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Abstract

One of the central open questions in computational complexity theory is to connect
worst-case hardness of NP to average-case hardness of NP. This question is well known as
whether Heuristica is excluded from Impagliazzo’s five worlds. It is known that standard
proof techniques that relate worst-case and average-case complexities are incapable of
excluding Heuristica; thus, in order to make progress, we need to develop new proof
techniques.

Recently, new worst-case to average-case connections that cannot be proved by previous
proof techniques are established based on meta-complexity. Meta-complexity refers to the
computational complexity of problems that themselves ask complexity. In this article, we
present the emerging paradigm of “meta-computational average-case complexity,” i.e., a
new approach of analyzing average-case complexity via meta-complexity of time-bounded
Kolmogorov complexity.

1 Introduction
Traditionally, the complexity of a computational problem is measured in terms of worst-case
complexity; that is, the performance of an algorithm is measured with respect to the worst
input. However, it is often criticized that the worst-case complexity measure is too pessimistic:
the worst input might not be encountered in practice; thus, worst-case complexity may not
be relevant to “real-life” complexity. Moreover, some NP-complete problems, such as the
Hamiltonian path problem, can be solved efficiently with high probability when the input is
chosen randomly from natural distributions [GS87].

A better approach to measuring “real-life” complexity would be to use average-case complex-
ity. It is natural to assume that a real-life instance is generated by some efficiently computable
procedure. This motivates us to study the complexity of DistNP, i.e., the average complexity of
NP over instances generated by some randomized polynomial-time algorithms.

The theory of average-case complexity has two primary motivations. As mentioned above,
one is to understand the practical performance of algorithms. The other is that average-case
hardness of NP is the foundation for the security of cryptosystems: the existence of an average-
case hard problem in NP is necessary for most cryptographic primitives to be secure [IL89].
The relationship among P , NP, average-case hardness of NP, and cryptography was clearly
presented in the influential work of Impagliazzo [Imp95]. We review Impagliazzo’s five worlds
in Section 2 and explain the importance of studying average-case complexity of NP.

s_hirahara@nii.ac.jp


Arguably, one of the most important open questions in the theory of average-case complexity
is to exclude Heuristica from Impagliazzo’s five worlds, i.e., to prove average-case hardness
of NP from worst-case hardness of NP. This question can be, for example, formally stated as
follows.

Open Question 1. Does P , NP imply DistNP * AvgP?

Here, the statement DistNP * AvgP means that there exists a pair of a problem L and a
polynomial-time samplable distributionD with respect to which there is no average-polynomial-
time algorithm that solves L. We review the basics of average-case complexity in Section 3,
following the excellent survey of Bogdanov and Trevisan [BT06a].

There are at least three reasons why it is difficult to resolve Open Question 1. Standard proof
techniques that connect worst-case complexity to average-case complexity, such as black-box
reductions [FF93; BT06b], hardness amplification procedures [Vio05b; Vio05a], and relativizing
proof techniques [Imp11; HN21], are shown to be incapable of resolving Open Question 1. (We
will explain the details of the limits of black-box reductions in Section 5.) To make progress on
the central problem, we need to develop new types of proof techniques that are not subject to
any of these technical barriers.

Recently, a new type of proof techniques that are not subject to some of the barriers are
developed. [Hir18] presented the first worst-case-to-average-case connection that goes beyond
the limits of black-box reductions. Building on this result, [Hir21a] showed the following
worst-case-to-average-case connections.

Theorem 2 ([Hir21a]).

1. If UP * DTIME(2O(n/ log n)), then DistNP * AvgP.

2. If PH * DTIME(2O(n/ log n)), then DistPH * AvgP.

3. If NP * DTIME
(
2O(n/ log n)

)
, then DistNP * AvgPP. Here, AvgPP stands for P-computable

average-polynomial-time, which interpolates P and AvgP; see Section 3 for a definition.

The first item of the worst-case-to-average-case connections of Theorem 2 cannot be proved
by neither black-box reductions [FF93; BT06b] nor hardness amplification procedures [Vio05a;
Vio05b]; any proof of Theorem 2 must simultaneously overcome the two barriers, i.e., the limits
of black-box reductions and the “impossibility” of hardness amplification procedures. This
is the reason why it took 35 years to find a proof of Theorem 2 since Levin [Lev86] laid the
foundation of average-case complexity.

The main goal of this article is to present a proof of the first and second items of Theorem 2
as well as technical tools developed in the proof. Our presentation follows recent alternative
proofs of [Hir21a], which are independently obtained by [Hir21b; GK22]. Along the way, we
put together several results that are scattered in several papers.

The reader may wonder where the time complexity 2O(n/ log n) comes from. It comes from
the fact that a polynomial p is a “(1/ε log n)-exponential function”1 for a small constant ε > 0
in the sense that the ε log n-iterated composition p(ε log n)(n) of p is at most 2n/ log n. How this
property is used in the proof will be explained in Section 8. In fact, the time complexity is shown
to be tight for relativizing proof techniques: Building on the work of Impagliazzo [Imp11],

1The name is an analogue of a half-exponential function, which is a function f such that f ( f (n)) ≤ 2n.



Hirahara and Nanashima [HN21] showed that there is an oracle A such that DistPHA
⊆ AvgPA

and UPA
∩ coUPA * DTIME(2o(n/ log n))A, which indicates that the time complexity 2O(n/ log n)

achieved in Theorem 2 cannot be improved to 2o(n/ log n) using relativizing proof techniques.
We note, however, that the first and third items of Theorem 2 is not necessarily relativizing;
whether they can be relativized or not remains open,2 whereas the second item of Theorem 2
does relativize.

Given the quantitatively tight barrier, it is natural to wonder if one can achieve the time com-
plexity 2o(n/ log n). Chen, Hirahara, and Vafa [CHV22] achieved this in fine-grained complexity
settings. For example, they showed that nondeterministic linear time NTIME(n) cannot be solved

in quasi-linear time on average if UP * DTIME
(
2O(
√

n log n)
)
. The conclusion is weaker than

Theorem 2, but the worst-case hardness assumption is also significantly weakened. A high-level
idea of [CHV22] is that a quasi-linear function p(n) = Õ(n) is a “

√
log n/n-exponential function”

in the sense that p(
√

n/ log n)(n) ≤ 2O(
√

n log n).
The proof is based on meta-complexity of time-bounded Kolmogorov complexity. Meta-

complexity refers to the computational complexity of problems that themselves ask complexity.
One representative example of meta-computational problems is MINKT [Ko91], which is the
problem of computing the t-time-bounded Kolmogorov complexity Kt(x) of x, given (x, 1t) as
input. Throughout this article, time-bounded Kolmogorov complexity and the (meta-)complexity
of MINKT play a central role. We review these notions in Section 4. At a very high level, the
reason why meta-complexity is useful is that worst-case meta-complexity exactly characterizes
the average-case complexity of the polynomial hierarchy PH: [Hir20a] showed that DistPH ⊆
AvgP if and only if GapMINKTPH ∈ P, where GapMINKTPH is the problem of approximating
PH-oracle time-bounded Kolmogorov complexity in the worst case. Meta-complexity enables
us to analyze average-case complexity from a view point of worst-case complexity. Analyzing
worst-case complexity is often easier than analyzing average-case complexity. Indeed, by
going through the statements on worst-case meta-complexity (see the right half of Fig. 1),
new statements on average-case complexity of PH are proved in [Hir20a; Hir21a]: One-sided-
error heuristics that succeed with small probability, errorless heuristics that succeed with high
probability, average-polynomial-time algorithms (AvgP), and P-computable average-polynomial-
time algorithms (AvgPP) are all equivalent for DistPH.

The aforementioned work [Hir18] showed the equivalence between the average-case com-
plexity of MINKT and the worst-case complexity of an approximate version of MINKT. We
present this result in Section 5 and explain why meta-complexity enables overcoming the limits
of black-box reductions. Along the way, we introduce the notion of k-wise direct product
generator [Hir20c], which is the main technical tool extensively used throughout this article.

For those who are familiar with randomness extractor, it may be useful to contrast the recent
development of meta-complexity with the development of the theory of randomness extractor.
The influential work of Trevisan [Tre01] presented a generic construction of an extractor from
a pseudorandom generator construction. The k-wise direct product generator is also a (very
simple) pseudorandom generator construction. Trevisan [Tre01] exploited the property of a
pseudorandom generator construction information-theoretically to construct an extractor, which
is an information-theoretic object. In contrast, the recent development of meta-complexity is
given by exploiting the property of a pseudorandom generator construction computationally. In a
bit more detail, we apply the reconstruction property of a pseudorandom generator construction

2The only non-relativizing part is Theorem 3, which relies on the PCP theorem.



average-case complexity worst-case meta-complexity

DistPH ⊆ Avg1
1−n−cP Gap(KPH vs K) ∈ P

GapMINKTPH ∈ PDistPH ⊆ AvgPP

[Hir18; Hir20b; Hir20a]

trivial

[Hir20d; Hir20c; Hir20a; Hir21a]

trivial

Figure 1: The paradigm of analyzing average-case complexity by worst-case meta-complexity.
The figure shows that the following are equivalent for DistPH: Avg1

1−n−cP, i.e., one-sided-error
heuristics that succeed with probability n−c; AvgP, i.e., errorless heuristic schemes, or equiva-
lently, average-polynomial-time algorithms; AvgPP, i.e., P-computable average-polynomial-time
algorithms. This equivalence is given as a corollary of the characterization of the average-case
complexities of PH by worst-case meta-complexity of GapMINKTPH.

(Lemma 12) to efficient algorithms, whereas Trevisan [Tre01] applied it to inefficient algorithms.
Two fundamental theorems of Kolmogorov complexity play a key role in the proof of

Theorem 2: Language compression and symmetry of information. These theorems are known to
be true unconditionally for resource-unbounded Kolmogorov complexity [ZL70]. We present
time-bounded analogues of language compression and symmetry of information in Sections 6
and 7, respectively, under the assumption that DistNP ⊆ AvgP. The proofs of these results are
“meta-computational” in the sense that we use an efficient hypothetical algorithm that computes
time-bounded Kolmogorov complexity; this means that these proofs must be significantly
different from the resource-unbounded cases, as resource-unbounded Kolmogorov complexity
cannot be computed in finite steps.

