].

2 Process Symmetry
The notion of symmetry is pervasive in many domains, from philosophy and arts
(mainly architecture and painting) to scientific areas such as physics, chemistry,
and mathematics [12]. In informatics, a form of process symmetry (related to
fairness) was introduced by Edsger W. Dijkstra in his famous one-page article that
presented the mutual exclusion problem and a solution to it [10]. More precisely,
when he defined the problem, Dijkstra wrote, “The solution must be symmetrical



between the n computers; as a result we are not allowed to introduce a static
priority.” More than twenty years later (1989), the notion of process symmetry
was explicitly defined and investigated by Eugene Styer and Gary L. Peterson in
an article presented at the ACM conference on principles of distributed computing
(PODC) [30].

Definition Let us consider a system of processes, each with its own unique iden-
tity. In such a context, an algorithm is symmetric if the only way to distinguish
processes is by comparing their identifiers (names). This means that the set of
the process identifiers defines a specific data type such that the identifiers can be
written, read, and compared, but there is no way to “look inside” an identifier,
which means that other operations cannot manipulate process identifiers. Thus,
identifiers cannot be used to index the entries of a shared array.

Two types of symmetric algorithms can be defined according to how much in-
formation can be derived from comparing two identifiers [30, 31]. The family of
symmetric algorithms with arbitrary comparisons allows the three operations =,
>, and < to be applied on process identifiers. Thus, symmetry with arbitrary com-
parisons allows to totally order the processes according to their identifiers. The
family of symmetric algorithms with only equality is more restrictive. It allows
only the operation = to be applied to process identifiers (in this case, there is no
notion of order on process identifiers).

Process symmetry is important for several reasons. One is related to the fact
that, while the size of the possible process name-space can be huge (e.g., 232), the
number of processes n is usually relatively much smaller (e.g., n = 100). Such
a very large name-space does not allow process identifiers to be used as an index
to access shared registers. There are two ways to address this issue. One consists
in using a process renaming algorithm which allows the size of the name-space
to be reduced to n in failure-free systems (this requires an algorithm that needs
2dlog ne + 1 atomic read/write registers [30]), and to 2n − 1 in asynchronous sys-
tems where processes may crash (see [4, 9]). Another option consists in designing
symmetric algorithms. It is important to observe that symmetry with equality
means “egalitarian” because a process cannot use its identifier to obtain specific
rights. In this sense, process symmetry with equality is the “last” step before pro-
cess anonymity.

The RW communication model This model is the most basic communication
model, namely the only way for processes to communicate is by reading and writ-
ing atomic shared registers [16, 19, 27, 31] (the shared registers are the cells of a
distributed Turing machine which allows processes to cooperate). A register that



can be written and read by any process is a multi-writer multi-reader (MWMR)
register. If a register can be written by a single (predefined) process and read by
all, it is a single-writer multi-reader (SWMR) register.

As already indicated, due to the definition of process symmetry, process iden-
tifiers cannot be used as pointers to index shared registers. Consequently, process
symmetry requires that the shared read/write registers be MWMR registers.

Illustration: Symmetric deadlock-free mutex in RW systems To illustrate
process symmetry, let us consider Algorithm 1. This algorithm, due to Styer and
Peterson [30], is a process symmetry with equality mutual exclusion algorithm
for n processes, where communication is through MWMR atomic registers (RW
communication model).

operation acquire() is % invoked by process p
(1) repeat
(2) wait(TURN = ⊥); TURN ← p;
(3) repeat
(4) for each k ∈ {1, ..., n − 1} do
(5) if (LOCK[k] = ⊥) then LOCK[k]← p end if end for;
(6) lockedp ← ∧1≤k≤n−1(LOCK[k] = p)
(7) until TURN , p ∨ lockedp end repeat;
(8) if (TURN = p)
(9) then return()
(10) else for each k ∈ {1, ..., n − 1} do
(11) if (LOCK[k] = p) then LOCK[k]← ⊥ end if end for
(12) end if
(13) end repeat.

operation release() is % invoked by process p
(14) TURN ← ⊥;
(15) for each k ∈ {1, ..., n − 1} do
(16) if (LOCK[k] = p) then LOCK[k]← ⊥ end if end for;
(17) return().

