
The Distributed Computing Column

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

In this issue of the distributed computing column, we return to the topic of
blockchains. The column provides an overview of the Red Belly Blockchain, an
innovative new blockchain developed in Australia (and named after the locally
prevalent red-bellied black snake). Red Belly Blockchain has served as a testbed
for several cutting edge approaches to designing a blockchain, including ideas
from distributed computing, game theory, and formal verification. Some examples
described in this paper include:

• Red Belly blockchain is (provably) accountable, providing a cryptograph-
ically secure “proof-of-fraud” when users act maliciously and disrupt the
system.

• The blockchain contains several scalability innovations. For example, it
takes an interesting approach to sharding (and “superblocks”), using a lead-
erless (“democratic”) approach to dynamically create new shards as needed.

• The consensus component of the Red Belly blockchain has been formally
verified with model checking tools, providing stronger guarantees of cor-
rectness.

The article also discusses new optimizations in handling smart contracts, chal-
lenges in governence, and trade-offs between mutability, accountability, and pri-
vacy. The article provides a window into how recent academic research translates
into a large-scale, real-world blockchain design. Overall, it provides interesting
insights in the challenges of integrating new ideas into blockchain design. Enjoy
this new distributed computing column!

Redbelly Blockchain:
a Combination of Recent Advances*

Redbelly Network

Abstract

Redbelly Blockchain builds upon recent scientific advances in the context of distributed com-
puting, game theory and formal verification to apply blockchains to the real world. In this paper,
we present how Redbelly Blockchain combines these results to remedy vulnerabilities that affect
modern blockchains. In particular, Redbelly Blockchain offers accountability by generating a
Proof-of-Fraud, an undeniable proof of misbehavior, automatically. The architecture of Red-
belly Blockchain is decoupled into a consensus component and a language virtual machine com-
ponent, called SEVM, to achieve resilience optimality against failures and attacks. For greater
security, its consensus component does not assume pure synchrony, is formally verified with
model checking and solves the consensus problem deterministically. To run a large ecosystem
of dApps efficiently, the SEVM supports Solidity bytecode without the unnecessary redundant
validations of traditional designs. Redbelly Blockchain is dynamic as it features a built-in re-
configuration smart contract triggered by a representative governance. Finally, it is designed for
mobile devices to interact securely without downloading the blockchain.

1 Distributed Ledger Architecture
The blockchain service is provided by blockchain nodes, or machines, offering consensus execution
and storage service. Redbelly Blockchain is open in that any node has the possibility of providing the
service, however, Redbelly Blockchain also aims at not wasting node resources by offering too many
redundant services. Hence, instead of incentivising all nodes to execute the same tasks, Redbelly
Blockchain allows different nodes to offer different services at different times. To eventually provide
the service, nodes must first authenticate themselves, just like nodes must first offer a proof-of-work
in classic blockchains [27] to produce valid blocks. One can thus compare the absence of proof-
of-fraud in Redbelly Blockchain to the creation of proof-of-work, but without the carbon footprint
associated with resolving cryptopuzzles.

More precisely, the architecture of Redbelly Blockchain is decoupled in different components to
achieve resilience optimality. It is known that consensus cannot be solved in the general model, when
nodes communicate over the Internet and in the presence of arbitrary (byzantine) failures, without
n > 3 f nodes [26], where f is the number of byzantine nodes. Interestingly, however, this threshold
does not apply to provide secure data retrieval: to achieve data integrity and tamper-proofness one
simply needs n > 2 f : despite f byzantine nodes, one is guaranteed to identify the correct copy as
the only copy received from f + 1 distinct nodes. Hence, decoupling storage/SEVM nodes from
consensus nodes allows to better tune the resource provisioning necessary to achieve security.

Figure 1 presents the architecture of Redbelly Blockchain. The SEVM component is web3 com-
pliant, executes decentralised applications (dApps) and reliably stores the blockchain. The web3
compliance comes from its web3.js server that accepts valid requests to transfer assets, upload or

*Contact author: Vincent Gramoli vincent.gramoli@redbelly.network

Figure 1: Redbelly Blockchain architecture and the life cycle of a transaction

execute a smart contract. Redbelly Blockchain supports smart contracts written in Solidity byte-
code to facilitate the integration of the most used dApps. The transaction manager batches these
transactions into blocks that are proposed to the consensus service. The consensus groups as many
proposed blocks as possible into a committed superblock before the SEVM validates its requests,
executes them and reliably stores the results.

The consensus component (§2) features the Democratic Byzantine Fault Tolerant (DBFT) con-
sensus algorithm [11] that solves consensus deterministically without the need to assume pure com-
munication synchrony or that there exists a known upper bound on the message delays [14]. (Instead,
we assume that this bound is unknown, a property referred to as partial synchrony.) Note that this
is appealing to cope with network attacks that could otherwise lead to double spending [28, 16]. To
avoid network bottlenecks, DBFT starts with a leaderless all-to-all reliable broadcast where each
consensus node shares its proposal with the rest of the system (§2.2). Then DBFT spawns as many
binary consensus instances as proposals to decide whether each of these proposals gets included
in the decided superblock. As the binary consensus is probably the most elaborate and sensitive
part of Redbelly Blockchain it has been formally verified with model checking (§2.1). The decided
superblock is then sent back to the SEVM for execution and storage.

Redbelly Blockchain supports a large ecosystem of dApps by offering the Scalable EVM (SEVM)
(§5). Like for the Ethereum Virtual Machine (EVM), the SEVM allows Redbelly Blockchain to run
like a state machine replication whose commands are expressed in a Turing complete programming
language. In contrast with Ethereum [36] though, Redbelly Blockchain leverages this capability by
utilizing smart contract output as an input to itself. Since the smart contract execution is deterministic
and agreed upon by all nodes, it allows Redbelly Blockchain to upgrade itself without hard-forking
(§6.1), to change its governance and mitigate the risks of bribery (§6) and for a subset of nodes to
spawn their own shard or close it on-demand at runtime (§7.2).

Last but not least, Redbelly Blockchain interfaces the real-world (§8). This is why it comes with
a lightweight secure wallet, called lightsec (§8.1) and interacts with oracles (§8.2). In particular, the
lightsec wallet differs from classic wallets in that it is both (i) lightweight as it can run in handheld
devices without having to download a blockchain history, and (ii) secure as it can retrieve correct
information, hence its name. The transaction fees are maintained low thanks to the high capacity
throughput of Redbelly Blockchain. The oracle offers the necessary identification mechanism to let
real users govern Redbelly Blockchain and inform the blockchain about the success of traditional
payments.