The outline of the proof of Theorem 2 is depicted in Fig. 2. In Section 8, we introduce
the notion of universal heuristic scheme. We construct universal heuristic schemes for PH in
Section 9. As alluded in the figure, the final result does not refer to meta-complexity at all,
whereas the proof goes through statements on worst-case meta-complexity. Indeed, the only
known proofs are via meta-complexity!

DistPH ⊆ AvgP Gap(KPH vs K) ∈ P

∀L ∈ PH admits
universal heuristic schemes

PH ⊆ DTIME(2O(n/ log n))

Sections 5 and 6

Sections 7 and 9

Section 8

Goal

Figure 2: A proof strategy for the second item of Theorem 2.

Notation [n] denotes {1, . . . , n}. |x| denotes the length of a string x ∈ {0, 1}∗. For a function
p : N → N and i ∈ N, the function p(i) : N → N is recursively defined as follows: p(0)(n) := n
and p(i+1)(n) := p(i)(p(n)) for every n ∈ N.



2 Impagliazzo’s Five Worlds

What is the importance of the P versus NP question? One cannot underestimate significant
impacts that a proof of P = NP would have. An efficient algorithm for NP would have great
impacts on mathematics in general. If P = NP, for any mathematical theorem ϕ, one can find a
proof π for ϕ in time poly(|π|, |ϕ|). This means that mathematicians do not need to work hard to
find proofs. In a world where P = NP, the only task of mathematicians is to come up with the
statements of interesting theorems; then, they can use the efficient automated theorem proving
algorithm to find proofs of the theorems. Another consequence of P = NP is that the security
of any public-key cryptosystem can be broken. This does not just mean that the privacy of
communications is compromised. All the wealth invested to Bitcoin can be stolen by the person
who finds a proof of P = NP, as Bitcoin relies on the security of a public-key cryptosystem.3

However, most researchers conjecture that P , NP, so it is likely that the answer to the P
versus NP question is negative. Given that most researchers believe P , NP, it is more intriguing
to investigate what follows from P , NP. In principle, we can expect that a secure public-key
cryptosystem can be constructed; however, currently, there is a large gap between P , NP and
the possibility of cryptography, which was clearly explained by Impagliazzo [Imp95].

Impagliazzo [Imp95] proposed five possible worlds which are consistent with the current
knowledge of complexity theory and named them as follows: Algorithmica, Heuristica, Pessi-
land, Minicrypt, and Cryptomania. Algorithmica is a world in which NP is easy in the worst
case, e.g., P = NP. Heuristica is a world in which there exists an efficient heuristic for NP, i.e.,
NP is easy on average, but NP is hard in the worst case. For example, one canonical definition
of Heuristica is a world in which P , NP and DistNP ⊆ AvgP.4 Pessiland is a world in which
NP is hard on average and there is no one-way function; this is the worst of all the possible
worlds. The existence of one-way functions is often considered as a minimal assumption under
which complexity-theory-based cryptography is possible [IL89]. In Pessiland, cryptography
is not possible and NP cannot be solved efficiently on average. Minicrypt is a world in which
one-way functions exist but a public-key cryptosystem does not exist. Finally, Cryptomania is
a world in which a public-key cryptosystem exists. A popular conjecture is that our world is
Cryptomania. The security of the RSA cryptosystem, which is widely used in practice, is not yet
broken despite significant efforts by many researchers; thus, it is reasonable to conjecture that
the RSA cryptosystem is secure (at least against classical computers [Sho99]) and, in particular,
our world is Cryptomania.

What is known about Impagliazzo’s five worlds? It is easy to see the following four
implications: ∃ a public-key cryptosystem =⇒ ∃ a one-way function =⇒ DistNP * AvgP
=⇒ NP , P =⇒ True. The converses of these implications correspond to the open problems
of excluding Minicrypt, Pessiland, Heuristica, and Algorithmica, respectively. Excluding
these worlds is equivalent to showing that our world is Cryptomania, i.e., a secure public-key
cryptosystem exists; excluding any one of them is one of the most important open questions in
complexity theory and cryptography. Currently, no world is excluded from Impagliazzo’s five
worlds. The difficulty is that there are many technical barriers suggesting that standard proof
techniques would not work. For example, to prove P , NP (i.e., to exclude Algorithmica from

3It is worth mentioning that Bitcoin also relies on a cryptographic primitive called Proof of Work [DN92], which
is based on average-case hardness of NP; see, e.g., [BRSV17; BRSV18; HS21].

4There are many variants of Heuristica, depending on what types of algorithms we consider. For example, a
world in which NP * BPP and DistNP ⊆ AvgBPP can be considered as a variant of Heuristica.
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Heuristica

Pessiland

Minicrypt

Cryptomania

∃ public-key crypto.

∃ one-way functions

DistNP 1 AvgP

P , NP

True P = NP

DistNP ⊆ AvgP

@ one-way functions
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Figure 3: Impagliazzo’s five worlds. “⇒” indicates known implications. “
?
⇒” indicates open

questions, each of which corresponds to excluding Algorithmica, Heuristica, Pessiland, and
Minicrypt.

the possible worlds), one needs to develop a proof technique that simultaneously overcomes
the relativization barrier [BGS75], the algebrization barrier [AW09], the natural proof barrier
[RR97], and the locality barrier [CHOPRS20]. Similarly, to exclude Heuristica, one needs to
develop a proof technique that simultaneously overcomes the limits of black-box reductions
[FF93; BT06b; AGGM06; BB15], the “impossibility” of hardness amplification procedures
[Vio05b; Vio05a], and the relativization barrier [Wat12; Imp11; HN21]. In this article, we
present a proof technique that is not subject to the first two barriers but is still subject to the
relativization barrier; overcoming the relativization barrier is left open.

3 Average-Case Complexity

The theory of average-case complexity studies a distributional problem (L,D), which is a pair
of a language L ⊆ {0, 1}∗ and a familyD = {Dn}n∈N of distributions over instances of “size” n.
For example, we define the uniform distributionU to be the family {Un}n∈N such thatUn is the
uniform distribution over {0, 1}n. In this specific example, all the strings in the support ofUn

are binary strings of length n; we call such a family of distributions length-preserving; however,
we emphasize that there is no restriction onDn in general, except thatDn is a distribution over
{0, 1}∗.5

The seminal work of Levin [Lev86] introduced a robust notion of average-case easiness. An
algorithm A is said to be an average-polynomial-time algorithm for (L,D) if A(x, 1n) = L(x)
for every x ∈ {0, 1}∗ and there exists some constant ε > 0 such that for all large n ∈ N, it
holds that Ex∼Dn [tA(x, 1n)ε] ≤ nO(1), where tA(x, 1n) is an upper bound on the running time of an
algorithm A on input (x, 1n).6 The class of distributional problems for which there exist average-
polynomial-time algorithms is denoted by AvgP. When there exists an average-case-polynomial
upper bound tA : {0, 1}∗ → N on the running time of A such that tA is computable in polynomial
time (in the worst case), we say that A is P-computable average-polynomial-time; the class
of distributional problems solvable by P-computable average-polynomial-time algorithms is

5One restriction that automatically follows fromD ∈ PSamp is that the length of any string in the support ofDn

is at most nO(1).
6We identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}.



denoted by AvgPP [Hir21a].
One may wonder why the constant ε in the definition of average-polynomial-time is not

fixed to 1. If ε = 1, the definition just says that the expected running time Ex∼Dn [tA(x, 1n)] of an
algorithm is bounded by a polynomial in the size parameter n, which appears to be a natural
definition at first glance. A short answer to this question is that having a constant exponent
ε > 0 in the definition makes average-case hardness results stronger: (L,D) < AvgP implies that
(L,D) cannot be solved by average-polynomial-time algorithms in the naïve definition.

Another reason is that AvgP is equivalent to another (perhaps more) intuitive notion: errorless
heuristic scheme [Imp95; BT06a]. A polynomial-time algorithm A is said to be an errorless
heuristic scheme if for every (n, δ−1) ∈ N,

Pr
x∼Dn

[
A(x, 1n, 1δ

−1
) , L(x)

]
≤ δ

and A(x, 1n, 1δ
−1

) ∈ {L(x),⊥} for every x ∈ supp(Dn), where ⊥ indicates a failure of A, i..e.,
the algorithm does not know the answer; that is, A is allowed to fail (i.e., output ⊥) but is not
allowed to err (i.e., output the wrong answer 1 − L(x)). For a function δ : N→ [0, 1], the class
of distributional problems that can be solved by errorless heuristics with failure probability δ(n)
on instances of size n is denoted by AvgδP.

What distributions should we consider? A family of distributions D = {Dn}n∈N is said to
be polynomial-time samplable if there exists a randomized polynomial-time algorithm M such
that the distribution of M(1n) is identical toDn for every n ∈ N. The class of polynomial-time
samplable distributions is denoted by PSamp. We define DistNP to be the class of distributional
problems (L,D) such that L ∈ NP andD ∈ PSamp.

It will be useful to consider a family D =
{
Da,b

}
a,b∈N of distributions indexed by a pair

(a, b) ∈ N2 of integers. Such a family can be converted into a familyD′ =
{
D′n

}
n∈N indexed by a

single integer n by defining D′
〈a,b〉 := Da,b for every (a, b) ∈ N2, where 〈-, -〉 : N × N → N is a

bijection defined as, for example, 〈a, b〉 :=
∑a+b

i=0 i + a.
Buhrman, Fortnow, and Pavan [BFP05] showed an important theorem that will be useful

throughout this article. They showed pr-BPP = pr-P in Heuristica, i.e., randomized polynomial-
time algorithms can be derandomized in polynomial time. The underlying tool of derandomiza-
tion is the notion of pseudorandom generator. A function G =

{
Gn : {0, 1}s(n) → {0, 1}n

}
n∈N

is
said to be a pseudorandom generator secure against linear-sized circuits if for all large n ∈ N,
for every circuit D of size n,∣∣∣∣∣∣ Pr

z∼{0,1}s(n)
[D(Gn(z)) = 1] − Pr

w∼{0,1}n
[D(w) = 1]

∣∣∣∣∣∣ ≤ 1
n
.

Note that the existence of a pseudorandom generator with seed length s(n) enables deran-
domizing randomized polynomial-time algorithms in time 2O(s(n)+log n); more background on
derandomization can be found in [Vad12].

Theorem 3 (Buhrman, Fortnow, and Pavan [BFP05]). If DistNP ⊆ AvgP, then there exists a
pseudorandom generator

G =
{
Gn : {0, 1}O(log n) → {0, 1}n

}
n∈N

computable in time nO(1) and secure against linear-sized circuits.