Algorithm 1: Symmetric with equality mutex in RW systems [30]

The processes have distinct identities p, q, etc., which can be compared only
for equality; ⊥ is a default process identity (different from the processes’ identi-
ties). The processes communicate through atomic read/write registers. TURN is
an atomic MWMR register initialized to ⊥. Then, it may contain the identity of a



process competing for the critical section. LOCK[1..n − 1] is an array of atomic
MWMR registers, initialized to ⊥. The entries of LOCK can be seen as locks
that a process needs to capture (by writing its identity in each of them) to enter
the critical section. Finally, each process p has a local variable denoted lockedp,
whose initial value is irrelevant.

To enter the critical section, process p invokes acquire(), which consists of a
repeat loop (lines 1-13) that p will exit when it executes the return() statement
(line 9). Process p first waits until TURN = ⊥; when this occurs, it writes its
identity in TURN (line 2). Then, it enters an internal repeat loop (lines 3-7). Inside
this loop, process p strives to deposit its identity in as many free locks as possible
(lines 4-5). When this is done, process p computes if –from its asynchronous
and local point of view– it has captured all the locks (assignment to lockedp at
line 6). If TURN , p or lockedp = true, process p exits the internal loop. If
TURN = p (in this case TURN has not been modified since p wrote its identity
in it), p enters the critical section (lines 8-9). In the other case, before re-entering
the main repeat loop, p resets to their initial values all the locks it has previously
acquired (lines 10-11).

To exit the critical section, process p invokes the operation release(), which
resets to their initial values the shared register TURN and all the locks containing
its identity (lines 14-16).

It is easy to see that this algorithm uses exactly n atomic read/write registers
and is memoryless (a new invocation of acquire() by a process does not use infor-
mation on its previous invocations). Moreover, the size of each shared register is
bounded by log(n + 1). Proofs of this algorithm can be found in [30, 31].

Remark It is interesting to notice that, while mutual exclusion cannot be solved
in the RW communication model when the processes have no identifiers (i.e., are
anonymous), it can be solved with process symmetry, which, as already men-
tioned, is the last step before process anonymity.

3 Process Anonymity
Definition For privacy reasons, some applications must hide the identities of the
processes involved. On another side, some applications (e.g., sensor networks)
are made up of tiny computing entities with no identifier. This defines the process
anonymous computing model, which is characterized by the fact that there is no
way for a computing entity (process) to be distinguished from another computing
entity. In such a model, not only do the processes have no identities, but they have
the same code and the same initialization of their local variables (otherwise, some
processes could be distinguished from the others). As for process symmetry, the



Symmetric with equality mutual exclusion on top of shared read/write
registers was addressed and solved for the first time in 1989 [30]. This
article proves the following lower bounds results and presents associ-
ated optimal algorithms.

• n shared read/write registers are necessary and sufficient for
deadlock-free symmetric mutual exclusion for n processes.

• (2n − 1) shared read/write registers are necessary and suffi-
cient for memoryless starvation-free symmetric mutual exclusion.
“Starvation-free” that that any process that tries to enter the criti-
cal section eventually enters it. “Memoryless” means that a pro-
cess that tries to enter the critical section does not use any infor-
mation about its previous attempts to enter the critical section.

A symmetric with equality leader election algorithm, in which all the
processes are required to participate, was also presented in [30]. This
algorithm requires three shared read/write registers, which was conjec-
tured to be necessary. It has recently been shown that a single shared
read/write register is sufficient [14].

Sidebar 1: Symmetric mutual exclusion and election in RW systems

notion of SWMR is meaningless for process anonymity: any process may apply
any operation to any register.