1.1 Blockchain Abstract Representation
The distributed architecture described above implements a blockchain, a simple linked list abstrac-
tion chaining blocks, one block to another, each containing a sequence of cryptographically signed
transactions. We call it a linked list (and not a directed acyclic graph) as it does not have forks:
consensus upon a block at a given index is reached before this block gets appended. We say that a
transaction is final as soon as it is included in a block of Redbelly Blockchain.

Figure 2: Redbelly Blockchain interactions with oracles

Figure 2 depicts the blockchain abstraction as maintained in the reliable storage of a single
SEVM node. Thanks to the consensus protocol depicted in the distributed architecture (Figure 1),
among two chains of blocks maintained locally by two honest SEVM nodes, either one is guaranteed
to be the prefix of the other or the two are guaranteed to be identical. This property will be listed as a
requirement of the blockchain problem (Def. 3). As all SEVM nodes end up having the same blocks
anyway, we simply focus here on a single SEVM node, its interaction with oracles and the wallet
for simplicity. The dApps are stored in the blockchain (either because these are built-in dApps or
because some client uploaded them) and their functions can be invoked remotely by the clients. The
dApps can gather real-world information from distributed (Dist.) or centralized (Cent.) oracles as
we will discuss in §8.2.

2 Scalable and Verified Consensus
The byzantine consensus problem [26] is for a set of nodes to agree on a unique value despite arbi-
trary behaving nodes, called byzantine. This problem must be solved to design a secure blockchain
that guarantees the uniqueness of the block to be appended at its next available index [1].

Redbelly Blockchain features the Democratic Byzantine Fault Tolerance (DBFT) consensus al-
gorithm [11]. By contrast with most consensus algorithms, it is democratic in that it does not elect a
leader node that tries to impose its value to the rest of the nodes, which would otherwise limit scal-
ability as described in §2.2. In addition, this consensus algorithm is probably the first blockchain
consensus algorithm to be formally verified with model checking [4] as we explain in §2.1, which
reduces drastically the risks of human errors, that are otherwise common [33]. Finally, it does not
assume that the bound on the delay of messages is known (it only assumes partial synchrony but not
synchrony [14]) and it is resilient optimal as it tolerates f < n/3 arbitrary (or byzantine) failures.

The consensus problem is generally defined as the problem for honest (non-byzantine) nodes of
ensuring the conjunction of three properties despite the presence of byzantine nodes.

Definition 1 (Byzantine Consensus). Assuming that each honest (non-byzantine) node proposes a
value, the Byzantine Consensus (BC) problem is for each of them to decide on a value in such a way
that all the following properties are satisfied:

• BC-Termination: every honest node eventually decides a value;

• BC-Agreement: no two honest nodes decide on different values;

• BC-Validity: the value decided is one of the proposed values.

To understand the importance of solving consensus to design a blockchain, consider that the
blockchain is in its initial state consisting of a genesis block, at index 0. Let an attacker, say Mallory,
issue two conflicting transactions, tx1 where Mallory transfers all her coins to Alice and tx2 where
Mallory transfers all her coins to Bob. Let us consider what can happen if the BC-Agreement
property is violated in that distinct nodes of the blockchain believe they can append distinct blocks,
one containing tx1 and the other containing tx2, at index 1 of the blockchain. This can lead to a
double spending, where the same coins are spent twice. By contrast, when consensus is reached
then all nodes agree on a unique block to be appended and it is simple for each individual node to go
through this block and executes the transactions it contains one-by-one unless a transaction conflicts
(e.g., lack sufficient funds to execute).

Algorithm 1 Binary consensus algorithm at replica pi

1: bin-propose(val): B binary consensus at pi with val ∈ {0, 1}
2: loop: B loop that starts with round r = 1
3: (bv-broadcast(est, r, val)→ cvals) B reliable bcast that is ommitted in some optimization
4: start-timer(r) B timeout increases with rounds
5: if i = r mod n then B coordinator rebroadcasts
6: wait until (cvals = {w}) B cvals stores delivered values

7: broadcast(coord, r,w)→ c B coordinator broadcasts

8: wait until (cvals , ∅ ∧ timer expired) B wait enough time

9: if c ∈ cvals then e← {c} else e← cvals B prioritize coord value
10: broadcast(aux, r, e)→ bvals B broadcast these values
11: wait until ∃s ⊆ bvals where the two following conditions hold: B wait to deliver more values until
12: • s contains contents received from at least n − t distinct nodes B sufficiently many copies are delivered
13: • ∀v ∈ s, v ∈ cvals B and every value in s is in cvals

14: if s = {v} then B if there is only one value in s

15: val← v B adopt this singleton value
16: if v = (r mod 2) and not decided yet then decide(v) B decide only once

17: else val← (r mod 2) B otherwise, adopt the current parity bit

18: if decided in round r − 2 then exit() B help others in two last rounds

19: r ← r + 1 B increment the round number

2.1 Formal Verification
As the problem of consensus is particularly difficult to solve, and human errors are frequent [33], it
is important to check mathematically the properties of a security system, a process we call formal
verification. We formally verified the binary consensus at the heart of DBFT (Alg. 1) using a model
checker [4]. This binary consensus algorithm is represented as the bin.cons.1, ..., bin.cons.k blocks
on Figure 1 because there is one instance of this binary consensus algorithm to decide whether
each proposed block should be included in the committed superblock. All honest participants pass
their input value val to the loop of Alg. 1 where they exchange values and refine their estimate
until they decide a value (line 16). Because verification of liveness properties consists of assuming
fairness and showing that a property holds in every fair execution, we relax the partial synchrony
assumption [14] of DBFT and replace it by a fairness assumption. Relaxing partial synchrony allows
to simplify the pseudocode by ignoring timers (lines 4 and 8 of Alg. 1) and the weak coordinator
steps (lines 5–7 of Alg. 1). The fairness assumption states that in any infinite sequence of iterations
of the protocol loop, there exists one iteration where, at all honest nodes, a binary value broadcast
(or bv-broadcast) instances deliver the same bit first. Note that this fairness could be violated if
byzantine nodes were controlling the network, but no solutions to the consensus problem would
exist in this case anyway [6].