Proof Sketch. Theorem 3 is based on the following four results.

1. DistNP ⊆ AvgP implies NE = E [BCGL92].

2. DistNP ⊆ AvgP implies pr-MA = pr-NP [KS04].

3. If NE = E and pr-MA = pr-NP, then E 1 i.o.SIZE(2εn) for some constant ε > 0 [BFP05].
(Proof Sketch: If not, we obtain E ⊆ i.o.MATIME(2o(n)) = i.o.NTIME(2o(n)) using a PCP
theorem. However, this contradicts the time hierarchy and NE = E; see [Hir20a] for the
details.)

4. If E 1 i.o.SIZE(2εn) for some constant ε > 0, then there exists a polynomial-time-
computable pseudorandom generator secure against linear-sized circuits [IW97].

�

4 Meta-Complexity of Time-Bounded Kolmogorov Complex-
ity

4.1 Kolmogorov Complexity
The Kolmogorov complexity K(x) of a string x ∈ {0, 1}∗ is defined to be the minimum length of a
program that prints x. For example, K(1n) = log n + O(1) because the string 1n can be described
by a program “print ‘1’ n times”, whose description length is log n + O(1). Note that an
integer n ∈ N can be represented as a binary string of length dlog ne and the length of the other
part of the program is constant.

The t-time-bounded Kolmogorov complexity Kt(x) of x is defined to be the minimum length
of a program that prints x in time t. We also consider the conditional Kolmogorov complexity
Kt(x | y) of x given y, which is the minimum length of a program that prints x given y as input in
time t. More generally, we consider oracle time-bounded Kolmogorov complexity:

Definition 4 (Time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, a time bound
t ∈ N∪ {∞}, and an oracle A, the A-oracle t-time-bounded Kolmogorov complexity of x given y
is defined as

Kt,A(x | y) := min
{
|M|

∣∣∣ MA outputs x in time t
}
.

Here, |M| denotes the length of a binary encoding of an oracle Turing machine M.7 We omit the
superscript A if A = ∅, the superscript t if t = ∞, and “ | y” if y is the empty string.

The Kolmogorov complexity of an n-bit string x ∈ {0, 1}n satisfies 0 ≤ K(x) ≤ n + O(1)
because any string x can be described by a program “print x”. The upper bound is almost
tight:

Fact 5. For any integer s ≥ 1, the number of strings x ∈ {0, 1}∗ such that K(x) < s is less than
2s. In particular, Prx∼{0,1}n [K(x) ≥ s] ≥ 1 − 2s−n.

7More formally, we fix an efficient universal Turing machine U such that for every oracle Turing machine
M, there exists a string dM ∈ {0, 1}∗ such that UA(dM , x) = MA(x) for every input x ∈ {0, 1}∗ and every oracle
A ⊆ {0, 1}∗. Then, we define |M| to be the length |dM | of dM .



Proof. For every string x such that K(x) < s, there is a program Mx of length less than s that
prints x. The map x 7→ Mx is injective. The number of programs of length less than s is at most∑s−1

i=0 2i < 2s, so is the number of strings x such that K(x) < s. �

More background on Kolmogorov complexity can be found in the book of Li and Vitányi
[LV19].

4.2 Meta-Complexity
Here, we review the notion of meta-complexity that is relevant to Theorem 2. For broader
background on meta-complexity and its recent development, see the survey of Allender [All21].

We first introduce the representative meta-computational problem: MINKT [Ko91] is defined
to be the language

MINKT :=
{
(x, 1t, 1s)

∣∣∣ Kt(x) ≤ s
}
.

This is a problem in NP because given a program M as certificate one can check whether |M| ≤ s
and M prints x in time t. Its NP-completeness is a long-standing open question [Ko91]. Note
that MINKT is computationally equivalent to the problem of computing the t-time-bounded
Kolmogorov complexity Kt(x) of x on input (x, 1t); in other words, MINKT asks to compute
the time-bounded Kolmogorov complexity of x. The complexity of MINKT is referred to
meta-complexity, as MINKT itself asks for the complexity of printing an input x.

Although it is unknown whether MINKT can be solved exactly in Heuristica, we show in
the next section that an approximate version of MINKT, denoted by GapMINKT, can be solved
in Heuristica. To introduce the problem formally, we recall the framework of promise problems
[Gol06]. A promise problem Π is a pair (ΠYes,ΠNo) of languages. An algorithm A is said to
solve a promise problem Π = (ΠYes,ΠNo) if A accepts every x ∈ ΠYes and rejects every x ∈ ΠNo.
Note that if there exists an algorithm that solves a promise problem Π = (ΠYes,ΠNo), it must be
disjoint, i.e., ΠYes ∩ ΠNo = ∅. It is common to require a promise problem to be disjoint in the
definition; however, we also consider “non-disjoint” promise problems [Hir20b], i.e., promise
problems that are non-disjoint under plausible assumptions, which will be useful in Section 6.

Definition 6 ([Ko91; Hir20b]). For a polynomial τ : N→ N and an oracle A ⊆ {0, 1}∗, let

ΠA
Yes :=

{
(x, 1t, 1s)

∣∣∣ Kt,A(x) ≤ s
}
,

ΠA
No :=

{
(x, 1t, 1s)

∣∣∣ Kτ(|x|,t),A(x) > s + log τ(|x|, t)
}
.

Then, we define

• GapτMINKTA := (ΠA
Yes,Π

A
No) and

• Gapτ(K
A vs K) := (ΠA

Yes,Π
∅
No).

We say that GapMINKTA ∈ P if there exists some polynomial τ such that GapτMINKTA ∈ P.
For a complexity class C, we say that GapMINKTC ∈ P if GapMINKTA ∈ P for every A ∈ C.
We omit the superscript A if A = ∅.

For example, GapMINKTSAT is the problem of approximating SAT-oracle time-bounded Kol-
mogorov complexity. The problem Gap(KSAT vs K) is computationally harder than GapMINKTSAT

and is an example of “non-disjoint” promise problems: It is non-disjoint if ENP , E [Hir20b].



Nevertheless, we show in Section 6 that Gap(KSAT vs K) can be solved in polynomial time if
DistPH ⊆ AvgP.

One common misunderstanding about GapMINKTSAT is that it should be NP-hard as SAT
is NP-complete. In fact, proving NP-hardness of GapMINKTSAT would significantly improve
Theorem 2: P , NP implies DistPH * AvgP if GapMINKTSAT is NP-hard. Thus, it is an
important open problem to prove the NP-hardness of GapMINKTSAT, despite the intuition that
approximating SAT-oracle time-bounded Kolmogorov complexity seems much harder than
computing SAT.

The problem GapMINKT can be equivalently defined as the problem of computing an
approximate value of Kt(x) up to some additive error.

Fact 7 ([Hir21a]). The following are equivalent.

1. GapMINKT ∈ P.

2. There exist a polynomial-time algorithm K̃ and a polynomial p such that

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x)

for every string x ∈ {0, 1}∗ and every integer t ≥ |x|.

Proof Sketch. Given a polynomial-time algorithm M that solves GapMINKT, the algorithm K̃
can be defined as follows:

K̃(x, 1t) := min
{
s ∈ N

∣∣∣ M(x, 1t, 1s) = 1
}
.

�

Fact 7 shows that GapMINKT is equivalent to the problem of computing Kt(x) up to an
additive error of

Kt(x) − (Kp(t)(x) − log p(t)) = cdt,p(t)(x) + log p(t),

where cdt,s(x) := Kt(x) − Ks(x) is called (s, t)-time-bounded computational depth. This notion
plays a key role in Section 8.

Definition 8 (Time-Bounded Computational Depth; [AFMV06; Hir21a]). For time bounds
s ∈ N and t ∈ N ∪ {∞} and a string x ∈ {0, 1}∗, the (s, t)-time-bounded computational depth of x
is defined as

cds,t(x) := Ks(x) − Kt(x).

We omit the superscript t if t = ∞.

The notion of (time-unbounded) computational depth cdt(-) was introduced by Antunes, Fort-
now, Melkebeek, and Vinodchandran [AFMV06]. One fundamental property of computational
depth is that it is small for most strings. For example, [AFMV06] showed that cdpoly(n)(x) ≤ k
holds with probability at least 1−2−k+O(log n) over a random input x drawn from a polynomial-time-
computable distributionD. Here, a polynomial-time-computable distribution is a distribution
whose cumulative function can be computed in polynomial time. Under a plausible assump-
tion, Antunes and Fortnow [AF09] generalized it to polynomial-time-samplable distributions;
[Hir21a] proved the same result in Heuristica.

Theorem 9 ([AF09; Hir21a]). Assume either E * i.o.DSPACE(2εn) for some constant ε > 0 or
DistNP ⊆ AvgP. Then, for every D ∈ PSamp, there exists a polynomial t such that for every
n ∈ N,

Pr
x∼Dn

[
cdt(n)(x) > k

]
≤ 2−k+log t(n).



5 Non-Black-Box Worst-Case-to-Average-Case Reduction
Feigenbaum and Fortnow [FF93] and Bogdanov and Trevisan [BT06b] presented fundamental
limits of proof techniques called (black-box) reductions. A natural approach to showing a
worst-case-to-average-case connection would be to construct a reduction. In order to show the
implication from the worst-case hardness of a language L to the average-case hardness of a
distributional problem (L′,D), it suffices to design a reduction R that takes an arbitrary oracle O
that solves (L′,D) on average and decides L in the worst case. Typically, the correctness of a
reduction can be shown regardless of the complexity of an oracle O; i.e., RO decides L for every
oracle O ⊆ {0, 1}∗. Such a reduction R is called black-box. Bogdanov and Trevisan [BT06b]
showed the following limits of black-box reductions.

Theorem 10 ([BT06b]). Let L be any language outside NP/poly ∩ coNP/poly. Then, there is
no randomized polynomial-time nonadaptive reduction from L to DistNP.

To exclude Heuristica, it suffices to show that some NP-complete problem is reducible to
DistNP. NP-complete problems are believed to be outside NP/poly ∩ coNP/poly, as otherwise
PH collapses [Yap83]. Theorem 10 indicates that, unless PH collapses, NP-complete problems
cannot be reducible to DistNP via a randomized polynomial-time nonadaptive reduction.