Process-anonymous failure-free shared memory systems have been studied
in [5] where (assuming each process knows the number of processes n) a char-
acterization is presented of problems solvable despite process-anonymity. Re-
lations between the broadcast communication abstraction and reliable process-
anonymous shared memory systems have been studied in [3]. Anonymous failure-
prone shared-memory systems have been studied in [15], where an answer is pre-
sented to the question “What can be deterministically implemented in the process-
anonymous crash-prone model?” (deterministically means here that randomized
algorithms cannot be used).

Illustration: Obstruction-free binary consensus in asynchronous RW systems
To illustrate process-anonymity, let us consider the binary consensus problem in
an asynchronous read/write system in which any number of processes may crash.
Consensus is one of the most important problems of fault-tolerant distributed com-
puting. Similar to mutual exclusion which is at the core of centralized systems,
consensus is at the core of many crash-prone distributed computing problems [24].



Process-anonymous systems have been studied since 1980 in the con-
text of message-passing systems in [2], where several impossibility re-
sults are established (e.g., the impossibility to deterministically elect a
leader). Characterizations of problems that can be solved in reliable
asynchronous message-passing systems despite process anonymity, can
be found in [6, 34]. Failure detectors suited to crash-prone asyn-
chronous process-anonymous systems have been introduced and inves-
tigated in [7, 8].

Sidebar 2: Process anonymity in message-passing systems

In this problem, each process proposes a value (operation propose()), and must
decide on a value. Binary means that only the values 0 and 1 can be proposed.
The operation propose() returns the value decided by the invoking process. The
following properties define consensus:

• Validity: If a process decides on a value, this value was proposed by a
process.

• Agreement: no two processes decide on different values.
• Termination (Wait-freedom): The invocation of propose() by a process that

does not crash terminates.

One of the most important results of distributed computing is the impossibility
to design a deterministic consensus algorithm satisfying the wait-freedom live-
ness property [16, 20] in the presence of asynchrony and process crashes (be the
communication medium message-passing [11], or RW registers [20]). This im-
possibility result, established in the context of non-anonymous processes, extends
trivially to process-anonymous systems. One way to circumvent this impossibil-
ity result is to weaken the termination property as follows (this property, called
obstruction-freedom, was introduced in [17]).

• Termination (Obstruction-freedom): If process p invokes propose() and all
other processes that have pending propose() operations pause during a long
enough period, then p terminates its operation.

The notion of “long enough” captures the fact that process p is the only process
that continues its execution until it returns from its invocation of propose().

Algorithm 2 described below is due to Rachid Guerraoui and Eric Ruppert [15].
It is a process-anonymous binary consensus in which the processes communicate
through MWMR registers, namely a two-dimensional array SM[0..1, 1..] whose
second dimension is unbounded. Each register SM[x, y] is initialized to the de-
fault value down, and it can then take the value up. SM[x, y] can be seen as a flag



raised forever by a process when some condition is satisfied. Process p locally
manages a current estimate of the decision value estp ∈ {0, 1}, the opposite value
denoted oppositep, and an iteration number kp.

operation propose(v) is % invoked by process p
(1) estp ← v; kp ← 0;
(2) repeat
(3) kp ← kp + 1; oppositep ← 1 − estp;
(4) if (SM[oppositep, kp] = down)
(5) then SM[estp, kp]← up;
(6) if (kp > 1) ∧ (SM[oppositep, kp − 1] = down) then return(estp) end if
(7) else estp ← oppositep

(8) end if
(9) end repeat.

Algorithm 2: Obstruction-free binary consensus in RW systems [15]

This algorithm can be seen as running a competition between two teams of
processes, the team of the processes that champion 0, and the team of the pro-
cesses that champion 1. Process p first progresses to its next iteration (line 3).
Iteration numbers k can be seen as defining a sequence of rounds executed asyn-
chronously by the processes. Hence, the state of the flags SM[0, k] and SM[1, k]
(which are up or down) describes the state of the competition at round k. When
process p enters round k, there are two cases.

