
139 139

139 139

Bulletin of the EATCS no 107, pp. 131�142, June 2012

©c European Association for Theoretical Computer Science

S  U

Dane Henshall
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
dslhensh@uwaterloo.ca

Narad Rampersad
Department of Math/Stats
University of Winnipeg

515 Portage Avenue
Winnipeg, MB, R3B 2E9

Canada
narad.rampersad@gmail.com

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@cs.uwaterloo.ca

Abstract
We consider various shuffling and unshuffling operations on languages

and words, and examine their closure properties. Although the main goal
is to provide some good and novel exercises and examples for undergradu-
ate formal language theory classes, we also provide some new results and
mention some open problems.

1 Introduction

Two kinds of shuffles are commonly studied: perfect shuffle and ordinary shuffle.

140 140

140 140

BEATCS no 107 TECHNICAL CONTRIBUTIONS

132

For two words x = a1a2 · · · an, y = b1b2 · · · bn of the same length, we de-
fine their perfect shuffle x x y = a1b1a2b2 · · · anbn. For example, termx hoes =
theorems. Note that x x y need not equal y x x. This definition is extended to
languages as follows:

L1 x L2 =
⋃

x∈L1 , y∈L2
|x|=|y|

{x x y}.

If xR denotes the reverse of x, then note that (x x y)R = yR x xR.
It is sometimes useful to allow |y| = |x|+ 1, where x = a1 · · · an, y = b1 · · · bn+1,

in which case we define x x y = a1b1 · · · anbnbn+1.
The ordinary shuffle x X y of two words is a finite set, the set of words ob-

tainable from merging the words x and y from left to right, but choosing the next
symbol arbitrarily from x or y. More formally,

x X y = {z : z = x1y1x2y2 · · · xnyn for some n ≥ 1 and

words x1, . . . , xn, y1, . . . , yn such that x = x1 · · · xn and y = y1 · · · yn}.

This definition is symmetric, and x X y = y X x. The definition is extended to
languages as follows:

L1 X L2 =
⋃

x∈L1, y∈L2

(x X y).

Shuffle is associative; we have

(L1 X L2) X L3 = L1 X (L2 X L3)

for all languages L1, L2, L3.
(As a mnemonic, the symbol X is larger than x in size, and similarly X

generally produces a set larger in cardinality than x .)
As is well-known, the shuffle (resp., perfect shuffle) of two regular languages

is regular, and the shuffle (resp., perfect shuffle) of a context-free language with
a regular language is context-free. Perhaps the easiest way to see all these results
is by using morphisms and inverse morphisms, and relying on the known closure
properties of these transformations, as follows:

If L1, L2 ⊆ Σ
∗, create a new alphabet Σ′ by putting primes on all the letters

of Σ. Define h1(a) = h2(a′) = a and h1(a′) = h2(a) = ε for a ∈ Σ. Define
h(a) = h(a′) = a for a ∈ Σ. Then

L1 X L2 = h(h−1
1 (L1) ∩ h−1

2 (L2)).

In a similar way,

L1 x L2 = h(h−1
1 (L1) ∩ h−1

2 (L2) ∩ (ΣΣ′)∗).

141 141

141 141

The Bulletin of the EATCS

133

However, the shuffle (resp., perfect shuffle) of two context-free languages need
not be context-free. For example, if L1 = {ambm : m ≥ 1} and L2 = {cndn : n ≥
1}, then L := L1 X L2 is not a CFL. If it were, then L ∩ a+c+b+d+ = {amcnbmdn :
m, n ≥ 1} would be a CFL, which it isn’t (via the pumping lemma).

Similarly, if L3 = {amb2m : m ≥ 1} and L4 = {a2nbn : n ≥ 1}, then
L3 x L4 = {a2n(ba)nb2n : n ≥ 1}, which is clearly not a CFL.

For these, and other facts, see [1].