Algorithm Verification time

bv-broadcast 48.87 s
Naive consensus >3 days

Consensus 22.54 s

Table 1: Although none of the properties of the naive blockchain consensus could be verified within
a day of execution of the model checker, it takes about ∼4 s to verify each property on the simplified
automaton of the blockchain consensus. Overall it takes less than 70 seconds to verify both the
binary value broadcast and the blockchain consensus protocols.

To formally verify the consensus algorithm we holistically verified that the model of the pseu-
docode verifies the properties of Def. 1, expressed in linear temporal logic (LTL), for any system
size n and fault tolerance f < n/3 as detailed elsewhere [3]. To this end, we rely on the parameter-
ized model checker, ByMC [25], convert the pseudocode of the consensus algorithm into a threshold
automaton, and deployed it on a Message Passing Interface (MPI) cluster of 4 AMD Opteron 6276
16-core CPU with 64 cores at 2300 MHz and 64 GB of memory. As the naive threshold automaton
(Naive consensus) is too large to be formally verified within 3 days of execution on our MPI cluster
as indicated in Table 1, we first verified the properties of the binary value broadcast (bv-broadcast)
primitive (line 3 of Alg. 1) using ByMC before simplifying the naive threshold automaton using the
formally proven properties of the bv-broadcast primitive. Both the safety and liveness properties of
the resulting threshold automata (bv-broadcast and Consensus) could be verified in 1 minute and 11
seconds (cf. Table 1).

2.2 Bypassing the Leader Bottleneck
The name Democratic BFT consensus algorithm stems from the fact that this algorithm does not
need a leader that tries to impose its block to the rest of the system. Instead, during an execution of
DBFT, every node can propose its own block to the consensus and the decided, so called, superblock
(cf. §3.2) can include any of the proposed blocks. One advantage is that, in DBFT, there cannot
be a misbehaving leader that prevents the convergence towards agreement. In particular, there can
be as many different weak coordinators (line 5 of Alg. 1) as there are concurrent binary consensus
instances, and even a single weak coordinator cannot prevent for sure the convergence of the binary
consensus to which it participates. As opposed to the nodes of traditional blockchains that “compete”
to append their own block, the nodes of Redbelly Blockchain “collaborate” to append a combined
superblock.

Another advantage of this collaboration is the scalability induced by having every participant
exchanging their proposals in parallel over a wide area network. Consider, as an example, that we
want to append a new block (or superblock) of b bits with a blockchain system with a traditional
leader-based consensus algorithm running on n nodes that have limited bandwidth resources. In
particular, each node i is equipped with a download capacity of di and an upload capacity of ui, both
expressed in bits per unit of time. Without loss of generality, let the leader be node 1 with download
and upload capacities d1 and u1, respectively. The time τ it will take the leader to send the block to
all nodes (we consider that the leader sends to itself for simplicity as it does not alter our conclusion)
is the maximum between these two:

• The time for the leader to upload n · b bits, which is n·b
u1

units of time.

• The time to download b bits for the node that has the lowest download rate among all other
nodes, which is b

min(di:1≤i≤n) units of time.

Figure 3: The time it takes for propagating a block in a leader-based consensus algorithm typically
increases with the number n of nodes whereas the time to propagate a block in a leaderless consensus
algorithm can be independent of n

Figure 3 depicts the time to propagate a block in both our simplistic leaderless and leader-based
consensus algorithms as a function of n. The time needed for the leader to propagate the block to
all nodes is τ = max

(
n·b
u1
, b

min(di:1≤i≤n)

)
and we can conclude that this time is Ω(n) units of time. As n

increases, we can see that the time it takes for the leader-based consensus algorithm to propagate the
leader block increases with the number of nodes in the system. By contrast, the time it takes if the
algorithm is leaderless to propagate a block of b bits to all the nodes is the maximum between the
time for the node with the lowest upload rate to upload b/n bits, which is b/n

min(ui:1≤i≤n) , and the time
for the node with the lowest download rate to download b bits, which is b

min(di:1≤i≤n) . Provided that
the difference in download rates among n nodes is independent of n, the maximum is thus a constant
independent of n because each node simply needs to propagate b/n bits. This explains in part why
DBFT helps Redbelly Blockchain scale [12].

3 Block Structure
As mentioned previously, the structure of the Redbelly Blockchain is a linked list, hence this can be
viewed as a “non-forkable” chain of superblocks.

3.1 A non-forkable chain

As opposed to classic blockchains, Redbelly Blockchain does not fork to mitigate the risks of double
spending. The main distinction with classic blockchains is that Redbelly Blockchain solves consen-
sus first, before appending the unique agreed upon superblock as we already explained (§1.1). This
guarantees a total order on the blocks that allows anyone to retrieve the current state of accounts by
consulting the latest block: we do not talk about “confirmation” as a transaction is either pending
or committed. This is in contrast with classic blockchains where an appended block must be suf-
ficiently confirmed (or followed by sufficiently many blocks) for the probability of its transactions
aborting to be sufficiently low.

Even during network attacks that can delay the message propagation [15], in common execu-
tions, two conflicting transactions cannot be inserted into two branches. We refer to these “common
executions”, as we will detail in §4, as executions in which an overwhelming number f ≥ n/3 of

faults do not occur at the same time. In the scenario where conflicting transactions are included
in the same block, then the first of these transactions will get executed while the second will not,
as the conflict will be detected locally by the SEVM node. This tolerance to network partition can
be seen as the result of favoring consistency over availability given that not both consistency and
availability can be achieved in this case [21]. The key motivations for favoring consistency is for
Redbelly Blockchain to support secure applications: no transactions that appeared committed can
later be aborted.

In §4, we will explain how to cope with an overwhelming number of faults. In §7.2, we will
explain how we can extend Redbelly Blockchain to spawn additional chains to complement the
mainchain, however, none of these chains fork because they inherit the Redbelly Blockchain design.

3.2 Superblocks to scale throughput
Appending superblocks to the blockchain allows us to increase the performance (i.e., throughput) as
the number of nodes running the consensus grows. This optimization originally proposed in [22],
consists of resolving a different notion of consensus, called the Set Byzantine Consensus [12] as
defined below.