• If the flag associated with this round s (kp) and the other value (oppositep)
is up (i.e., the predicate of line 4 is not satisfied), p changes its mind passing
from the group of processes that champion estp to the group of processes
that champion oppositep (line 7). It then proceeds to the next round.

• If the flag associated with this round and the other value is down (the pred-
icate of line 4 is then satisfied), maybe estp can be decided. To this end,
p indicates first that estp is competing to be the decided value by raising
the round kp flag SM[estp, kp] (line 5). The decision involves the two last
rounds, namely (kp − 1) and kp, attained by p (hence, the sub-predicate kp >
1 at line 6). If p sees both the flags measuring the progress of oppositep

equal to down at round (kp − 1) and round kp (predicate SM[oppositep, kp]
at line 4, and predicate SM[oppositep, kp − 1] at line 6), oppositep is de-
feated, and p consequently decides estp.

To show this is correct, let us consider the smallest round k during which
a process decides. Moreover, let pi be a process that decides during this
round, v the value it decides, and τ the time at which p reads SM[1− v, kp −



1] before deciding (line 6 of round k). As p decides, at time τ we have
SM[1 − v, kp − 1] = down. This means that, before time τ, no process
changed its mind from v to 1 − v at line 6. The rest of the proof consists in
showing that no process p j started round k before time τ with est j = 1 − v.
A proof of this algorithm ensures the consensus is given in [15].

4 Memory Anonymity
Definition Control (processes) and data (memory) are the two pillars of com-
puting. So, while anonymity can be applied to processes, what is the meaning of
“memory anonymity”? It means that different processes can have different names
for the same register. Let the shared memory be made up of m ≥ 1 atomic registers
AM[1..m]. While in a non-anonymous memory AM[x] denotes the same register
for all the processes, in an anonymous memory AM[x] can denote some register
for process p and a different register for another process q. So, there is an ad-
dressing disagreement on the names used by the processes to access the registers.
More precisely, an anonymous memory AM[1..m] is such that:

• For each process p an adversary defined a permutation fp() over the set
{1, 2, · · · ,m}, such that when p uses the address AM[x], it actually accesses
AM[ fp(x)],

• No process knows the permutations, and
• All the registers are initialized to the same default value denoted ⊥.

The notion of anonymous shared memory has been recently introduced in [32].
The work in [32] was inspired by Michael O. Rabin’s paper on solving the choice
coordination problem [23].

An example of anonymous memory is presented in Table 1. To make apparent
the fact that AM[x] can have a different meaning for different processes, we write
AMp[x] when process p invokes AM[x].

identifiers for an identifiers identifiers
external observer for process p for process q

AM[1] AMp[2] AMq[3]
AM[2] AMp[3] AMq[1]
AM[3] AMp[1] AMq[2]

permutation fp() : [2, 3, 1] fq() : [3, 1, 2]

Table 1: An illustration of an anonymous memory model



Motivating anonymous shared memory Anonymous shared memory have two
main motivations. The first is related to the basics of computing, namely, com-
putability and complexity lower/upper bounds. Increasing our knowledge of what
can (or cannot) be done in the context of both anonymous processes and anony-
mous memories, and providing associated necessary and sufficient conditions,
helps us determine the weakest system assumptions under which the fundamental
election problem can be solved.

The second motivation is application-oriented. In [25, 26], it is shown how the
process of genome-wide epigenetic modifications, which allows cells to utilize
the DNA, can be modeled as an anonymous shared memory system where, in
addition to the shared memory, also the processes (that is, proteins modifiers)
are anonymous. Epigenetic refers in part to post-translational modifications of
the histone proteins on which the DNA is wrapped. Such modifications play an
important role in the regulation of gene expression.

The authors model histone modifiers (which are a specific type of proteins) as
two different types of writer processors and two different types of eraser proces-
sors that communicate by accessing an anonymous shared memory array which
corresponds to a stretch of DNA, and for such a setting formally define the epige-
netic consensus problem.