2 Self-shuffles

Instead of shuffling languages together, we can take a language and shuffle (resp.,
perfect shuffle) each word with itself. Another variation is to shuffle each word
with its reverse. This gives four different transformations on languages, which we
call self-shuffles:

ss(L) =
⋃

x∈L

{x X x}

pss(L) =
⋃

x∈L

x x x

ssr(L) =
⋃

x∈L

{x X xR}

pssr(L) =
⋃

x∈L

x x xR.

We would like to understand how these transformations affect regular and
context-free languages. We obtain some results, but other questions are still open.

Theorem 1. If L is regular, then ss(L) need not be context-free.

Proof. We show that ss({0, 1}∗) is not a CFL. Suppose it is, and consider L′ =
ss({0, 1}∗) ∩ R, where R = {01a0b+11c+10d1 : a, b, c, d ≥ 1}. Since R is regular, it
suffices to show that L′ is not context-free.

Now consider an arbitrary word w ∈ L′. Then w = 01a0b+11c+10d1 for some
a, b, c, d ≥ 1, and there exists a y ∈ {0, 1}∗ such that w ∈ y X y. The structure of w
allows us to determine y. Let y1 and y2 be copies of y such that w ∈ y1 X y2, and
the first letter of w is taken from y1.

The first symbol of y is evidently 0. It follows that the prefix 01a of w is taken
entirely from y1, since the 0 is taken from y1 by definition and the first symbol of
y2 is 0. Therefore 01a is a prefix of y1.

It follows that y2 also contains 01a as a prefix, and since a ≥ 1 this is only
possible if the first 0 of y2 is located in the 0b+1 block of w. Otherwise, y2 would

142 142

142 142

BEATCS no 107 TECHNICAL CONTRIBUTIONS

134

be a subsequence of 0d1 and y1 would have 01a0b+11c+1 as a prefix (implying that
y1 , y2). Furthermore, the second symbol of y2 being 1 implies that exactly one
of the 0’s in the 0b+1 block is from y2. Thus the rest are from y1 and 01a0b is a
prefix of y1.

Note that y1 and y2 both end in 1, and w ends in 0d1. By the same logic as
before, we can conclude that 0d1 is a suffix of exactly one of them, and that the
other ends in the 1c+1 block. Thus y2 contains 0d1 as a suffix and y1 ends in the
1c+1 block (otherwise, y1 , y2).

Finally, since the second last symbol of y1 is 0 and y1 ends in the 1c+1 block,
we can conclude that y1 contains exactly one 1 from the 1c+1 block and that y1 =

01a0b1. Unshuffling y1 from w yields y2 = 01c0d1.
Recall that y1 = y2. So,

y1 = 01a0b1 = 01c0d1 = y2

and since a, b, c, d ≥ 1 we know that

a = c and b = d.

If w ∈ L′ then

w = 01a0b+11c+10d1

= 01a0d+11a+10d1

= 01a0d(01)1a0d1.

Since w was arbitrary, we have

L′ = {01a0b+11c+10d1 : a = c, b = d, and a, d ≥ 1}

= {01n0m(01)1n0m1 : m, n ≥ 1},

which is clearly not a CFL, using the pumping lemma. �

Remark 2. In a previous version of this paper, proving that ss({0, 1}∗) is not context-
free was listed as an open problem. After this was solved by D. Henshall, a solu-
tion was given by Georg Zetzsche independently.

Similarly, we can show

Theorem 3. L =
⋃

w∈{0,1}∗(w X w X w) is not context-free.

Proof. We use Ogden’s lemma. Consider

L = {w X w X w : w ∈ {0, 1}∗} ∩ 0∗10∗10∗1.