Definition 2 (Set Byzantine Consensus). Assuming that each honest node proposes a set of transac-
tions, the Set Byzantine Consensus (SBC) problem is for each of them to decide on a set in such a
way that the following properties are satisfied:

• SBC-Termination: every honest node eventually decides a set of transactions;

• SBC-Agreement: no two honest nodes decide on different sets of transactions;

• SBC-Validity: a decided set of transactions is a non-conflicting set of valid transactions taken
from the union of the proposed sets;

• SBC-Nontriviality: if all nodes are honest and propose a common valid non-conflicting set of
transactions, then this set is the decided set.

Thanks to this new definition, Redbelly Blockchain does not need to decide one block maximum
in each iteration of the consensus (as classic blockchains do). Instead, Redbelly Blockchain decides
a number of blocks that can grow linearly with the number of nodes in the system. This is key to
the scalability of the consensus protocol. There are two important remarks regarding this definition.
First, note that it refers to a decided set, although the transactions should be executed in the same
order at every node. This can easily be ensured by executing transactions in the order of their hash
or nonce. Second, the superblock optimization differs from batching more proposals at the leader,
as batching could exacerbate the bottleneck effect of the leader (§2.2).

4 Accountability with PoF
Redbelly Blockchain applies accountability [23], the ability to make distributed participants respon-
sible for their actions, to the partially synchronous setting [9]. To this end, it generates undeniable
proofs-of-fraud (PoFs) as indicated in §4.2. By requiring participants to deposit assets prior to par-
ticipating, we can exploit proofs-of-fraud to slash malicious players and compensate the victims, in
the unlucky case of an overwhelming majority of participants as we will explain in §4.1.

PoF can be compared to PoW or PoS to cope with Sybil attacks: a block is considered valid in
Redbelly Blockchain only if it was produced by a participant that would leave some undeniable PoF
in case it tries to attack the system. This is why a valid block is one that is produced by a user who

provided the necessary information required by Redbelly Blockchain. This information is used to
identify the user uniquely, which prevents a malicious attacker from impersonating other users to
conduct a Sybil attack.

4.1 Strengthening fault tolerance
Accountability allows us to reward only the good behaviors that contribute to the system. Such
good behaviors include staking (providing liquidity to the system for a period of time), using storage
resources to keep track of the blockchain history, or exploiting network and CPU resources in order
to contribute in reaching a consensus. Redbelly Blockchain will require consensus participants to
deposit some stake before they start executing the consensus. They will gain a reward based on their
contribution to the consensus. Our reward is equally divided among the consensus participants for
their contributions but consensus participants will change over time as we will explain in §6.1. If a
consensus participant misbehaves, then it will not receive its reward and will be excluded from the
set of consensus participants, preventing it from being rewarded in the future.

Accountability is particularly effective in “uncommon” situations, where a coalition of malicious
users is of size f sufficiently large to lead honest consensus nodes to a disagreement. As consensus
is impossible in the general setting when n ≤ 3 f where n is the number of consensus nodes [26], we
know that this can happen. Fortunately, even when f ≥ n/3 and as long as f < 2n/3 and less than
n/3 nodes are inactive forever, Redbelly Blockchain can recover. When the disagreement occurs we
can upper-bound the number a of branches given the number f of malicious participants, as was
shown in [29]. A recent work has even demonstrated that not more than 2n/3 honest participants
is necessary to solve consensus when considering that some participants are rational [30]. For this
reason, we can also lower-bound a deposit that consensus nodes need to escrow in order to reimburse
any fooled users.

In particular, we require each consensus node to deposit some amount d during the time it partic-
ipates to the consensus protocol. This deposit amount depends on various parameters. In particular,
our recent result [29] expresses the ratio b of the deposit over the value G of funds that is being
stolen. Consider a colluding majority of size n/3 ≤ f < 5n/9, a probability of attack success
ρ = 0.5, deposits held for m = 10 blocks and G = $1M manipulated funds. As f < 5n/9, we have
a ≤ 3 branches, thus b = 1/500 is sufficient. As D = G/500 = 2, 000, for n = 100, each node needs
to deposit 3bG/n = $60 for Redbelly Blockchain to recover.

4.2 Proof-of-Fraud
Our solution to the accountability problem is to build undeniable proofs-of-fraud at runtime. More
specifically, our implementation enforces all nodes to sign key messages: a honest node will simply
ignore key messages that are not properly signed by their senders. These ‘key’ messages are those
that can influence the decision of other participants during the execution of any binary consensus
protocol (Alg. 1) or the reliable broadcast (§1) that precedes these binary consensus executions [29].

In particular, it was shown that the only way for honest nodes to disagree while executing DBFT
is for a coalition of malicious nodes to hack one of the broadcast primitives so as to equivocate, by
sending different messages to different honest nodes [9]. Provided that these messages are signed,
upon reception of these messages, honest nodes simply have to cross-check their received messages
to detect a misbehavior. An undeniable proof-of-fraud is thus built by a honest node using the
concatenation of two equivocating messages from the same sender. These proofs-of-fraud are rapidly
communicated to other honest nodes to stop rewarding malicious nodes.

Note that the original accountable consensus technique, called Polygraph [9], is an extension
of our consensus algorithm DBFT [11], which already offered scalable results in geo-distributed
experiments [29]. Since then, a more generic transformation has been proposed [10]. It only requires

an additional round of communication involving an additive O(n2) communication complexity when
threshold signatures can be used.

5 Language Virtual Machine
In this section, we present the Scalable EVM (SEVM), an optimized way of validating transactions
and executing smart contracts.

5.1 Smart contracts

Redbelly Blockchain is compatible with a large ecosystem of DApps by offering the possibility to
execute the same bytecode supported by the Ethereum Virtual Machine (EVM) [36]. The motivation
for not developing a new DApp language is simple: the shortage in resources and the high demand
of programmers skilled in blockchain raised the cost of programming decentalized finance, which
makes it difficult to grow a new ecosystem of DApps.