Thus, anonymous shared memories are useful in biologically inspired dis-
tributed systems [21, 22], and mastering fundamental distributed computing prob-
lems in such an adversarial context could reveal to be important from an appli-
cation point of view. The similarities and differences between distributed com-
putations in biological and computational (shared-memory and message-passing)
systems are explored in [21, 22].

The RMW communication model In addition to the basic RW communica-
tion model used previously, we also consider a second communication model de-
noted RMW (Read-Modify-Write). This model is the RW communication model
enriched with the operation Compare&Swap(), which is an atomic conditional
write. More precisely, when process p invokes Compare&Swap(AMp[x], old, new),
where old and new are two values, it atomically assigns the value new to AMp[x]
and returns true if AMp[x] = old. Otherwise, AMp[x] is not modified, and the
value false is returned.

Necessary and sufficient conditions for mutual exclusion and election in sym-
metric processes and anonymous memory systems Considering a failure-free
system where processes are not anonymous, but the memory is anonymous, the
following necessary and sufficient conditions relate the number n of processes
and the size m of the anonymous memory to solve two classical problems that are



mutual exclusion and election. These conditions capture the minimal information
about the pair 〈n,m〉 needed to break the symmetry that allows these problems to
be solved despite memory anonymity. Let M(n) be the set of the positive integers
which are relatively prime with the integers 2, . . . , n, i.e., M(n) = {m : ∀ ` ∈
{2, ..., n} : gcd(`,m) = 1}, and let M′(n) = M(n) \ {1}.

• Mutual exclusion can be solved by a symmetric algorithm in a system made
up of n (non-anonymous) processes communicating through an anonymous
memory of size m accessed by RMW (resp. RW) operations if and only if
m ∈ M(n) (resp. m ∈ M′(n)), m ∈ M(n) (resp. m ∈ M′(n)). The upper
bound was established in [1] and the lower bound in [32].

• Leader election can be solved by a symmetric algorithm, in which all the
processes are required to participate, in the systems that consist of of n (non-
anonymous) processes communicating through an anonymous memory of
size m accessed by RMW or RW operations if and only if gcd(m, n) = 1
[14].

Let us observe that while the RMW operations allow mutual exclusion to be
solved in more cases than the RW operations alone, this is no longer true for leader
election. Let us also observe that while the conditions m ∈ M(n) and m ∈ M′(n)
are at the heart of their proofs, they do not appear explicitly in the algorithms.

Illustration: Symmetric processes anonymous memory deadlock-free mutex
in RMW systems Algorithm 3 (from [1]) is a symmetric with equality anony-
mous memory deadlock-free mutual exclusion algorithm. It is based on RMW
communication operations and assumes m ∈ M′(n). The registers of the memory
are initialized to ⊥, and p denotes the identifier of the process that invokes the
acquire() or release() operation. Let a register be free if it contains ⊥. We say
that a register AMp[x] is owned by process p if AMp[x] = p.

When it invokes acquire(), process p enters a repeat loop in which it first
tries to own as many registers as possible by writing its identity in as many free
registers as possible (line 2). Then p a reads all the registers (line 3) and computes
how many registers –from its local and asynchronous point of view– contains
the identity that appears the most frequently (most_presentp, line 4) and how
many registers it owns (ownedp, line 5). If ownedp < most_presentp, process
p momentarily withdraws from the competition, resetting to ⊥ the registers it
owns (line 7), until it sees all registers equal to ⊥ (lines 8-10). If ownedp ≥

most_presentp, continues competing until it owns a majority of registers (line 12).
When this occurs, p enters the critical section. When it invokes release() process
p resets all the registers it owns to their initial value (line 13. A proof of this
algorithm can be found in [1].