How can we overcome this limits? One approach is to consider adaptive reductions. There
are adaptive reductions in the literature (e.g., [HILL99; MR07]) and there exists an artificial
language that admits an adaptive random-self-reduction but not nonadaptive one [FFLS94].
However, it is unknown if there exists an adaptive reduction for a natural language that goes
beyond the limits NP/poly ∩ coNP/poly of black-box reductions. The other approach is to use
non-black-box reductions. Here, we say that a reduction R is non-black-box if the reduction
exploits an efficiency of an oracle, i.e., RO may fail to decide L correctly if O cannot be decided
in polynomial time.8

We now demonstrate that GapMINKT admits a worst-case-to-average-case connection. The
connection is proved by a non-black-box reduction that exploits the efficiency of an oracle, i.e.,
an efficient hypothetical algorithm that solves DistNP.

Theorem 11 ([Hir18; Hir20b]). If DistNP ⊆ AvgP, then GapMINKT ∈ P.

To prove this theorem, we introduce a k-wise direct product generator [Hir20c], which
turned out to be a fundamental tool for analyzing Kolmogorov complexity. A k-wise direct
product generator DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is defined as follows:

DPk(x; z) := (z1, . . . , zk, 〈z1, x〉, . . . , 〈zk, x〉)

for every x ∈ {0, 1}n and every z = (z1, . . . , zk) ∈ ({0, 1}n)k, where 〈x, y〉 denotes the inner
product of x and y ∈ {0, 1}n over GF(2), i.e., 〈x, y〉 := (

∑n
i=1 xiyi) mod 2. The k-wise direct

product generator DPk(x; -) is a pseudorandom generator secure against an algorithm D if
K(x | D) > k + O(log |x|). More formally, we have the following property:

Lemma 12 (Deterministic Reconstruction for DPk; see [Hir21a]). Assume that DistNP ⊆ AvgP.
Then, there exists a polynomial p such that, for every n ∈ N, x ∈ {0, 1}n, parameters k, ε−1, s ∈ N,
and for every randomized circuit D of size s such that∣∣∣∣∣Pr

z,r
[D(DPk(x; z); r) = 1] − Pr

w,r
[D(w; r) = 1]

∣∣∣∣∣ ≥ ε,
8In fact, more importantly, O should not depend on the input x, which is used in the proof of Theorem 11.



where z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and r ∼ {0, 1}s, it holds that

Kp(ns/ε)(x | D) ≤ k + log p(ns/ε).

This lemma can be proved by standard proof techniques of pseudorandomness [Vad12,
Chapter 7] together with Theorem 3. We briefly present a proof sketch.

Proof Sketch. Using Yao’s next-bit predictor, given some prefix of DPk(x; z), the next bit can
be predicted. Note that the first nk bits of DPk(x; z) are completely uniform and cannot be
predicted. Thus, there exists some index i ∈ [k] such that 〈zi, x〉 can be predicted with probability
at least 1

2 + ε
k , given z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉 as input. Note that 〈zi, x〉 is the zi-th bit of

the Hadamard code of x. Using the list-decoding algorithm of Goldreich and Levin [GL89],
one can decode x from the next-bit predictor. We have described a randomized algorithm M
that prints x given z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉 as input. However, the random bits z1, . . . , zk as
well as the internal randomness of M can be generated from the pseudorandom generator G of
Theorem 3; i.e., there exists a short seed σ ∈ {0, 1}O(log n) from which z1, . . . , zk can be generated.
Now we are ready to describe a program M′ that prints x: Given a seed σ and an “advice
string” α := (〈z1, x〉, . . . , 〈zi−1, x〉) ∈ {0, 1}i−1, the program M′ computes (z1, . . . , zk) := G(σ) and
outputs the output of M on input z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉. The length of the program M′ is
approximately at most |σ| + |α| ≤ k + O(log n). �

In the literature of pseudorandom generator constructions and randomness extractors [TV07;
TUZ07; Uma09], the length of the advice string α is referred to as the advice complexity of the
pseudorandom generator construction DPk(x; -). Trevisan and Vadhan [TV07] showed that the
advice complexity of any pseudorandom generator construction that extends its seed by k bits
must be at least k − 3; thus, the simple pseudorandom generator construction DPk(x; -) achieves
the optimal advice complexity up to an additive logarithmic term.9

Given Lemma 12, the proof of Theorem 11 is fairly simple.

Proof of Theorem 11. Consider a family D :=
{
Dn,t

}
n,t∈N of distributions over instances of

MINKT such that Dn,t is the distribution defined by the following sampling procedure: Pick
x ∼ {0, 1}n uniformly at random and output (x, 1t, 1n−2).

Since (MINKT,D) ∈ DistNP ⊆ AvgP, there exists an errorless polynomial-time heuristic
M that solves (MINKT,D) with failure probability at most 1

4 . We now present a randomized
algorithm R that solves GapMINKT: The algorithm R takes (x, 1t, 1s) as input and accepts if and
only if M(DPk(x; z), 1t′) ∈ {1,⊥} for a random z ∼ {0, 1}nk, where n := |x|, k and t′ = poly(t, n)
are parameters chosen later.

To see the correctness of R, consider any Yes instance (x, 1t, 1s) of GapMINKT; i.e., Kt(x) ≤
s. Since the string DPk(x; z) can be described from the seed z and a program that prints x in time
t, we have

Kt′(DPk(x; z)) ≤ |z| + Kt(x) + O(log n) ≤ nk + s + O(log n) ≤ nk + k − 2

9In the original paper [Hir18], the pseudorandom generator of Theorem 3 is not used; in this case, to obtain
a small approximation error in Theorem 11, one needs to use a pseudorandom generator construction that has
small randomness complexity in addition to small advice complexity. Whether the approximation error of [Hir18]
can be improved or not under the assumption that MINKT is easy on average (under which the existence of a
pseudorandom generator is unknown) remains open.



for a sufficiently large t′, where we choose a large k = s + O(log n) so that the last inequality
holds. This ensures that (DPk(x; z), 1t′ , 1nk+k−2) is a YES instance of MINKT for every z. By the
property of an errorless heuristic scheme, M outputs either 1 or ⊥ on input (DPk(x; z), 1t′ , 1s′);
hence, R accepts with probability 1 over a choice of z ∼ {0, 1}nk.

Conversely, we claim that R rejects any No instance (x, 1t, 1s) of GapτMINKT with high
probability over the internal randomness of R (i.e., the random choice z ∼ {0, 1}nk), where τ is
a polynomial chosen later. Intuitively, this is because an algorithm M cannot distinguish the
output distribution DPk(x; -) of the k-wise direct product generator from the uniform distribution
if Kpoly(t)(x | M) > k + O(log n) = s + O(log n). More formally, we prove the contrapositive:
Assume that R accepts (x, 1t, 1s) with probability at least 7

8 over a choice of z; that is,

Pr
z

[
M(DPk(x; z), 1t′) ∈ {1,⊥}

]
≥

7
8
.

We claim that (x, 1t, 1s) is not a No instance of GapτMINKT for some polynomial τ. If we pick
w ∼ {0, 1}nk+k, then by Fact 5, with probability at least 1

2 , it holds that K(w) > |w| − 2, in which
case (w, 1t′ , 1|w|−2) is a No instance of MINKT; hence,

Pr
w

[
M(w, 1t′) ∈ {1,⊥}

]
≤ Pr

w

[
M(w, 1t′) = ⊥

]
+ Pr

w

[
(w, 1t′ , 1|w|−2) ∈ MINKT

]
≤

1
4

+
1
2

=
3
4
.

Let D be a circuit such that D(w) := 1 iff M(w, 1t′) ∈ {1,⊥}. Then, it follows from the two
inequalities above that

Pr
z

[D(DPk(x; z)) = 1] − Pr
w

[D(w) = 1] ≥
7
8
−

3
4

=
1
8
.

By Lemma 12, we obtain
Kp(t,n)(x | D) ≤ k + log p(t, n)

for some polynomial p. Since the circuit D can be described using O(log t′) bits, we conclude
that

Kτ(t,n)(x) ≤ s + log τ(t, n) (1)

for some polynomial τ, which means that (x, 1t, 1s) is not a No instance of GapτMINKT.
We conclude that R is a one-sided-error randomized polynomial-time algorithm for GapτMINKT;

that is, GapτMINKT ∈ pr-coRP ⊆ pr-BPP = pr-P, where the last equality follows from Theo-
rem 3. �

Why is the reduction R constructed in the proof of Theorem 11 non-black-box? The key
point is that Eq. (1) may not hold when there is no polynomial-time algorithm M that decides
MINKT. Specifically, the circuit D comes from the hypothetical efficient algorithm M that
solves MINKT. It would be possible to show that Kτ(t,n),MINKT(x) ≤ s+log τ(t, n) unconditionally;
however, removing the MINKT oracle seems to be impossible in general. In fact, under plausible
conjectures, the reduction R must be non-black-box. For example, the conjecture by Rudich
[Rud97] implies that GapMINKT < coNP/poly; thus, if R were non-black-box, then we would
get a contradiction to the limits of black-box reductions (Theorem 10). Other evidences that
Theorem 11 is inherently non-black-box can be found in [Hir18; HW20].

It is instructive to emphasize that meta-complexity plays a key role in constructing the
non-black-box reduction. The problem GapMINKT is a meta-computational problem that asks



the complexity of generating a given string x in a given time limit t. It is this meta-computational
property of GapMINKT that enables us to exploit the efficiency of a hypothetical algorithm M
in the proof of Theorem 11.

We mention that the proof techniques of Theorem 11 actually show the equivalence between
the worst-case hardness of GapMINKT and the existence of a polynomial-time-computable
hitting set generator. A family H =

{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N

is said to be a hitting set
generator secure against i.o.P if for every polynomial-time algorithm M, there exist infinitely
many integers n ∈ N such that Prx∼{0,1}n [M(x) = 1] ≥ 1

2 implies M(Hn(z)) = 1 for some seed
z ∈ {0, 1}s(n).

Proposition 13 ([Hir20a; Hir21b]). Under the assumption that E * i.o.SIZE(2εn) for some
constant ε > 0, the following are equivalent.

1. GapMINKT ∈ P.

2. There exists a constant c such that no polynomial-time-computable hitting set generator

H =
{
Hn : {0, 1}n−c log n → {0, 1}n

}
n∈N

is secure against i.o.P.

3. There exists a constant c such that (MINKT,U∗) ∈ Avg 1
4
P, whereU∗ =

{
U∗n,t

}
n,t∈N

is the

family of distributionsU∗n,t that sample (x, 1t, 1n−c log n) for x ∼ {0, 1}n.