5.2 Validation reduction

We built upon the EVM to develop what is called the SEVM, standing for the Scalable EVM, as
detailed in [32]. It inherits the gas mechanism of Ethereum, mitigating denial-of-service attacks,
but differs from the EVM to achieve 10,000 TPS on 100 nodes with 33 failures tolerated. With our
consensus protocol (§2), the overhead is no longer the consensus but the EVM execution when trying
to execute smart contract functions. The key aspect to reduce existing smart-contract blockchain
overheads is thus to reduce the unnecessary validation overhead common to existing blockchains
(e.g., Ethereum, Libra/Diem) where all validators validate each transaction twice (upon transaction
reception and upon block reception), hence validating globally each transaction 2n times, where
n is the number of SEVM nodes. Redbelly Blockchain simply needs to validate each transaction
n + 1/n times, which tends to halving the validation overhead as the system size grows towards
infinity, n → ∞. The security is not hampered because all nodes, upon reception of the decided
block, validate every transaction, anyway.

Go Ethereum, or geth for short, is probably the mostly deployed EVM implementation. In order
to check that a request (or transaction) is valid, all of the geth servers (i.e., miners) must validate
each transaction eagerly and lazily, hence we distinguish the two following validations:

• Eager validation: This validation occurs upon reception of a new client transaction to check
various parmeters of this transaction (gas, balance, signature, size). If the transaction is valid,
it is propagated to other servers.

• Lazy validation: This validation occurs before transactions are executed in a decided block
and simply checks the nonce and the gas. The lazy validation is thus less time consuming in
geth than the eager validation.

Note that this is an overconservative strategy because each to-be-executed transaction of geth is
validated twice by each validator/miner. In particular, there is no need for all validators to validate
all transactions twice. In Redbelly Blockchain, only a constant number of nodes execute the eager
validation, but without re-propagating the transaction to all servers. If the transaction is decided
by the consensus algorithm, anyway, all servers will execute the lazy validation before executing
the transaction. Note that not forwarding the request still ensures the best effort property of clas-
sic blockchains, namely that a transaction needs to be received by a honest node to be eventually

committed. The advantage is that it reduces the number of validations per nodes from Vn
eth = 2 in

Ethereum to Vn
rbb = 1 + k

n in Redbelly Blockchain. At large scale, when n→ ∞, we thus obtain: limn→∞ Vn
rbb = limn→∞

(
1 + k

n

)
= 1,

limn→∞ Vn
eth = 2.

Hence, the number of validations per node in Redbelly Blockchain tends to become half the number
of validations per node in existing blockchains (e.g., Ethereum, Libra/Diem [18]) as the system
enlarges.

6 Governance
In this section, we explain the internals of the Redbelly Blockchain governance that decides upon
variations in the protocol, the incentives or the governance membership. The governance is handled
by the consensus nodes and the SEVM nodes. Note that each of these nodes may reside on different
machines and be administered by different entities.

6.1 Reconfiguration to mitigate bribery
The nodes that govern are called governors. They must change from time to time to reduce the risks
of bribery attacks, under the assumption of a slowly-adaptive adversary (so that it takes more time
to bribe more nodes). Just like in other blockchains, nodes are incentivized to become governors by
obtaining a reward for offering the blockchain service (e.g., execution, consensus, storage). Before
governing, a node must first express its interest in governing and satisfy a series of requirements
(personal information, resource allocation). If these requirements are met, the node becomes a
candidate.

Redbelly Blockchain features a novel smart contract based reconfiguration process to change
the governance every k blocks. The difficulty to reconfigure distributed systems is that all nodes
must agree on the new configuration, a coordination process that often requires multiple consecutive
consensus executions: one to decide to add new nodes to the system, another to discard the old
nodes. Thanks to Redbelly Blockchain each of these consensus are reached simply through a built-
in smart contract function invocation. As each execution of these invocations is deterministic and
replicated, we are guaranteed that all honest nodes will be informed of this reconfiguration. This
type of smart contracts is called “built-in”, because they are already part of Redbelly Blockchain at
the time it is started: all users of Redbelly Blockchain can thus observe the power delegated to the
governance at the time they start using Redbelly Blockchain.

Figure 4 depicts the smart contract based reconfiguration process where SEVM nodes maintain
a copy of the reconfiguration smart contract. For the sake of simplicity, it illustrates how to replace
consensus nodes, but this reconfiguration can be used to replace SEVM nodes as well as changing the
current version of the software. On the left hand side (Fig.4(a)), the client sends a request that invokes
a function of the reconfiguration smart contract. This request is validated and passed onto the current
consensus nodes (consensus1, consensus2, consensus3 and consensus4). The consensus nodes agree
to encapsulate this request in the next superblock and pass this superblock to the SEVM for storage
and execution. Upon execution (Fig.4(b)), the reconfiguration smart contract function replaces the
current consensus nodes by new ones (consensus5, consensus6, consensus7 and consensus8). Hence
the governors responsible of running the consensus have been replaced.

The software upgrade also relies on a built-in smart contract function, however, it takes, as
arguments, the current version number, the new version code (e.g., in the form of a URL and its
RSA256 hash representation) and the index idx of the chain at which it should start being used.

(a) The client sends a function invocation that gets agreed
upon by the consensus nodes

(b) The function is executed on each SEVM node, hence
replacing the current consensus nodes by new ones

Figure 4: Smart contract based reconfiguration

When 2n/3 + 1 of the governors have invoked the function provided that this happens before the
chain reaches index idx, then the new version is being downloaded, its hash is checked and in case of
success, the version is being used when the chain reaches idx. (No other version besides the current
one can be used until index idx is reached.)

6.2 Elections with non-dictatorship

In order to avoid that an attacker acts as a dictator by imposing its chosen governance to the rest of
the system, we build upon results from the social choice theory. One way of selecting new governors,
is to let existing governors proportionally elect the next set of governors. Black [5] was the first to
define proportionality or that elected members represent “all shades of political opinion” of a society.

Dummett [13] introduced fully proportional representation to account for ordinal ballots, con-
taining multiple preferences: given a set of n voters aiming at electing a committee of k governors,
if there exist 0 < ` ≤ k and a group of ` · qH voters who all rank the same ` candidates at the top
of their preference orders, then these ` candidates are all elected. However, it builds upon Hare’s
quota qH, which is vulnerable to strategic voting, whereby a majority of voters can elect a minority
of seats [24]. This problem was solved with the introduction of Droop’s quota qD as the smallest
quota such that no more candidates can be elected than there are seats to fill [34].

Woodall [37] replaces Hare’s quota with Droop’s quota q = b n
k+1c and defines the Droop propor-

tionality criterion as a variant of the fully proportional representation property: if for some whole
numbers j and s satisfying 0 < j ≤ s, more than j · qD of voters put the same s candidates (not
necessarily in the same order) at the top of their preference list, then at least j of those s candidates
should be elected.