operation acquire() is
(1) repeat
(2) for each x ∈ {1, ...,m} do Compare&Swap(AMp[x],⊥, p) end for;
(3) for each x ∈ {1, ...,m} do viewp[x]← AMp[x] end for;
(4) most_presentp ←

maximum number of times the same non-⊥ value appears in viewp;
(5) ownedp ← (|{x ∈ {1, . . . ,m} : viewp[x] = p}|);
(6) if ownedp < most_presentp then
(7) for each x ∈ {1, ...,m} do

if (viewp[x] = p) then AMp[x]← ⊥ end if end for;
(8) repeat
(9) for each x ∈ {1, ...,m} do viewp[x]← AMp[x] end for
(10) until ∀ x ∈ {1, . . . ,m} : viewp[x] = ⊥ end repeat
(11) end if
(12) until ownedp > m/2 end repeat.

operation release() is
(13) for each x ∈ {1, ...,m} do Compare&Swap(AMp[x], p,⊥) end for.

Algorithm 3: Symmetric mem.-anony. deadlock-free mutex in RMW systems [1]

It is interesting to note that it is not known whether a symmetric memory-
anonymous starvation-free mutual exclusion exists. This constitutes a challenging
research problem.
Illustration: Symmetric processes memory-anonymous consensus As far as
consensus is concerned, a process symmetry with equality obstruction-free con-
sensus algorithm for n ≥ 1 and m ≥ 2n − 1 anonymous RW registers is presented
in [32].
Illustration: Symmetric processes memory-anonymous election A symmet-
ric algorithm electing a leader in a system where the processes communicate
through RW registers is described in [14]. As shown in [13], such an algorithm can
be used to de-anonymize an anonymous memory. This election algorithm requires
that all the processes participate in the algorithm. It assumes that gcd(m, n) = 1,
which is shown to be necessary and sufficient for the election of a single leader. If
up to d leaders can be elected the condition becomes gcd(m, n) ≤ d (the number
of elected leaders is then ` such that 1 ≤ ` ≤ d).



5 Full Anonymity
The ultimate question is now: Are there problems that can be solved when both
the processes and the memory are anonymous?

An illustration: Consensus in the RW model As shown in [28], it appears that
it is possible to solve obstruction-free consensus in a fully anonymous crash-prone
system made up of n = 2 processes and m ≥ 3 anonymous registers, as shown by
Algorithm 4.

The anonymous memory is made up of m ≥ 3 MWMR atomic registers
AM[1..m]. Each anonymous process p manages a local array viewp[1..m] which
will contain a local copy of the anonymous memory, a local variable kk that is an
index to address the entries of viewp[1..m], and a local estimate of the decision
value estp.

operation propose(v) is % invoked by anonymous process p
(1) estp ← v;
(2) repeat
(3) for each kp ∈ {1, ...,m} do viewp[kp]← AMp[kp] end for;
(4) if (∃ w appearing in a majority of entries of viewp[1..m])

then estp ← w end if;
(5) kp ← arbitrary index j such that viewp[kp] , estp if any, otherwise 0;
(6) if (kp , 0) then AMp[kp]← estp end if;
(7) until viewp[1] = viewp[2] = · · · = viewp[m] = estp) end repeat;
(8) return(estp).

Algorithm 4: Fully anony. obst.-free consensus for 2-process RW systems [28]

When process p invokes propose(v), it first deposits v in estp (line 1), and
enters a repeat loop in which it first scans the anonymous registers (line 3). If
it sees a majority value w, it adopts w as its new estimate of the decision value
(line 4), and writes it in an anonymous register that storing a different value from
w (line 5-6). The process p repeats the previous statements until, after scanning
the anonymous memory, all its registers contain the same estimate value, which is
then decided. A proof of this algorithm is given in [28].

While obstruction-free consensus can be solved for two processes despite full
anonymity, crashes and asynchrony, neither an algorithm nor a necessary and suf-
ficient condition are known for the case n > 2. This constitutes a challenging
research problem.