4. For every length-preserving distribution D ∈ PSamp, there exists a polynomial t0 such
that for every t ≥ t0, there exists an errorless heuristic scheme that computes Kt(|x|)(x) over
a random instance x chosen fromD.

Although we include a proof sketch for completeness, the reader may skip the proof.

Proof Sketch. Item 2 ⇒ 1: The idea is to use a “universal” hitting set generator H = {Hn}.
Let Hn be the function that takes as input a program M of length less than n − c log n (which
can be encoded as a binary string of length n − c log n) and outputs the output of M if M
halts in time n2. Clearly, Hn is computable in poly(n). The image of Hn contains the set
Xn :=

{
x ∈ {0, 1}n

∣∣∣ Kn2
(x) < n − c log n

}
. Since H is not secure against i.o.P, there exists a

polynomial-time algorithm M that rejects every x ∈ Xn and accepts at least a half of all the
n-bit strings. Then, GapMINKT can be solved by the following algorithm R: Given (x, 1t, 1s)
as input, R picks z ∼ {0, 1}nk and w ∼ {0, 1}t randomly and outputs 1 − M(DPk(x; z) · w), where
n := |x| and k := s + O(log nt). Here, w is used for padding the input of M so that the time bound
|DPk(x; z) · w|2 is sufficiently larger than t. The correctness can be proved in a way similar to
Theorem 11. See [Hir20a, Theorem 8.7] for the details.

Item 1 ⇒ 3: Let M be a polynomial-time algorithm that solves GapτMINKT for some
polynomial τ. Then, an errorless heuristic M′ for (MINKT,U∗) can be defined as follows:
M′(x, 1t, 1s) := ⊥ if M(x, 1t, 1s) = 1; otherwise, M′(x, 1t, 1s) := 0, where s is fixed to n − c log n.
To see the correctness of M′, observe that M′ can err only on Yes instances of MINKT If
(x, 1t, 1s) ∈ MINKT, then we have M(x, 1t, 1s) = 1, which implies that M′ outputs ⊥; thus, M′

does not err. The probability that M′ outputs⊥ is bounded by the probability that M(x, 1t, 1s) = 1,
which happens only if (x, 1t, 1s) is not a No instance of GapτMINKT. It follows from Fact 5



that K(x) ≥ n− 2 > s + log τ(n, t) = n− c log n + log τ(n, t) with probability at least 3
4 for a large

constant c; hence, the probability that M′ fails is at most 1
4 .

Item 3⇒ 2: Let c be a constant chosen later. Let H be an arbitrary family

H =
{
Hn : {0, 1}n−c log n → {0, 1}n

}
n∈N
,

which is computable in time � t(n). Given an errorless heuristic M for (MINKT,U∗), we
define M′ so that M′(x) := 0 if M(x, 1t(n), 1n−c′ log n) ∈ {1,⊥} and M′(x) := 1 otherwise, for every
x ∈ {0, 1}n. We show that M′ “avoids” H:

1. The algorithm M′ accepts at least a half of {0, 1}n because at least a (1 − o(1))-fraction of
{0, 1}n is a No instance of MINKT and the failure probability of M is at most 1

4 .

2. We claim that M′ rejects every string x in the image of Hn: Note that x ∈ {0, 1}n can be
described by an integer n ∈ N and a seed z ∈ {0, 1}n−c log n such that Hn(z) = x, which
implies that Kt(n)(x) ≤ n − c log n + O(log n) ≤ n − c′ log n for a sufficiently large c; this
means that (x, 1t(n), 1n−c′ log n) ∈ MINKT, which is rejected by M′.

Item 1⇔ 4: This is proved in [Hir21b] using SoI of Section 7. We omit the proof. �

We conclude this section by describing applications to derandomization. Given that a
hitting set generator is used to derandomize randomized algorithms [GVW11], it is natural
to wonder if one can characterize complexity-theoretic hitting set generators using the proof
techniques of Proposition 13. Here, a hitting set generator or a pseudorandom generator
G =

{
G : {0, 1}s(n) → {0, 1}n

}
n∈N

with seed length s(n) is said to be complexity-theoretic if it can
be computed in time 2O(s(n)+log n). This notion is more appropriate for derandomization [NW94]
and is weaker than cryptographic generators. For example, the pseudorandom generator of
Theorem 3 is complexity-theoretic. In [Hir20b], the existence of complexity-theoretic hitting set
generators is characterized by the worst-case hardness of approximating Levin’s Kt complexity
[Lev84], which is an exponential-time variant of time-bounded Kolmogorov complexity. We
refer the reader to [Hir20b] for details.

6 Algorithmic Language Compression
The language compression theorem [Sip83; BFL01; BLM05] for resource-unbounded Kol-
mogorov complexity refers to the following simple and fundamental fact:

Fact 14 (Language Compression). Let L be a decidable language. Then, for every n ∈ N and
every x ∈ {0, 1}n ∩ L,

K(x) ≤ log|L ∩ {0, 1}n| + O(log n).

Proof Sketch. Any string x ∈ L ∩ {0, 1}n can be described by the index of x in the enumeration
of L ∩ {0, 1}n and an integer n ∈ N. �

Sipser [Sip83] considered a time-bounded analogue of the language compression theorem
and showed that Kpoly(n),SAT(x | r) ≤ |L ∩ {0, 1}n| + O(log n) for x ∈ L ∈ P, where r is a
random string. Here, we show that the SAT oracle and the random string r can be removed
if DistNP ⊆ AvgP. At a very high level, the idea is that the SAT oracle can be replaced with



an errorless heuristic for DistNP. We also remove the random string using Theorem 3. It will
be useful to state the language compression theorem for a family of languages indexed by an
integer t, which we call an ensemble of languages:

Definition 15 (Ensemble of Languages). For every language L ⊆ {0, 1}∗ and every t ∈ N, let Lt

denote
{
x ∈ {0, 1}∗

∣∣∣ (x, 1t) ∈ L
}
. We say that a language L ⊆ {0, 1}∗ is an ensemble of languages

if there exists a polynomial pL such that |x| ≤ pL(t) for any t ∈ N and any x ∈ Lt. We identify an
ensemble L ⊆ {0, 1}∗ of languages with a family {Lt}t∈N.

The language compression theorem can be stated as follows.

Theorem 16 (Time-Bounded Language Compression [Hir21a]). Let A be an oracle and L =

{Lt}t∈N ∈ NPA be an ensemble of languages. If DistNPA
⊆ AvgP, then there exists a polynomial

p such that
Kp(t)(x) ≤ log|Lt| + log p(t)

for every (x, 1t) ∈ L.

We present an “algorithmic” proof of the language compression theorem, which generalizes
the non-black-box reduction of Theorem 11. Instead of just showing Theorem 16, we construct
a polynomial-time algorithm that accepts x ∈ Lt and rejects any string x such that Kpoly(t)(x) >
log |Lt| + O(log t). Formally:

Theorem 17 (Algorithmic Language Compression [Hir21a]). Let A be an oracle and L =

{Lt}t∈N ∈ NPA be an ensemble of languages. If DistNPA
⊆ AvgP, then there exists a polynomial

p such that a promise problem Π = (ΠYes,ΠNo) defined as

ΠYes :=
{
(x, 1t, 1k)

∣∣∣ x ∈ Lt

}
,

ΠNo :=
{
(x, 1t, 1k)

∣∣∣ Kp(t)(x) > k + log p(t), k ≥ log|Lt| + 1
}

is in pr-P.

The language compression theorem follows from the disjointness of ΠYes and ΠNo.

Proof of Theorem 16 from Theorem 17. The existence of an algorithm that separates ΠYes from
ΠNo implies that ΠYes ∩ ΠNo = ∅. Consider any string x ∈ Lt. Let k := log|Lt| + 1. Since
(x, 1t, 1k) ∈ ΠYes, we obtain (x, 1t, 1k) < ΠNo, which implies that Kp(t)(x) ≤ k + log p(t) =

log|Lt| + 1 + log p(t). �

Now we present the algorithmic proof of the language compression theorem. The proof is
quite similar to Theorem 11: For an errorless heuristic B for some distributional problem in
DistNPA, we consider a randomized non-black-box reduction B′ that outputs 1 on input x iff
B(DPk(x; z)) ∈ {1,⊥} for a random choice of z.

Proof of Theorem 17. Let L′ =
{
(DPk(x; z), 1n, 1t, 1k)

∣∣∣ x ∈ Lt ∩ {0, 1}n
}
. We claim that L′ ∈

NPA. Note that (w, 1n, 1t, 1k) ∈ L′ if and only if there exist x ∈ {0, 1}n, a certificate y for
x ∈ Lt, and z ∈ {0, 1}n·k such that w = DPk(x; z), which can be verified in polynomial time; thus,
L′ ∈ NPA. Consider a distribution D =

{
Dn,t,k

}
n,t,k∈N such that Dn,t,k picks w ∼ {0, 1}nk+k and

outputs (w, 1n, 1t, 1k). Since (L′,D) ∈ DistNPA
⊆ AvgP, there exists an errorless heuristic B that

solves L′ with failure probability at most 1
4 .



We first claim that the number of Yes instances in L′ is relatively small. For each n, t, and
k ∈ N, we have

Pr
w∼{0,1}nk+k

[
(w, 1n, 1t, 1k) ∈ L′

]
= Pr

w∼{0,1}nk+k

[
∃x ∈ Lt ∩ {0, 1}n,∃z ∈ {0, 1}nk,w = DPk(x; z)

]
≤ |Lt ∩ {0, 1}n| · 2nk · 2−nk−k ≤ |Lt| · 2−k. (2)

We present a randomized algorithm B′ that solves the promise problem Π defined in Theo-
rem 17. On input (x, 1t, 1k), the algorithm B′ lets n := |x| and picks z ∼ {0, 1}nk randomly, and
accepts if and only if B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}. We claim the correctness of B′ below. Let
pL be the polynomial of Definition 15.

Claim 18. For all large t ∈ N and every n ≤ pL(t), the following hold for every x ∈ {0, 1}n.

1. If (x, 1t, 1k) ∈ ΠYes, then Prz[B′(x, 1t, 1k; z) = 1] = 1.

2. If (x, 1t, 1k) ∈ ΠNo, then Prz[B′(x, 1t, 1k; z) = 1] < 7
8 .

Proof. Assume that x ∈ Lt. By the definition of L′, we have (DPk(x; z), 1n, 1t, 1k) ∈ L′ for every
z. Since B is an errorless heuristic, we obtain B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}, which implies that
B′(x, 1t, 1k; z) = 1. This completes the proof of Item 1.

