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Recent Progress on Derandomizing
Space-Bounded Computation

William M. Hoza∗

Abstract

Is randomness ever necessary for space-efficient computation? It is com-
monly conjectured that L = BPL, meaning that halting decision algorithms
can always be derandomized without increasing their space complexity by
more than a constant factor. In the past few years (say, from 2017 to 2022),
there has been some exciting progress toward proving this conjecture. Thanks
to recent work, we have new pseudorandom generators (PRGs), new black-
box derandomization algorithms (generalizations of PRGs), and new non-
black-box derandomization algorithms. This article is a survey of these recent
developments. We organize the underlying techniques into four overlapping
themes:

1. The iterated pseudorandom restrictions framework for designing PRGs,
especially PRGs for functions computable by arbitrary-order read-once
branching programs.

2. The inverse Laplacian perspective on derandomizing BPL and the
related concept of local consistency.

3. Error reduction procedures, including methods of designing low-error
weighted pseudorandom generators (WPRGs).

4. The continued use of spectral expander graphs in this domain via the
derandomized square operation and the Impagliazzo-Nisan-Wigderson
PRG (STOC 1994).

We give an overview of these ideas and their applications, and we discuss the
challenges ahead.
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1 Introduction
In an effort to solve problems as efficiently as possible, algorithm designers often in-
troduce randomness into their algorithms. This paradigm is undoubtedly ingenious
and beautiful. However, random bits can themselves be considered a computational
“resource” that might be costly or unavailable. At best, randomization trades one
type of inefficiency for another. We therefore want to distinguish between cases in
which randomization gives an intrinsic advantage and cases in which algorithms
can be derandomized with little to no penalty. In this article, we focus on the
question of how randomization affects space complexity.

1.1 Randomized Space-Bounded Computation
Informally, BPSPACE(S ) is everything that can be decided using randomness and
O(S ) bits of space. More precisely, for a function S : N→ N, a language L is in
BPSPACE(S ) if there exists a Turing machine A with the following features.

1. The machine A has three tapes: a read-only input tape, a read-write work
tape, and a read-once “random tape” that is initially filled with uniform
random bits.

2. For every N ∈ N,1 every input σ ∈ {0, 1}N , and every assignment to the
random tape x ∈ {0, 1}∞, the machine touches at most O(S (N)) cells of the
work tape and eventually halts, outputting a Boolean value A(σ, x) ∈ {0, 1}.

3. For every input σ ∈ {0, 1}∗, we have

σ ∈ L =⇒ Pr
x

[A(σ, x) = 1] ≥ 2/3

σ < L =⇒ Pr
x

[A(σ, x) = 1] ≤ 1/3.

Let us assume that S ≥ log N, so the machine has enough space to store a pointer
to an arbitrary location in its input. Note that we assume that the algorithm halts
for every assignment to the random tape (not merely with high probability). Using
this assumption, one can show that the algorithm halts within 2O(S ) steps.2 We use

1In this article, we use uppercase N to denote the length of the input to a space-bounded
algorithm. We use lowercase n to denote the number of random bits that the algorithm uses.

2Historically, there was more early interest in the alternative “non-halting” model in which we
merely require the algorithm to halt with high probability [33, 72, 73, 45, 13, 52, 69]. Indeed, in
the older literature, notation along the lines of “BPSPACE(S )” typically refers to the non-halting
model, whereas the halting model is discussed using augmented notation such as “BPHSPACE(S ).”
Today, the halting model is standard.



BPL to denote BPSPACE(log N). The classes RSPACE(S ) and RL are defined the
same way, except that we only allow one-sided error.

These models were first studied by Aleliunas, Karp, Lipton, Lovász, and
Rackoff [4] more than four decades ago. They presented a randomized algorithm
showing that the undirected connectivity problem is in RL, and they asked whether
L = RL. Today, the specific problem of undirected connectivity is indeed known to
be in L, thanks to Reingold’s famous algorithm [65] (the climax of a long sequence
of papers studying the space complexity of undirected connectivity [4, 14, 10, 57,
59, 9, 77, 65, 68]). It is commonly believed that more generally L = RL = BPL.
By a padding argument, if L = BPL, then DSPACE(S ) = BPSPACE(S ) for every
space-constructible S ≥ log N.

Superficially, this sounds like the same frustrating story that pervades complex-
ity theory. “We have been studying these important complexity classes for many
decades, and at this point we think we know the relationship between them, but we
don’t know how to prove it.” The same can be said regarding P vs. NP, or P vs.
BPP, or L vs. P, or countless other fundamental problems.

However, there is a widespread feeling that the L vs. BPL problem is different.
Compared to (say) the problem of proving P = BPP, there is a great deal of
optimism about the possibility of unconditionally proving L = BPL. This optimism
is sensible because the BPL model has a crucial weakness: the read-once random
tape.

1.2 The Read-Once Assumption

In the definition of BPL, the machine A is only permitted to read each cell of
the random tape a single time; the tape head can move right but not left. The
motivation for this assumption is that we are modeling a problem-solving agent
who has access to a single fair coin. The agent can see the outcome of only the
most recent coin flip. If they want to know the outcome of a previous coin flip,
they ought to have written it down at the time that it occurred (and paid for it in
terms of space complexity).

As a consequence of the read-once assumption, the action of A on its random
bits can be modeled by a polynomial-width standard-order read-once branching
program (ROBP), defined below.