143 143

143 143

The Bulletin of the EATCS

135

Pick s = 0n10n10n1 in L to pump. Write s = uvxyz and mark the middle
block of 0’s. If v begins in the middle block of 0’s, then pump up to obtain
s′ = 0n10 j10k1, where n < j and n ≤ k. We can’t have s′ ∈ w X w X w because
the first w (the one ending at the first 1) is too short. If v begins in the first
block of 0’s, then y occurs in the middle block, so now pump down to obtain
s′ = 0i10 j10n1, where i ≤ n and j < n. Again, we can’t have s′ ∈ w X w X w,
because the third w (the one ending at the third 1) must contain all of the 0’s
immediately preceding the final 1, and hence is too long. �

Clearly ss({0, 1}∗) is in NP, since given a word w we can guess x, guess the
order in which x is shuffled with itself, and hence test if w ∈ x X x. However, we
do not know whether we can solve membership for ss({0, 1}∗) in polynomial time.
This question is apparently originally due to Jeff Erickson [2], and we learned
about it from Erik Demaine.

Open Problem 4. Is ss({0, 1}∗) in P?

We mention a few related problems. Using dynamic programming, Mans-
field [4] showed that given words w, x, y, one can decide in polynomial time
if w ∈ x X y: for each i and j, determine if w[1..i + j] is in the shuffle of
x[1..i] with y[1.. j]. Later, the same author [5] and, independently, Warmuth
and Haussler [6] showed that, given n and words w, x1, x2, . . . , xn, deciding if
w ∈ x1 X x2 X · · ·X xn is NP-complete. However, the decision problem im-
plied by Open Problem 4 asks something different: given w, does there exist x
such that w ∈ x X x?

Open Problem 5. Determine a simple closed form for

ak(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(x X x)

∣

∣

∣

∣

∣

∣

∣

.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9
a2(n) 1 2 6 22 82 320 1268 5102 20632 83972
a3(n) 1 3 15 93 621 4425 32703 248901
a4(n) 1 4 28 244 2332 23848 254416
a5(n) 1 5 45 505 6265 83225
a6(n) 1 6 66 906 13806 225336

Clearly ai(0) = 1, ai(1) = i, and ai(2) = 2i2 − i. Empirically we have ai(3) =
5i3−5i2+ i, ai(4) = 14i4−21i3+5i2+3i, and ai(5) = 42i5−84i4+32i3+21i2−10i.

This suggests that ai(n) = (2n
n)

n+1 in −
(

2n−1
n+1

)

in−1 + O(in−2), but we do not have a proof.

144 144

144 144

BEATCS no 107 TECHNICAL CONTRIBUTIONS

136

3 Perfect self-shuffle

We can consider the same question for perfect shuffle. We define

pss(L) =
⋃

x∈L

{x x x}.

Theorem 6. Both the class of regular languages and the class of context-free
languages are closed under pss.

Proof. Use the fact that pss(L) = h(L), where h is the morphism mapping a→ aa
for each letter a. �

4 Self-shuffle with reverse

We now characterize those words y that can be written as a shuffle of a word with
its reverse; that is, as a member of the set x X xR.

An abelian square is a word of the form xx′ where x′ is a permutation of x.

Theorem 7. (a) If there exists x such that y ∈ x X xR, then y is an abelian square.
(b) If y is a binary abelian square, then there exists x such that y ∈ x X xR.

We introduce the following notation: if w = a1a2 · · · an, then by w[i.. j] we
mean the factor aiai+1 · · · a j.

Proof. (a) If y is the shuffle of x with its reverse, then the first half of y must
contain some prefix of x, say x[1..k]. Then the second half of y must contain the
remaining suffix of x, say x[k + 1..n]. Then the second half of y must contain,
in the remaining positions, some prefix of x, reversed. But by counting we see
that this prefix must be x[1..k]. So the first half of y must contain the remaining
symbols of x, reversed. This shows that the first half of y is just x[1..k] shuffled
with x[k + 1..n]R, and the second half of y is just x[k + 1..n] shuffled with x[1..k]R.