To prove Item 2 by way of contradiction, we assume that Prz[B′(x, 1t, 1k; z) = 1] ≥ 7
8 ; that is,

Pr
z

[
B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}

]
≥

7
8
. (3)

On the other hand,

Pr
w

[
B(w, 1n, 1t, 1k) ∈ {1,⊥}

]
≤ Pr

w

[
L′(w, 1n, 1t, 1k) = 1

]
+ Pr

w

[
B(w, 1n, 1t, 1k) = ⊥

]
≤ |Lt| · 2−k +

1
4
, (4)

where the last inequality uses Eq. (2). Since (x, 1t, 1k) ∈ ΠNo, we have |Lt| · 2−k ≤ 1
2 . By Eqs. (3)

and (4), we obtain

Pr
z

[
B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}

]
− Pr

w

[
B(w, 1n, 1t, 1k) ∈ {1,⊥}

]
≥

7
8
−

(
1
2

+
1
4

)
=

1
8
.

By Lemma 12, we obtain Kp(t)(x) ≤ k + log p(t) for some polynomial p. This is a contradiction
to the assumption that (x, 1t, 1k) ∈ ΠNo. �

It follows from Claim 18 that Π ∈ pr-coRP. Using Theorem 3, we conclude that Π ∈

pr-BPP = pr-P. �

The algorithmic language compression theorem generalizes the non-black-box reduction of
Theorem 11. By algorithmically compressing an ensemble of languages Lt,s :=

{
x ∈ {0, 1}∗

∣∣∣ Kt(x) ≤ s
}
,

it can be shown that GapMINKT ∈ P. More generally:

Corollary 19 ([Hir20b]). Let A be an oracle. If DistNPA
⊆ AvgP, then Gap(KA vs K) ∈ P.



Proof. Consider an ensemble L =
{
L〈n,t,s〉

}
n,t,s∈N of languages defined as10

L〈n,t,s〉 :=
{
x ∈ {0, 1}n

∣∣∣ Kt,A(x) ≤ s
}
.

Observe that |L〈n,t,s〉| ≤ 2s+1 by Fact 5. It is easy to observe that L ∈ NPA. Applying Theorem 17
to L, we obtain a polynomial-time algorithm that solves the promise problem (ΠYes,ΠNo) such
that

ΠYes :=
{
(x, 1〈n,t,s〉, 1k)

∣∣∣ Kt,A(x) ≤ s
}
,

ΠNo :=
{
(x, 1〈n,t,s〉, 1k)

∣∣∣ Kp(n,t,s)(x) > k + log p(n, t, s), k ≥ log
∣∣∣L〈n,t,s〉∣∣∣ + 1

}
for some polynomial p. Gapτ(K

A vs K) is reducible to this promise problem via the reduction
that maps (x, 1t, 1s) to (x, 1〈|x|,t,s〉, 1s+2) for some polynomial τ. �

The following lemma shows that any string that can be efficiently compressed with some
PH oracle can also be compressed without the oracle if DistPH ⊆ AvgP.

Lemma 20 ([Hir20b]). Let A be an oracle. If Gap(KA vs K) ∈ P, then there exists a polynomial
p such that, for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kp(t)(x) ≤ Kt,A(x) + log p(t).

Proof. Let (ΠYes,ΠNo) := Gapτ(K
A vs K). The hypothesis implies that ΠYes ∩ ΠNo = ∅. Since

(x, 1t, 1s) ∈ ΠYes for s := Kt,A(x), we obtain (x, 1t, 1s) < ΠNo, which implies that Kτ(|x|,t)(x) ≤
s + log τ(|x|, t) = Kt,A(x) + log τ(|x|, t). �

7 Symmetry of Information
Yet another fundamental theorem of Kolmogorov complexity is symmetry of information, which
was established by Kolmogorov and Levin [ZL70]. It states that for every x ∈ {0, 1}∗ and
y ∈ {0, 1}∗,

K(x | y) + K(y) . K(x, y) . K(y | x) + K(x),

where “.” indicates that the inequality holds up to an additive logarithmic term. Note that the
second inequality is trivial because the pair of strings (x, y) can be computed by combining a
program of size K(x) that prints x with a program of size K(y | x) that prints y given x as input.
The highly non-trivial part of symmetry of information is the first inequality. Here, we consider
a time-bounded analogue of symmetry of information.

Definition 21. Symmetry of information for time-bounded Kolmogorov complexity (SoI) refers
to the following hypothesis: There exists a polynomial p such that for any strings x ∈ {0, 1}∗ and
y ∈ {0, 1}∗, for every t ≥ |x| + |y|,

Kp(t)(x | y) + Kp(t)(y) − log p(t) ≤ Kt(x, y). (SoI)
10We include n in the parameter so that L is an ensemble of languages.



Longpré and Watanabe [LW95] showed that P = NP implies SoI, and that SoI implies
the non-existence of one-way functions. In terms of Impagliazzo’s five world, SoI holds in
Algorithmica, while SoI does not hold in Minicrypt. It has been a long-standing open question
to determine whether SoI holds in Heuristica or Pessiland. Recently, building on [Hir21a], this
open question was independently resolved by [Hir21b; GK22]: SoI holds in Heuristica.

Theorem 22 ([Hir21b; GK22]). If DistNP ⊆ AvgP, then SoI holds.

Proof. Let K̃ be the polynomial-time algorithm of Fact 7, which satisfies the property that there
exists a polynomial p such that for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kp(t)(x) − log p(t) ≤ K̃(x; 1t) ≤ Kt(x) (5)

Fix strings x ∈ {0, 1}n and y ∈ {0, 1}m and an integer t ≥ n + m. The proof of SoI is given
by analyzing the following three values for z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, z′ ∼ {0, 1}mk, and
w′ ∼ {0, 1}mk+k:

K̃( DPk(x; z), DP`(y; z′) ; 1t′),
K̃( w, DP`(y; z′) ; 1t′),
K̃( w, w′ ; 1t′),

where t′ = tO(1), k ≈ Kt(x, y) − `, and ` ≈ Kpoly(t)(y) are parameters chosen later.
First, observe that Fact 5 implies that K(w,w′) ≥ |w| + |w′| − 2 with probability at least 3

4 .
Let θ := |w| + |w′| − 2 − log p(t′); using Eq. (5), we obtain

Pr
w,w′

[
K̃(w,w′; 1t′) ≥ θ

]
≥

3
4
. (6)

Next, we set the parameter ` to be Kp′(t)(y)− log p′(t)− 1, where p′ is some large polynomial.
Consider a randomized circuit D that takes w′ as input as well as random bits w and outputs 1 if
and only if K̃(w,w′; 1t′) ≥ θ. By the contrapositive of Lemma 12, DP`(y; -) is a pseudorandom
generator secure against D; i.e., D cannot distinguish DP`(y; z′) and w′ in the sense that∣∣∣∣∣Pr

w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ θ

]
− Pr

w,w′

[
K̃(w,w′; 1t′) ≥ θ

]∣∣∣∣∣ < 1
4
,

which, together with Eq. (6), implies that

Pr
w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ θ

]
≥

1
2
.

Finally, we compare K̃(w,DP`(y; z′); 1t′) with K̃(DPk(x; z),DP`(y; z′); 1t′). On one hand,
since |w| = |z| + k and |w′| = |z′| + `, we have

Pr
w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ |z| + |z′| + k + ` − 2 − log p(t′)

]
≥

1
2
. (7)

On the other hand, observe that for some t′ := poly(t),

K̃(DPk(x; z),DP`(y; z′); 1t′) ≤ Kt′(DPk(x; z),DP`(y; z′)) ≤ Kt(x, y) + |z| + |z′| + O(log n)



holds because the strings DPk(x; z) and DP`(y; z′) can be computed from k, `, z, z′, and a program
of size Kt(x, y) that outputs (x, y) in time t. We now set k := Kt(x, y) − ` + O(log t) so that

Pr
z,z′

[
K̃(DPk(x; z),DP`(y; z′); 1t′) < |z| + |z′| + k + ` − 2 − log p(t′)

]
= 1. (8)

Let Dy be a randomized circuit that takes an input w and random bits z′ and outputs 1 if and
only if K̃(w,DP`(y; z′); 1t′) < |z| + |z′| + k + ` − 2 − log p(t′). It follows from Eqs. (7) and (8) that

Pr
z,z′

[
Dy(DPk(x; z); z′) = 1

]
− Pr

w,z′

[
Dy(w; z′) = 1

]
≥ 1 −

1
2

=
1
2
.

Using Lemma 12, we obtain that

Kpoly(t)(x | Dy) ≤ k + O(log t) = Kt(x, y) − Kp′(t)(y) + O(log t).

It follows that for some large polynomial q,

Kq(t)(x | y) ≤ Kt(x | Dy) + Kt(Dy | y) + O(1) ≤ Kt(x, y) − Kp′(t)(y) + O(log t)

≤ Kt(x, y) − Kq(t)(y) + log q(t)

as desired. �

We mention that SoI holds if Gap(KSAT vs K) is easy because DistNP ⊆ AvgP follows from
Gap(KSAT vs K) ∈ P [Hir20a].

Corollary 23. If Gap(KSAT vs K) ∈ P, then SoI holds.

We conclude this section by raising an open question.

Open Question 24. Does SoI hold in Pessiland? That is, does the non-existence of one-way
functions imply SoI?

8 Universal Heuristic Scheme
Antunes and Fortnow [AF09] showed that the running time of a heuristic scheme that works
with respect to every polynomial-time-samplable distribution can be characterized by using the
notion of computational depth: Under a plausible assumption, {L} × PSamp ⊆ AvgP if and only
if there exists an algorithm S that decides L on input x in time 2O(cdpoly(|x|)(x)+log |x|), i.e., S runs in
exponential time in the time-unbounded computational depth cdpoly(|x|),∞(x). Here, we study a
faster algorithm that runs in exponential time in the time-bounded computational depth, which
we call a universal heuristic scheme.

A universal heuristic scheme for L is an algorithm that takes an additional parameter t and
decides L on input x in time 2O(cdt,p(t)(x)+log t). More formally:

Definition 25 (Universal Heuristic Scheme). An algorithm S is said to be a universal heuristic
scheme for a language L if there exists a polynomial p such that for every x and every t ≥ p(|x|),
the algorithm S outputs L(x) on input (x, t) in time 2O(cdt,p(t)(x)) · tO(1).