This desirable “proportionality” property can be achieved using the Single Transferable Vote
(STV) algorithm with Hare’s quota qH = n

k . In STV, candidates are added one by one to the winning
committee and removed from the ballots if they obtain a quota q of votes. STV is used to elect
the Australian senate and is known to ensure fully proportional representation. Unfortunately, this
protocol is synchronous [14] in that its quotas generally rely on the number of votes n received
within a maximum voting period. If some of these n voters are byzantine and do not respond, then
the protocol could not terminate without synchrony.

As one cannot predict the time it will take to deliver any message without synchrony, one cannot
distinguish a slow voter from a byzantine one. Considering n as the number of governors or potential

voters among which up to f can be bribed or byzantine, our protocol can only wait for at most n− f
votes to progress without assuming synchrony. Waiting for n− f votes prevents us from guaranteeing
that the aforementioned quotas can be reached. We thus define a new quota called the byzantine
quota qB = b

n− f
k+1 c such that f < n/3 and reduce, to n − f , the number of needed votes to start the

election. Of course, up to f of these n− f ballots may be cast by byzantine nodes, however, Redbelly
Blockchain guarantees that no adversary controlling up to f byzantine nodes can act as a dictator in
always imposing its decision.

Based on qB, we propose a smart contract election that expects n − f votes to be cast to run a
byzantine fault tolerant version of STV that satisfies proportionality and non-dictatorship without
assuming synchrony.

7 Mutability, Auditability, Privacy

In this section, we discuss tradeoffs between auditability and privacy on the one hand, and mutability
and immutability on the other hand (§7.1). We also present the two key techniques to offer privacy.
First, Redbelly Blockchain offers the possibility to a subset of users to spawn a new shard as a
dynamic variant (§7.2) of the Eth2 topology [19]: by invoking a mainchain built-in smart contract,
some of the users can spawn a new shardchain. This allows users to perform transactions that are
not directly visible from the mainchain or from other shards and without inducing a negative impact
on performance. In addition, to enforce a stronger form of privacy, we will exploit the privatization
of fungible and non-fungible tokens (§7.3).

7.1 Mutability with a Built-in Contract

On the one hand, immutability is a particularly appealing property for maintaining a distributed
ledger. If transactions can be erased, then the data integrity is at risk. On the other hand, blockchain
can be used for storing sensitive data whose immutability is questionable. The General Data Pro-
tection Regulation (GDPR) imposed in Europe since 2018 permits personal data to be rectified,
withdrawn of permission, and erased. Similarly, the California Consumer Privacy Act (CCPA) and
the United States Fair Credit Reporting Act (FCRA) enforces the possibility to remove objection-
able data from the blockchain. Even mainstream blockchains are mutable: after the DAO hack that
affected Ethereum, the history of transactions was replaced through a hard fork. Unfortunately, this
created confusion and led to the use of two blockchains, Ethereum Classic and Ethereum. This
is why, Redbelly Blockchain guarantees immutability by preventing any adversary from tampering
with data but offers a built-in smart contract rewrite function to the governance.

node 1:

node 2:

instance 1

instance 2

(a) Rewriting in a classic blockchain creates new in-
stances

1. initially:

3. rewrite:

2. governance
controlled
erasure:

(b) Rewriting in Redbelly Blockchain does not fork

Figure 5: To avoid forks while offering mutability, Redbelly Blockchain enforces that any rework of
the history is controlled by the governance

Figure 5 compares a rewrite in a classic blockchain (Fig 5(a)) to a rewrite in Redbelly Blockchain
(Fig. 5(b)). In classic blockchains, miners may legitimately decide to run the same software version
they have been running before, whereas other users may follow the recommendation to upgrade
their software. This typically creates multiple instances sharing the same genesis block but followed

by diverging transaction histories. The original instance is usually called "classic" so that the new
version retains the original name of the blockchain, which can add to the user’s confusion.

By contrast and as depicted in Figure 5(b), in Redbelly Blockchain, all users initially agree to run
a reconfigurable blockchain, as we already explained in Section 6.1. This guarantees that all users
are ready to upgrade to a new version if the governance majoritarily vote to do so. Typically, the
governors cast their vote by passing a rewrite parameter to a built-in contract, a smart contract that
was already present when the blockchain was launched, as defined in §6.1. This rewrite parameter is
a pair 〈state, start-index〉 where the state is the hash of the global state of the blockchain, also called
“state root” and the start-index is the index of the first block of the blockchain suffix to erase. If a
quorum of 2 f + 1 governors vote for the same start-index within the time it takes to create k blocks
(meaning that all their state parameters belong to at most k consecutive blocks, then the erasure of
the suffix takes place at each honest SEVM node. From then on, all blocks get appended in place of
the erased suffix.

7.2 Dynamic Sharding
Our blockchain design allows participants to operate individually in a dedicated shard or shardchain
without presenting all their transactions to the rest of the system. This benefits privacy and perfor-
mance by reducing the congestion on the default chain called the mainchain. It can also allow users
to control the sovereignty of data by allocating the machines hosting these data in a specific juris-
diction. While this sharding may look similar to the beacon chain and the shard chains of Eth2 [19],
it differs by being dynamic: one can adjust the number and size of shards at runtime as was recently
proposed [31].

Redbelly Blockchain exploits smart contract outputs to configure itself at the lower level. Be-
cause our consensus protocol is both deterministic and formally verified (§2.1), it guarantees that
all participants agree on a consistent total order on the smart contract upload, invocations and trans-
actions issued to Redbelly Blockchain. As a result, and because smart contract functions are also
deterministic, the execution of the sequences of commands at all honest participants results in the
same outcome or state.

A built-in smart contract features a spawnShard() function that allows a set of participants to
create a shard by providing the resources where to run the shard as well as depositing some assets
that will be locked on the mainchain to be used in the shard. Similarly to the reconfiguration (§6.1),
these participants will invoke the spawnShard() function with an index idx parameter and a number
k of consecutive blocks, so that the shard will be spawned only if more than a single participant
has invoked this function between the block at index idx and the block at index idx + k of Redbelly
Blockchain.

To close the shard, a closeShard() function will trigger the closing of a shard s when the
blockchain depth reaches d only if a quorum of b2n/3c + 1 participants (or governors) of shard s
have invoked this function within a certain range of indices idx to idx + k < d. To cope with non-
termination due to windows of asynchrony, after failure to close a shard, the participants can simply
retry with a longer offset k.