So the second half of y is a permutation of the first half of y.
(b) It remains to see that every binary abelian square can be obtained in this

way. To see this, note that if x contains j 0’s and n − j 1’s, then we can get y by
shuffling 0 j1n− j with its reverse. We get the 0’s in x by choosing them from 0 j1n− j,
and we get the 1’s in x by choosing them from (0 j1n− j)R. �

Remark 8. The word 012012 is an example of a ternary abelian square that cannot
be written as an element of w X wR for any word w.

145 145

145 145

The Bulletin of the EATCS

137

Remark 9. The preceding proof gives another proof of the classic identity
(

2n
n

)

=

(

n
0

)2

+ · · · +

(

n
n

)2

.

To see this, we use the following bijections: the binary words of length 2n having
exactly n 0’s (and hence n 1’s) are in one-one correspondence with the abelian
squares of length 2n, as follows: take such a word and complement the last n bits.
This transformation is clearly invertible. Thus there are

(

2n
n

)

binary abelian squares
of length 2n.

On the other hand, there are
(

n
i

)2
words that are abelian squares and have a first

and last half, each with i 0’s. Summing this from i = 0 to n gives the result.

Corollary 10. The language

ssr({0, 1}∗) =
⋃

x∈{0,1}∗

(x X xR)

is not a CFL, but is in P.

Proof. From above, intersecting ssr({0, 1}∗) with 0+1+0+1+ gives

{0m1n0m+2k1n : m, n ≥ 1 and k ≥ 0} ∪ {0m1n+2k0m1n : m, n ≥ 1 and k ≥ 0}.

Now the pumping lemma applied to z = 0n1n0n1n shows this is not a CFL.
Since we can easily test if a string is an abelian square by counting the number

of 0’s in the first half, and comparing it to the number of 0’s in the second half, it
follows that ssr({0, 1}∗) is in P. �

As before, we can define

bk(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(x X xR)

∣

∣

∣

∣

∣

∣

∣

.

For k = 2, our results above explain bk(n), but we do not know a closed form for
larger k.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9
b2(n) 1 2 6 20 70 252 924 3432 12870 48620
b3(n) 1 3 15 87 549 3657 25317 180459
b4(n) 1 4 28 232 2116 20560 208912
b5(n) 1 5 45 485 5785 73785
b6(n) 1 6 66 876 12906 203676

146 146

146 146

BEATCS no 107 TECHNICAL CONTRIBUTIONS

138

Clearly bi(0) = 1, bi(1) = i, and bi(2) = 2i2 − i. Empirically, we have bi(3) =
5i3−6i2+2i, bi(4) = 14i4−27i3+17i2−3i, and bi(5) = 42i5−110i4+94i3−17i2−8i.

This suggests that bi(n) = (2n
n)

n+1 in −
((

2n−1
n−1

)

− 2n−1
)

in−1 +O(in−2), but we do not have
a proof.

5 Perfect self-shuffle with reverse

We now consider the operation w → w x wR applied to languages. Recall that
pssr(L) =

⋃

x∈L{x x xR}.

Theorem 11. If L is regular then pssr(L) is not necessarily regular.

Proof. Let L = 0+10+. Then pssr(L) ∩ 0+110+ = {0n110n : n ≥ 2}, which is
clearly not regular. �

Theorem 12. If L is context-free then pssr(L) is not necessarily context-free.

Proof. Let L = {0m1m2n3n : m, n ≥ 1}. Then pssr(L) ∩ (03)+(12)+(21)+(30)+ =
{(03)n(12)n(21)n(30)n : n ≥ 1}, and this language is easily seen to be non-context-
free. �

Theorem 13. If L is regular then pssr(L) is necessarily context-free.

We defer the proof of Theorem 13 until Section 6.4 below.