It is not hard to see that the existence of a universal heuristic scheme implies an algorithm
that runs in time 2O(n/ log n) on inputs of length n.



Theorem 26 ([Hir21a]). If there exists a universal heuristic scheme S for a language L, then
L ∈ DTIME

(
2O(n/ log n)

)
.

Proof. Let p be the polynomial in Definition 25. We present an algorithm A that solves L on
inputs of length n. Let x be an input of length n. Let I be a parameter chosen later, and let
k := 2n/I. Define ti := p(i)(n) for each i ∈ [I]. The algorithm A simulates the universal heuristic
scheme S on inputs (x, 1t1), (x, 1t2), . . . , (x, 1tI ) in parallel. If one of the simulations halts with
output being b ∈ {0, 1}, then A outputs b and halts. In other words, A(x) is defined to be S (x, 1ti),
where i ∈ [I] is the index such that the running time of S (x, 1ti) is the smallest among i ∈ [I].

We claim that A solves L in time 2O(n/ log n). The correctness of A follows from the definition
that S outputs the correct answer L(x) when it halts. To bound the running time of A, consider
the following telescoping sum:

I∑
i=1

cdti,ti+1(x) = cdt1,tI+1(x) ≤ n + O(1),

where the last inequality follows because Kt1(x) ≤ n + O(1) and KtI+1(x) ≥ 0. By taking the
minimum term of the left-hand side, we obtain

I ·min
{
cdti,ti+1(x)

∣∣∣ i ∈ [I]
}
≤ n + O(1),

from which it follows that there exists i ∈ [I] such that cdti,ti+1(x) ≤ n/I + O(1) ≤ k. The running
time of S on input (x, 1ti) is at most 2O(cdti ,ti+1 (x)+log ti). Let c > 1 be a constant such that p(n) ≤ nc

for all large n; then, we have ti = p(i)(n) ≤ nci
for all large n and every i. In particular, if we

choose I = ε log n for some small constant ε > 0, we obtain ti ≤ 2cI log n ≤ 2
√

n. We conclude that
the running time of S on input (x, 1ti) is at most 2O(cdti ,ti+1 (x)+log ti) ≤ 2O(n/ log n). Thus, A also runs
in time at most 2O(n/ log n). �

Remark 27. Instead of the worst-case algorithm A, it is possible to construct an efficient
heuristic algorithm using Theorem 9. Specifically, one can construct an algorithm A′ such that
given parameters I ∈ N and δ−1 ∈ N, with probability at least 1 − δ over an instance x drawn
from a distributionD ∈ PSamp, the algorithm A′ decides L on input x in time 2O((log 1/δ)/I+cI log n)
for some constant c.

In light of Theorem 26, in order to prove Theorem 2, it suffices to construct a universal
heuristic scheme for each language in PH. It is easier to construct a weak variant of universal
heuristic schemes, which we introduce below.

Definition 28 ([Hir21a]). A weak universal heuristic scheme for a language L is a polynomial-
time algorithm S such that, for some polynomial p, for any n ∈ N, any t ≥ p(n), and any
x ∈ {0, 1}n, if cdt,p(t)(x) ≤ k, then S (x, 1t, 12k

) = L(x).

We also introduce a strong variant that can check an input x is an easy instance or not in
polynomial time.

Definition 29 ([Hir21b]). A strong universal heuristic scheme for a language L is a pair (S ,C)
of polynomial-time algorithms such that, for some polynomial p, for any n ∈ N, any t ≥ p(n),
and any x ∈ {0, 1}n,

1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and



2. if C(x, 1t, 1k) = 1, then S (x, 1t, 12k
) = L(x).

S and C are referred to as a solver and a checker, respectively.

These different notions of universal heuristic schemes are in fact equivalent in Heuristica.

Theorem 30 ([Hir21a; Hir21b]). Assume that GapMINKT ∈ P. Then, the following are
equivalent for any language L:

1. There exists a strong universal heuristic scheme for L.

2. There exists a universal heuristic scheme for L.

3. There exists a weak universal heuristic scheme for L.

Moreover, under the stronger assumption that DistNP ⊆ AvgP, the following statement is also
equivalent.

4. {L} × PSamp ⊆ AvgPP.

Proof. It is easy to show Item 1⇒ Item 2⇒ Item 3. Let (S ,C) be a strong universal heuristic
scheme. We define a universal heuristic scheme S ′ as follows: Given (x, 1t) as input, S ′ finds
the minimum k ∈ N such that C(x, 1t, 1k) = 1 and outputs S (x, 1t, 12k

). Note that k ≤ cdt,p(t)(x)
by the property of the string universal heuristic scheme (S ,C); thus, the running time of S ′

is bounded by 2O(k+log t) ≤ 2O(cdt,p(t)(x)+log t). Next, we show that any universal heuristic scheme
S ′ can be converted into a weak universal heuristic scheme S ′′. We define S ′′ as follows:
Given (x, 1t, 12k

) as input, S ′′ simulates S ′ on input (x, 1t) up to 2O(k+log t) steps and outputs the
output of S ′ if S ′ halts; if S ′ does not halt, the output is defined to be, e.g., 0. Then, S ′′ is a
polynomial-time algorithm. The correctness of S ′′ follows from the definition that S ′ halts in
time 2O(cdt,p(t)(x)+log t) ≤ 2O(k+log t) if cdt,p(t)(x) ≤ k.

We now show Item 3⇒ Item 1. Given a weak universal heuristic scheme S for L, we need to
construct a checker C. The idea of constructing C is to estimate the time-bounded computational
depth of an input by using the polynomial-time algorithm for GapMINKT whose existence is
guaranteed by Theorem 11. Let K̃ be the polynomial-time algorithm of Fact 7 such that for
every x ∈ {0, 1}∗ and every t ≥ |x|,11

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x).

Observe that

cdp(t),p(2)(t)(x) − log p(t) ≤ K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤ cdt,p(3)(t)(x) + log p(3)(t). (9)

We define a checker C as follows: C(x, 1t, 1k) = 1 if and only if K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤
k + log p(3)(t). We define a solver S ′ so that S ′(x, 1t, 12k

) := S ′(x, 1p(t), 12k′

), where k′ :=
k + log p(t) + log p(3)(t).

Below, we claim that (S ′,C) is a strong universal heuristic scheme by showing that it satisfies
the two properties of Definition 29.

11We may assume without loss of generality that the polynomial p in Fact 7 is the same polynomial with
Definition 28.



1. If cdt,p(3)(t)(x) ≤ k, then by the upper bound of Eq. (9), we have C(x, 1t, 1k) = 1.

2. If C(x, 1t, 1k) = 1, then by the definition of C and by the lower bound of Eq. (9), we obtain
cdp(t),p(2)(t)(x) ≤ k + log p(t) + log p(3)(t) = k′. It follows from the property of the weak
heuristic scheme S that S ′(x, 1t, 12k

) = S (x, 1p(t), 12k′

) = L(x).

The implication from Item 1 to 4 can be proved using Theorem 9. The converse can be
proved by considering the “time-bounded universal distribution”. We omit the detailed proof of
the equivalence between Item 1 and Item 4, which can be found in [Hir21a]. �

9 Constructing Universal Heuristic Schemes
We now use SoI to construct a weak universal heuristic scheme for every language in PH. For
simplicity, we first construct a weak universal heuristic for every language in NP.

Theorem 31. If Gap(KSAT vs K) ∈ P, then for every language L ∈ NP, there exists a weak
universal heuristic scheme for L.

Proof. Let V be a polynomial-time verifier for L ∈ NP. For every x ∈ L, let yx denote the
lexicographically first certificate yx such that V(x, yx) = 1. The following claim is the key to the
construction of a weak universal heuristic scheme.

Claim 32. There exists a polynomial q such that for every x ∈ L and every t ≥ |x|,

Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t).

Proof. Note that SoI holds because of Corollary 23. Using SoI, we obtain

Kp(3)(t)(yx | x)

≤Kp(2)(t)(yx, x) − Kp(3)(t)(x) + log p(3)(t) (by SoI)

≤Kp(t),SAT(yx, x) + log p(2)(t) − Kp(3)(t)(x) + log p(3)(t) (by Lemma 20)

≤Kt(x) − Kp(3)(t)(x) + O(log p(3)(t))

= cdt,p(3)(t)(x) + O(log p(3)(t)),

where the last inequality holds because yx can be computed from x in polynomial time given
oracle access to SAT. The claim follows by letting q(t) := p(3)(t)O(1). �

We now present a weak universal heuristic scheme S for L: The algorithm S takes (x, 1t, 12k
)

as input and computes the set Y of strings y ∈ {0, 1}∗ such that there exists a program of length
at most k + log q(t) that takes x as input and outputs y in time q(t). In other words, we define

Y :=
{
y ∈ {0, 1}∗

∣∣∣ Kq(t)(y | x) ≤ k + log q(t).
}

Note that |Y | ≤ 2k+log q(t)+1 and Y can be computed in time poly(|x|, t, 2k) by enumerating all the
programs of length at most k + log q(t). The algorithm S outputs 1 if and only if there exists
a string y ∈ Y such that V(x, y) = 1. Clearly, S is a polynomial-time algorithm. We prove the
correctness of S : It is evident that S does not err on any input x < L. Consider an input x ∈ L
such that cdt,q(t)(x) ≤ k. Then, by Claim 32 we have Kq(t)(yx) ≤ k + log q(t), which implies yx ∈ Y
and thus S accepts. �



This enables us to complete a proof of a special case of Theorem 2.

Corollary 33. If DistPH ⊆ AvgP, then NP ⊆ DTIME(2O(n/ log n)).

Proof. See Fig. 4. �

DistPH ⊆ AvgP Gap(KSAT vs K) ∈ P

∀L ∈ NP admits
universal heuristic schemes

NP ⊆ DTIME(2O(n/ log n))

Corollary 19

Theorems 30 and 31

Theorem 26

Goal

Figure 4: The proof of Corollary 33.

To extend Theorem 31 to all the levels of PH, we use an inductive argument that constructs
weak universal heuristic schemes for the k-th level Σp

k of PH from weak universal heuristic
schemes for Σp

k−1.

Theorem 34. Let k ∈ N. If DistΣp
k+1 ⊆ AvgP, then for every language L ∈ Σp

k , there exists a
weak universal heuristic scheme for L.