7.3 Stronger Forms of Privacy
Our solution will offer privacy of the transaction data (amount, asset, recipient) through the use of
Zero-Knowledge Proof or Verifiable Secret Sharing. To this end, a privacy layer on top of Smart
Redbelly that will consist of a shield smart contract, like the one used in Nightfall, will make the use
of ERC20 (fungible) and ERC721 (non–fungible) tokens private. It allows the user to (i) create token
commitments that are anonymous representations of the ECR20/721 tokens through the process of
minting, (ii) to retrieve the token associated with a token commitment through the process of burning

and (iii) to transfer confidentially these commitments. This approach requires the user to create a
proof off-chain and to store some private information needed to generate the proof locally. The user
will then interact with the shield contract by sending their proof, which will then be verified. Upon
successful verification, the token commitment will be stored in the commitment Merkle trie until it
is spent, in which case it will be stored in a nullifier data structure.

8 Real World Interactions
In this section, we present the interactions between the wallet and the blockchain service and between
the blockchain service and the oracle, and we explain how security is strengthened.

Redbelly Blockchain is dedicated to allow users to provide real-world services to one another.
The key is to support the smart contracts already supported by Ethereum so as to minimise the
efforts of porting existing contracts. We foresee the deployment of smart contracts encapsulating
legal clauses. In order to tie these services to the real world, we will have to use oracles. As Red-
belly Blockchain is secure, it is important that the oracle interactions do not introduce single point
of failure vulnerabilities. To this end, Redbelly Blockchain will communicate with oracles whose
implementation is distributed (tolerating isolated failures) or accountable (offering an insurance cov-
ering potential failures).

Accountability is instrumental in compensating the error committed by a centralized source. As
an example a human error led Chainlink to report a price anomaly on their XAG/USD price feeds
requesting gold price (XAU) instead of silver price (XAG) [7]. This was exploited by traders to
generate ∼US$36,000 in profit at the expense of Synthetix stackers. Distribution is instrumental in
reducing such risks. For static information, the SEVM node requests f + 1 identical inputs from
distributed sources to tolerate f failures. For dynamic information (e.g., stock value) or localised
information (e.g., temperatures), the SEVM node extracts the median value among a group of 2 f + 1
distributed sources as we explain in §8.2.

8.1 Lightweight Secure Wallet
The lightsec wallet is both (i) lightweight in that it can run in handheld devices, and (ii) secure in
that it can retrieve correct information. This is in contrast with traditional solutions where the device
interacting with the blockchain must either trust the node it communicates with, which defeats the
purpose of the blockchain; or download the blockchain itself, a task impossible for small devices that
do not have sufficient storage space (recall that the Ethereum blockchain already exceeds 600 GB).

The lightsec wallet approach relies on the observation that to retrieve parts of the current state
(e.g., the correct balance of a blockchain account), one simply needs to fetch f + 1 identical copies
of this balance [32]. This is made possible by involving the participation of at most 2 f + 1 SEVM
nodes that maintain a local copy of the blockchain and their current state or by requesting a threshold
signature corresponding to such a quorum of nodes.

An interesting aspect of the lightsec client, is that it does not need to send its transaction to
more than a single blockchain node to achieve the same liveness guarantee as Ethereum because it
is anyway well-known that the blockchain cannot ensure that all transactions will be committed as
we briefly mentioned in §5.2. This is why the blockchain problem is often defined with the liveness
and uniformity properties [20, 8]. But since we require a blockchain to store only valid transactions,
we also require to solve the additional validity property of [12] to solve this problem.

Definition 3 (The Blockchain Problem). The blockchain problem is to ensure that a distributed set
of nodes maintain a sequence of transaction blocks such that the three following properties hold:

• Liveness: if an honest node receives a transaction, then this transaction will eventually be
reliably stored in the block sequence of all honest nodes.

• Uniformity: the two chains of blocks maintained locally by two honest nodes are either iden-
tical or one is a prefix of the other.

• Validity: each block appended to the blockchain of each honest node is a set of valid transac-
tions (non-conflicting well-formed transactions that are correctly signed by its issuer).

Interestingly, the liveness property does not guarantee that a client transaction is included in the
blockchain: if a wallet sends its transaction request exclusively to byzantine nodes then byzantine
nodes may decide to ignore it. Hence, the lightsec wallet combined with Redbelly Blockchain
guarantees this liveness property: it could be the case that a wallet has to send its transactions
multiple times before it gets committed (just like in classic blockchains).

8.2 Oracles

An oracle is critical to feed major dApps with trustworthy off-chain information1. They can offer
identification or payment services by indicating whether a bank payment is successful or whether
the identity of a user has been verified.

Typically, a distributed oracle is a software running on some set of computers that gather real-
world information from multiple websites in order to relay it to the blockchain (an oracle net-
work [17] is an example of such a distribution). This information is typically used by dApps to
trigger an action based on an external event. For example, an authentication system may accept
some of the users based on its identity document. This acceptance is a piece of information from the
real-world that an oracle must input to the blockchain for the dApp to authenticate the user. Typi-
cal examples include an API provider directly inputting this information to a smart contract [2] or
offering an authentication proof to the end-user [35]. This input information can have such a large
impact on the execution of the blockchain and the transfers of high value assets that it is important
that it remains correct.

One cannot trust a single computer inputting this information, as the owner of the computer may
easily get bribed by a bidder to steal the reward by pretending that their prediction was correct. This
is why an oracle should either be accountable or distributed. One way to gather the information is
by consulting online information on some online service. However, if the only service experiences
a transient bug, then the blockchain assets are at risk. This is the reason why the distributed oracle
(Dist. Oracle) will fetch the information from distinct sources (e.g., different websites) as depicted
in Figure 2. To tolerate the failure of f online services announcing some real information, it is
sufficient to gather f + 1 identical copies of the same information: this will guarantee that this
information is correct. The worst case situation thus consists of contacting 2 f + 1 to retrieving the
correct information.