6 Unshuffling

Given a finite word w = a1a2 · · · an we can decimate it into its odd- and even-
indexed parts, as follows:

odd(w) = a1a3 · · · an−((n+1) mod 2)

even(w) = a2a4 · · · an−(n mod 2)

Similarly, given w = a1a2 · · · an we can extract its first and last halves, as follows:

fh(w) = a1a2 · · · abn/2c
lh(w) = abn/2c+1 · · · an

We now turn our attention to four “unshuffling” operations:

bd(w) = odd(w)even(w)

bdr(w) = odd(w)even(w)R

bdi(w) = fh(w) x lh(w)

bdir(w) = fh(w) x lh(w)R

147 147

147 147

The Bulletin of the EATCS

139

6.1 Binary decimation

We first consider a kind of binary decimation, which forms a sort of inverse to
perfect shuffle.

Given a word w = a1a2 · · · a2n of even length, note that

bd(w) = a1a3 · · · a2n−1a2a4 · · · a2n

is formed by “unshuffling” the word into its odd- and even-indexed letters. For
example, the French word maigre becomes the word mirage under this opera-
tion.

Theorem 14. Neither the class of regular languages nor the class of context-free
languages is closed under bd.

Proof. Consider the regular (and context-free) language L = (00 + 11)+. Then
bd(L) = {ww : w ∈ {0, 1}+}, which is well-known to be non-context-free. �

6.2 Binary decimation with reverse

We now consider the operation bdr, which is a kind of binary decimation with
reverse. Note that

bdr(a1a2 · · · a2n) = a1a3 · · · a2n−1a2n · · · a4a2.

For example, bdr(friend) = finder and bdr(perverse) = preserve.

Theorem 15. The class of regular languages is not closed under bdr.

Proof. Let L = (00)+11. Then bdr(L) = {0n110n : n ≥ 1}, which is not regular.
�

Theorem 16. The class of context-free languages is not closed under bdr.

Proof. Consider L = {(03)n(12)n : n ≥ 1}. Then bdr(L) = {0n1n2n3n : n ≥ 1},
which is not context-free. �

Theorem 17. If L is regular, then bdr(L) is context-free.

Proof. We show how to accept words of bdr(L) of even length; words of odd
length can be treated similarly.

On input w = b1b2 · · · b2n, a PDA can guess x = a1a2 · · · a2n in parallel with
the elements of the input. At each stage the PDA compares ai to b(i+1)/2 if i is odd;
and otherwise it pushes ai onto the stack (if i is even). At some point the PDA
nondeterministically guesses that it has seen a2n and pushed it on the stack; it now
pops the stack (which is holding a2n · · · a4a2) and compares the stack contents to
the rest of the input w.

The PDA accepts if x ∈ L and the symbols matched as described. �

148 148

148 148

BEATCS no 107 TECHNICAL CONTRIBUTIONS

140

6.3 Inverse decimation

We now consider a kind of inverse decimation, which shuffles the first and last
halves of a word.

Note that if w = a1 · · · a2n is of even length, then

bdi(w) = a1an+1a2an+2 · · · ana2n.

Further, bdi(bd(w)) = bd(bdi(w)) for w of even length.

Theorem 18. If L is regular then so is bdi(L).

Proof. On input x we simulate the DFA for L on the odd-indexed letters of x,
starting from q0, and we simulate a second copy of the DFA for L on the even-
indexed letters, starting at some guessed state q. Finally, we check to see that our
guess of q was correct. �

Theorem 19. The class of context-free languages is not closed under bdi.

Proof. Let L = {0m1m22n34n : m, n ≥ 1}. It is easy to see that

bdi(L) =



























(01)m−3n(02)2n(03)n(13)3n, if m ≥ 3n;

(02)m−n(03)n(13)m(23)3n−m, if n ≤ m ≤ 3n;

(03)m(13)m(23)2n(33)n−m, if m ≤ n.

Consider L′ := bdi(L) ∩ (03)+(13)+(23)+. From the above we have L′ =
{(03)n(13)n(23)2n : n ≥ 1}, which is evidently not context-free. �

6.4 Inverse decimation with reverse

Note that if w = a1 · · · a2n is of even length, then bdir(w) = a1a2na2a2n−1 · · · anan+1.
If w = a1 · · · a2n+1 is of odd length, we define

bdir(w) = a1a2n+1a2a2n · · · anan+2an+1.