Proof. We prove this by induction on k ∈ N. The base case (k = 0) is trivial because every
language L ∈ Σp

0 = P admits a weak universal heuristic scheme. Let k ≥ 1. Let V be a language
in Πp

k−1 such that x ∈ L if and only if V(x, y) = 1 for some y ∈ {0, 1}poly(|x|). For every x ∈ L, let
yx be the lexicographically first string y such that V(x, y) = 1. Using the same proof idea of
Claim 32, it is easy to prove the following.

Claim 35. There exists a polynomial q such that for every x ∈ L and every t ≥ |x|,

Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t).

By the induction hypothesis, there exists a weak universal heuristic scheme S for V ∈ Πp
k−1.

Let p be the polynomial in Definition 28. Using S , we now present a weak universal heuristic
scheme S ′ for L: The algorithm S ′ takes (x, 1t, 12k

) as input and computes the set

Y :=
{
y ∈ {0, 1}∗

∣∣∣ Kq(t)(y | x) ≤ k + log q(t).
}

Note that |Y | ≤ 2k+log q(t)+1 and Y can be computed in time poly(|x|, t, 2k) by an exhaustive search.
The algorithm S ′ outputs 1 if and only if there exists a string y ∈ Y such that S ((x, y), 1t′ , 12k′

) = 1,
where t′ = tO(1) and k′ = O(k+log t) are parameters chosen later. Clearly, S ′ is a polynomial-time
algorithm.

We claim the correctness of S ′. Assume that cdt,2p(t′)(x) ≤ k. We claim that for some
parameter t′ = q(t)O(1) and for every y ∈ Y , the (t′, p(t′))-time-bounded computational depth of
(x, y) is at most k′, which will imply that the output of the weak universal heuristic scheme S is
correct on input (x, y). For every y ∈ Y , we have

cdt′,p(t′)(x, y) ≤Kq(t)(x) + Kq(t)(y | x) − Kp(t′)(x, y) + O(1)

≤ cdq(t),2p(t′)(x) + k + log q(t) + O(1)
≤ 2k + log q(t) + O(1) =: k′,



where the first inequality follows from the definition of time-bounded computational depth,
the second inequality follows from the fact that K2p(t′)(x) ≤ Kp(t′)(x, y) + O(1) and y ∈ Y , and
the third inequality follows from the assumption that cdq(t),2p(t′)(x) ≤ cdt,q′(t)(x) ≤ k. By the
correctness of the weak universal heuristic scheme S , we obtain S ((x, y), 1t′ , 12k′

) = V(x, y).
If x ∈ L, Claim 35 implies that yx ∈ Y; thus, we have S ((x, yx), 1t′ , 12k′

) = V(x, yx) = 1,
which implies that S ′ outputs 1. If x < L, then V(x, y) = 0 for every string y; thus, we obtain
S ((x, y), 1t′ , 12k′

) = V(x, y) = 0, which implies that S ′ outputs 0. �

This completes the proof of the second item of Theorem 2, as shown in Fig. 5.

DistPH ⊆ AvgP Gap(KPH vs K) ∈ P

∀L ∈ PH admits
universal heuristic schemes

PH ⊆ DTIME(2O(n/ log n))

Corollary 19

Theorems 30 and 34

Theorem 26

Goal

Figure 5: The proof of the second item of Theorem 2.

Finally, we construct universal heuristic schemes for UP.

Theorem 36. If DistNP ⊆ AvgP, then for every language L ∈ UP, there exists a weak universal
heuristic scheme for L.

Proof. Let V be a UP-type verifier for L; that is, for every x ∈ L, there exists a unique certificate
yx such that V(x, yx) = 1. Consider an ensemble L =

{
L〈n,t,s〉

}
n,t,s∈N of languages defined as

L〈n,t,s〉 :=
{
(x, y)

∣∣∣ x ∈ {0, 1}n,V(x, y) = 1,Kt(x) ≤ s
}
.

It is easy to observe that L ∈ NP. Using that L ∈ UP, we can observe that |L〈n,t,s〉| ≤ 2s+1 because
the number of strings x such that Kt(x) ≤ s is at most 2s+1 by Fact 5 and for each x there is at
most one certificate y such that V(x, y) = 1. Applying Theorem 16 to L, there exists a polynomial
p such that for every t ≥ n, for every (x, yx) ∈ L〈n,t,s〉 such that s := Kt(x), it holds that

Kp(t)(x, yx) ≤ s + 1 + log p(t) = Kt(x) + log 2p(t).

Since SoI follows from Theorem 22, we have

Kp(2)(t)(yx | x) ≤ Kp(t)(x, yx) − Kp(2)(t)(x) + log p(2)(t).

Combining these two inequalities, we obtain

Kp(2)(t)(yx | x) ≤ cdt,p(2)(t)(x) + O(log t). (10)

We now present a weak universal heuristic scheme S for L. Given an input (x, 1t, 12k
) such

that cdt,p(2)(t)(x) ≤ k, the algorithm S computes the set

Y :=
{
y ∈ {0, 1}∗

∣∣∣∣ Kp(2)(t)(y | x) ≤ k + O(log t)
}

and accepts if and only if there exists y ∈ Y such that V(x, y) = 1. The correctness of S follows
from Eq. (10) because it implies yx ∈ Y for every x ∈ L. �



This enables us to complete the proof of Theorem 2.

Proof of the first item of Theorem 2. Assume DistNP ⊆ AvgP. By Theorem 36, every language
L ∈ UP admits a weak universal heuristic scheme, which can be converted into a universal
heuristic scheme by Theorem 30, from which we obtain L ∈ DTIME(2O(n/ log n)) by Theorem 26.

�

In the original paper [Hir21a], a more general result than Theorem 36 was proved: DistNP ⊆
AvgP implies that NPsv admits universal heuristic schemes. Here, NPsv stands for size-verifiable
NP and is the class of languages L ∈ NP such that some AM protocols can verify that the number
of certificates for L is approximately small. The notion of size-verifiability was introduced
by Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06]. It is easy to observe that
UP ⊆ FewP ⊆ NPsv ⊆ NP and that NPsv = NP if NP ⊆ coAM; however, the complexity of
NPsv is not well understood. It is an interesting open problem to extend UP of Theorem 36 to
NP.

Open Question 37. Does NP * DTIME(2O(n/ log n)) imply DistNP * AvgP? In particular, is it
possible to construct universal heuristic schemes for NP under the assumption that DistNP ⊆
AvgP?

10 Future Research Directions
We conclude this article by presenting three research directions which we believe are most
promising and exciting.

The first research direction is to develop non-relativizing proof techniques. The only
non-relativizing part of the proofs in this article is Theorem 3, which constructs a complexity-
theoretic pseudorandom generator in Heuristica. In fact, there is a relativizing proof showing
the existence of a pseudorandom generator from the stronger assumption that DistPNP ⊆ AvgP
[HN21]. Given that there is a quantitatively tight relativization barrier [HN21], we would need a
non-relativizing proof technique to obtain better worst-case-to-average-case connections for NP
or PH. A recent line of work [AHMPS08; HOS18; Ila20a; ILO20; Ila20b; ACMTV21; LP21;
Hir21b] developed apparently non-relativizing proof techniques: Although Ko [Ko91] showed
that GapMINKT cannot be shown to be NP-hard using a relativizing proof technique, NP-
hardness of computing sublinear-time-bounded conditional Kolmogorov complexity is proved
in [ACMTV21; LP21; Hir21b]. Note that NP-hardness of GapMINKT excludes Heuristica
by Theorem 11; even NP-hardness of GapMINKTPH would significantly improve Theorem 2.
Trying to prove NP-hardness of meta-computational problems would lead us to new non-
relativizing proof techniques. A state-of-the-art result along this research line is due to Ilango
[Ila20b; Ila21], who showed NP-hardness of variants of the Minimum Circuit Size Problem
[KC00], which is another representative meta-computational problem.

The second research direction is to use meta-complexity to exclude Pessiland. Impagliazzo
and Levin [IL90, Proposition 1] presented a proof sketch of the characterization of the existence
of a one-way function: there exists no one-way function if and only if the randomized t-time-
bounded Kolmogorov complexity of x can be approximated with high probability over a random
input x drawn from any unknown t-time-samplable distribution. Their results can be seen
as an approach toward excluding Pessiland: If the randomized t-time-bounded Kolmogorov
complexity is NP-hard under t′-time randomized reductions for t′ � t, then Pessiland does



not exist, i.e, (error-prone) average-case hardness of NP implies the existence of a one-way
function. More recently, Liu and Pass [LP20] proved the equivalence between the non-existence
of a one-way function and the existence of a randomized polynomial-time error-prone heuristic
that computes Kt(x) with high probability over a random input x chosen from the uniform
distribution. The main gap between these results and the results presented in this article is the
difference between error-prone average-case complexity (denoted by HeurP in [BT06a]) and
errorless average-case complexity (AvgP), which was recently investigated in [HS22a]. An
intermediate statement is SoI, which is sandwiched between errorless heuristics for MINKT and
error-prone heuristics for MINKT [Hir21b]. Nanashima [Nan21] showed that the existence of a
one-way function follows from NP * BPP (i.e., both Heuristica and Pessiland can be excluded)
if there exists a randomized nonadaptive reduction from NP to the adversary of auxiliary-input
hitting set generators. Note that the existence of a hitting set generator is equivalent to the
hardness of GapMINKT, at least under non-black-box reductions (Proposition 13). Given these
results, we conjecture that meta-complexity would play a central role in excluding Pessiland, as
well as Heuristica.

The last research direction is to determine average-case complexity of natural distributional
problems in DistNP. We started off this article by explaining that the motivation of studying
average-case complexity is to understand the “real-life” complexity of (natural) distributional
problems. The original motivation of Levin [Lev86], who laid the foundation of average-case
complexity, was also the same and showed that the Tiling problem is DistNP-complete. However,
a relatively few distributional problems in DistNP are shown to be DistNP-complete, compared
to the highly successful theory of NP-completeness [Coo71; Lev73; Kar72]. The difficulty
is that an average-case reduction disturbs the distribution of distributional problems, which
makes it difficult to prove DistNP-completeness of distributional problems (L,D) for natural
distributionsD. We envision that meta-complexity could come to the rescue: Meta-complexity
enables us to analyze average-case complexity through the lens of worst-case complexity,
for which a reduction is easier to construct. [Hir20a; HS22b] showed that (MINKTPH,U) is
DistPH-complete, which may be a step toward determining average-case complexity of natural
distributional problems in DistPH or DistNP.
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