Yet, there exist scenarios where the outcome is fluctuating: For example, a stock value on the
New York Stock Exchange can change over time and no pair of sources could provide the exact same
result due to message delays. In this case, the oracle will extract the median among 2 f + 1 requests
to guarantee that no coalition of f byzantine machines can skew the outcome towards one end or the
other. Another type of Oracle could be centralised and accountable (cf. Cent. Oracle in Figure 2)
and under the control of an authority, like the SEC, that dictates how the regulation evolves over time
and whose role is to guarantee that regulation is correctly followed at any time. In this case, we may
consider the SEC information to be authoritative and render such a service accountable, removing
the need to cross-check multiple sources.

1https://www.defipulse.com/.

https://www.defipulse.com/

9 Conclusion
Redbelly Blockchain is an innovative technology to interface the real world through a novel proof-
of-fraud design. It ensures accountability of its participants and aims at complying with regulation.
It builds upon recent research advances in the context of security [12], distributed computing [9],
formal verification [4] and game theory [30]. Two of its key novelties is that it is deterministic, due
to its consensus algorithm, and dynamic, due to its built-in smart contracts, that allow the governance
to reconfigure it at runtime.

References
[1] Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru, and Sara

Tucci-Piergiovanni. Blockchain abstract data type. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures, page 349–358, 2019.

[2] Burak Benligiray, Sas̆a Milić, and Heikki Vänttinen. API3: Decentralized APIs for Web 3.0. Accessed:
2022-04-28 - https://drive.google.com/file/d/1GzkLKc6DYxImgeDhoKLA4wHGlE0eGGgo/view.

[3] Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder.
Compositional verification of Byzantine consensus. Technical Report hal-03158911, HAL, June 2021.

[4] Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder.
Brief announcement: Holistic verification of blockchain consensus. In Proceedings of the 41st ACM
Symposium on Principles of Distributed Computing (PODC), 2022.

[5] Duncan Black. The Theory of Committees and Elections. Cambridge University Press, 1958.

[6] Zohir Bouzid, Achour Mostfaoui, and Michel Raynal. Minimal synchrony for Byzantine consensus. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, page 461–470, 2015.

[7] Chainlink. Improving and decentralizing chainlink’s feature release and net-
work upgrade process, 2020. Accessed: 2022-03-31, https://blog.chain.link/

improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/.

[8] Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, pages 1–11, 2020.

[9] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable Byzantine agreement. In
Proceedings of the 41st IEEE International Conference on Distributed Computing Systems (ICDCS), Jul
2021.

[10] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy as abc:
Optimal (A)ccountable (B)yzantine (C)onsensus is easy! In Proceedings of the 36th International
Parallel and Distributed Processing Symposium (IPDPS), 2022.

[11] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient leaderless Byzantine
consensus and its applications to blockchains. In Proceedings of the 17th IEEE International Symposium
on Network Computing and Applications (NCA), 2018.

[12] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: a secure, fair and scalable open
blockchain. In Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P), May 2021.

[13] Michael Dummett. Voting Procedures. Oxford University Press, 1984.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288–323, April 1988.

[15] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. Impact of man-in-the-middle attacks on
ethereum. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pages 11–20, 2018.

[16] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The attack of the clones against proof-of-
authority. In 27th Annual Network and Distributed System Security Symposium (NDSS), 2020. Presented
at the Community Ethereum Development Conference in 2019.

https://drive.google.com/file/d/1GzkLKc6DYxImgeDhoKLA4wHGlE0eGGgo/view
https://blog.chain.link/improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/
https://blog.chain.link/improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/

[17] Steve Ellis, Ari Juels, and Sergey Nazarov. Chainlink: A decentralized oracle network, 2017. Accessed:
2022-04-28 - https://research.chain.link/whitepaper-v1.pdf.

[18] Amsden et al. The libra blockchain, 2020. Accessed on 2022-04-27, https://

diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf.

[19] The eth2 upgrades. Accessed: 2022-03-28, https://ethereum.org/en/eth2/.

[20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In 34th Annu. Int. Conf. the Theory and Applications of Crypto. Techniques, pages 281–
310, 2015.

[21] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[22] Vincent Gramoli. The red belly blockchain: Bft is back but is it the same? In Workshop on Blockchain
Technology and Theory collocated with DISC, 2017. Invited Talk.

[23] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical Accountability for
Distributed Systems. SOSP’07, 2007.

[24] Jonathan Lundell & David Hill. To advance the understanding of preferential voting system - notes on
the droop quota. Voting matters, 2007.

[25] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In Symposium on Principles of
Programming Languages (POPL), pages 719–734. ACM, 2017.

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[27] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008. Accessed: 2022-05-03 -
https://bitcoin.org/bitcoin.pdf.

[28] Christopher Natoli and Vincent Gramoli. The balance attack or why forkable blockchains are ill-suited
for consortium. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2017.

[29] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Blockchain is dead, long live blockchain! accountable
state machine replication for longlasting blockchain. Technical Report abs/2007.10541, arXiv, 2020.

[30] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Trap: The bait of rational players to solve Byzan-
tine consensus. In Proceedings of the 17th ACM ASIA Conference on Computer and Communications
Security (AsiaCCS), 2022.

[31] Deepal Tennakoon and Vincent Gramoli. Dynamic blockchain sharding. In Proceedings of the 5th
International Symposium on Foundations and Applications of Blockchain (FAB), volume 101. OASIcs,
2022.

[32] Deepal Tennakoon, Yiding Hua, and Vincent Gramoli. CollaChain: A BFT collaborative middleware
for decentralized applications. Technical Report 2203.12323, arXiv, 2022.

[33] Pierre Tholoniat and Vincent Gramoli. Formally verifying blockchain Byzantine fault tolerance. In
The 6th Workshop on Formal Reasoning in Distributed Algorithms (FRIDA), 2019. Available at https:
//arxiv.org/pdf/1909.07453.pdf.

[34] Nicolaus Tideman. The single transferable vote. Journal of Economic Perspectives, 9(1):27–38, March
1995.

[35] Verite. Verifying verifiable credentials. Accessed: 2022-04-28 - https://docs.centre.io/verite/

patterns/verification-flow.

[36] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015. Yellow paper.

[37] Douglas Woodall. Properties of preferential election rules. In Voting Matters, 1994.

https://research.chain.link/whitepaper-v1.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://ethereum.org/en/eth2/
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1909.07453.pdf
https://arxiv.org/pdf/1909.07453.pdf
https://docs.centre.io/verite/patterns/verification-flow
https://docs.centre.io/verite/patterns/verification-flow