Theorem 20. If L is regular then so is bdir(L).

Proof. On input x we simulate the DFA M for L on the odd-indexed letters of x,
starting from q0. We also create an NFA M′ accepting LR in the usual manner, by
reversing the transitions of M, and making the start state the set of final states of
M, and we simulate M′ on the even-indexed letters of x. Finally, we check to see
that we meet in the middle. �

Theorem 21. The class of context-free languages is not closed under bdir.

149 149

149 149

The Bulletin of the EATCS

141

Proof. Consider L = {02m14m2n3n : m, n ≥ 1}. Then L is a CFL, and it is easy to
verify that

bdir(02m14m2n3n) =



















































(03)n(02)n(01)2m−2n(11)m+n, if m ≥ n;

(03)n(02)2m−n(12)2n−2m(11)3m−n, if m ≤ n ≤ 2m;

(03)2m(13)n−2m(12)n(11)3m−n, if 2m ≤ n ≤ 3m;

(03)2m(13)n−2m(12)6m−n(22)n−3m, if 3m ≤ n ≤ 6m;

(03)2m(13)4m(23)n−6m(22)3m, if n ≥ 6m.

Assume bdir(L) is a CFL. Then L′ := bdir(L) ∩ (03)+(13)+(22)+ is a CFL, and
from above we have L′ = {(03)2m(13)4m(22)3m : m ≥ 1}, which is not a CFL. �

As Georg Zetzsche has kindly pointed out to us, the operation bdir was studied
previously by Jantzen and Petersen [3]; they called it “twist”. They proved our
Theorems 20 and 21.

We now return to the proof of Theorem 13, which was postponed until now.
We need two lemmas:

Lemma 22. Suppose L is a regular language. Then L′ = {wwR : w ∈ L} is a
CFL.

Proof. On input x, a PDA can guess w and verify it is in L, while pushing it on
the stack. Nondeterministically it then guesses it is at the end of w and pops the
stack, comparing to the input. �

Lemma 23. For all words w we have w x wR = bdir(w) bdir(w)R.

Proof. If w is of even length then

w x wR = (fh(w)lh(w)) x (fh(w)lh(w))R

= (fh(w)lh(w)) x (lh(w)Rfh(w)R)

= (fh(w) x lh(w)R)(lh(w) x fh(w)R)

= bdir(w)bdir(w)R.

A similar proof works for w of odd length. �

We can now prove Theorem 13.

Proof. From Lemma 23 we have

pssr(L) =
⋃

x∈L

x x xR =
⋃

x∈L

bdir(x) bdir(x)R =
⋃

x∈bdir(L)

xxR.

If L is regular, then bdir(L) is regular, by Theorem 20. Then, from Lemma 22, it
follows that pssr(L) is a CFL. �

150 150

150 150

BEATCS no 107 TECHNICAL CONTRIBUTIONS

142

7 Acknowledgment

We are grateful to Georg Zetzsche for his remarks.

References

[1] J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.

[2] J. Erickson. How hard is unshuffling a string?
http://cstheory.stackexchange.com/questions/34/

how-hard-is-unshuffling-a-string, August 16 2010.

[3] M. Jantzen and H. Petersen. Cancellation in context-free languages: enrichment by
reduction. Theoret. Comput. Sci. 127 (1994), 149–170.

[4] A. Mansfield. An algorithm for a merge recognition problem. Disc. Appl. Math. 4
(1982), 193–197.

[5] A. Mansfield. On the computational complexity of a merge recognition problem.
Disc. Appl. Math. 5 (1983), 119–122.

[6] M. K. Warmuth and D. Haussler. On the complexity of iterated shuffle. J. Comput.
Sys. Sci. 28 (1984), 345–358.