It is interesting to note that, while it is possible to solve binary consensus
for two processes in a fully anonymous crash-prone system using only 3-valued



registers, this is not possible to do so using only 2-valued registers (i.e., bits). It
was recently proved in [33] that there is no obstruction-free consensus algorithm
for two non-anonymous processes using only anonymous bits. Thus, as shown
in [33], it follows that anonymous bits are strictly weaker than anonymous (and
hence also non-anonymous) multi-valued registers.

Illustration: Consensus in the RMW model As consensus with the wait-
freedom liveness property cannot be solved in a non-anonymous RW system [11,
20], it cannot be solved either in an anonymous asynchronous crash-prone RW
system. This impossibility no longer holds in a crash-prone fully anonymous
system where the processes communicate with RMW operations, as shown by
Algorithm 5 [28].

operation propose(v) is % invoked by process p
(1) for each k ∈ {1, 2, ...,m} do Compare&Swap(AMp[k],⊥, v) end for;
(2) max← max(AMp[1], ...AMp[m]);
(3) return(max).

Algorithm 5: Fully anony. obst.-free consensus in RMW systems [28]

This very simple algorithm assumes that the proposed values can be totally
ordered and works for any value of n and m. All the registers of the anonymous
memory AM[1..m] are initialized to ⊥. The algorithm is based on a “first write,
then read” access pattern. Each process p strives to write the value v it proposes
in any order in all the registers. Then it returns the greatest value it reads from the
anonymous memory (max is a local variable).

Assuming at least one process does not crash, there is a finite time after which
(whatever the concurrency/failures pattern), each anonymous register contains a
non-⊥ value. Moreover, a greater value cannot erase a smaller value already writ-
ten in a register. This guarantees that a single value can be decided.

Mutex and election in a fully anonymous system Recent results concern mu-
tex and election in fully anonymous system. On the negative side, none of these
problems can solved in systems where the anonymous processes communicate
through RW registers. Differently they can be solved when communication is
through RMW registers The reader will consult [29] for mutex and [18] for elec-
tion. (In the election problem where processes are anonymous it is required that
when a processes terminates the algorithm it knows if it or not a leader.).



6 Conclusion
The purpose of this article was to be a simple introductory presentation of the no-
tions of process symmetry, process anonymity, and memory anonymity in asyn-
chronous systems where communication is through shared memory. To this end,
two fundamental (and practically relevant) problems encountered in concurrent
and distributed systems have been considered [24]: mutual exclusion in failure-
free systems and consensus in crash-prone systems. The following tables sum-
marize what can be done in this context. They also clearly express the additional
computability power provided by the RMW communication model with respect
to the RW communication model.

Mutual exclusion communication nec. & suf. condition reference
process symmetry (with eq.) RW n > 1, m ≥ n [30]

memory anonymity RW n > 1, m ∈ M′(n) [1] UB, [32] LB
memory anonymity RMW n > 1, m ∈ M(n) [1]

full anonymity RW impossible [29]
full anonymity RMW n > 1, m ∈ M(n) [29]

Table 2: Deadlock-free mutual exclusion (asynchronous failure-free systems)

Table 2 concerns mutual exclusion (LB and UB stand for lower bound and
upper bound, respectively). Table 3 concerns consensus. Let us remember that n
is the number of processes, m is the size of the memory, M(n) = {m : ∀ ` ∈
{2, ..., n} : gcd(`,m) = 1}, and M′(n) = M(n) \ {1}. Also, in the tables, when
we write “memory anonymity”, we mean that the memory is anonymous and the
processes are symmetric.

Consensus comm. progress property sufficient condition reference
process anonymity RW obstruction-freedom n > 1, m = ∞ [15]
memory anonymity RW obstruction-freedom n > 1, m ≥ 2n − 1 [32]

full anonymity RW obstruction-freedom n = 2, m ≥ 3 [28]
full anonymity RMW wait-freedom n > 1, m ≥ 1 [28]

Table 3: Consensus (asynchronous crash-prone systems)
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