Definition 1 (Standard-order ROBPs). A width-w length-n standard-order ROBP
f is defined by a start state v0 ∈ [w], a sequence of n transition functions
f1, . . . , fn : [w] × {0, 1} → [w], and a set of accepting states Vacc ⊆ [w]. An
input x ∈ {0, 1}n determines a sequence of states v0, v1, . . . , vn ∈ [w] by the rule



vi = fi(vi−1, xi) for i > 0. The output of the program is given by

f (x) =

1 if vn ∈ Vacc

0 if vn < Vacc.
(1)

Equivalently, we can think of f as a directed graph with vertices arranged in n + 1
layers, V0, . . . ,Vn, where |Vi| = w. For i < n, each vertex u ∈ Vi has two outgoing
edges leading to Vi+1, one labeled 0 and the other labeled 1. There is a designated
start vertex v0 ∈ V0, and there is a set of designated accepting vertices Vacc ⊆ Vn.
An input x ∈ {0, 1}n is interpreted as a sequence of edge labels, identifying a path
(v0, v1, . . . , vn) ∈ V0 × V1 × · · · × Vn. The output of the program is once again given
by Equation (1).

The term “standard-order ROBP” is not standard. In typical papers on deran-
domizing space-bounded computation, standard-order ROBPs are simply called
“ROBPs.”3 In this article, we include the modifier “standard-order” to emphasize
that the program reads the input bits from left to right: first x1, then x2, then x3, etc.

If A is a randomized, halting log-space algorithm and σ is an input of length N,
then the function f (x) def

= A(σ, x) can be computed by a width-n length-n standard-
order ROBP for a suitable value n = poly(N); each state of the program encodes a
configuration of the machine A. An appealing approach to derandomizing A is to
design a pseudorandom generator (PRG) that fools standard-order ROBPs.

Definition 2 (PRGs). Let F be a class of functions f : {0, 1}n → {0, 1}, let X be a
distribution over {0, 1}n, and let ε > 0. We say that X fools F with error ε if for
every f ∈ F ,

|Pr[ f (X) = 1] − Pr[ f (Un) = 1]| ≤ ε,

where Un denotes the uniform distribution over {0, 1}n. An ε-PRG for F is a
function G : {0, 1}s → {0, 1}n such that G(Us) fools F with error ε. The value s is
called the seed length of G.

If we could construct a PRG G that 0.1-fools width-n length-n standard-order
ROBPs with seed length O(log n) and space complexity O(log n), then we could
conclude that L = BPL, because we could deterministically estimate the acceptance
probability of an algorithm A on an input σ to within ±0.1 by computing A(σ,G(x))
for every seed x.

3Standard-order ROBPs are also sometimes referred to as “ordered branching programs,” “lay-
ered branching programs,” or “sequential-access ROBPs.”



1.2.1 PRGs and Lower Bounds

Some readers might have an intuition that says that designing unconditional PRGs is
hopelessly difficult. This intuition is indeed sensible in many contexts. For example,
consider the problem of designing a PRG that fools general size-n branching
programs, i.e., programs that may read their input bits any number of times and
in any order. Such a PRG G : {0, 1}s → {0, 1}n would induce a corresponding
“hard function” h : {0, 1}s+1 → {0, 1} that cannot be computed by size-n branching
programs.4 If G is computable in space O(s), then so is h. Therefore, the problem
of designing explicit PRGs for general branching programs is even harder than
the problem of proving branching program lower bounds for explicit functions.
Perhaps someday our grandchildren will manage to prove optimal lower bounds
for branching programs, but until that day, we should probably consider optimal
PRGs for general branching programs to be out of reach.5

The good news is that the read-once assumption is an absolute game-changer.
In the read-once setting, optimal lower bounds are already known. For example,
using standard communication complexity arguments, one can show that every
standard-order ROBP computing the function

h(x1, . . . , x2n) = x1 · xn+1 ⊕ x2 · xn+2 ⊕ · · · ⊕ xn · x2n

has width 2Ω(n). To design optimal PRGs for standard-order ROBPs, we “merely”
need to bridge the gap between lower bounds and PRGs.6 There is no clear “barrier”
preventing us from designing optimal PRGs for standard-order ROBPs. This is one
of the reasons that a proof that L = BPL seems vastly more attainable than, say, a
proof that P = BPP.

1.2.2 Nisan’s PRG and Beyond

So far, we do have several explicit PRGs that unconditionally fool standard-order
ROBPs, but they do not achieve the optimal seed length. Most famously, Nisan
designed an explicit PRG that ε-fools width-w length-n standard-order ROBPs
with seed length O(log(wn/ε) · log n) [58]. The optimal seed length would be
Θ(log(wn/ε)).

Admittedly, at this point it has been over three decades since Nisan’s work [58],
and we still do not have explicit PRGs for polynomial-width standard-order ROBPs
with seed length better than Nisan’s O(log2 n) bound. However, an extensive body

4Specifically, h is the indicator function of the set {G(x)1...s+1 : x ∈ {0, 1}s}.
5Currently, the best lower bound known is Nečiporuk’s near-quadratic lower bound [56]. Explicit

PRGs for size-n branching programs are known with a near-matching seed length of Õ(
√

n) [42, 38].
6Note that the Nisan-Wigderson reduction [60] does not work here, because it does not preserve

the read-once property.



of research on the L vs. BPL problem has shown how to “go beyond” Nisan’s
work [58] in one sense or another. This rich and sophisticated literature is full of
valuable insights that profoundly clarify the role of randomness in computing, even
though the central questions remain open.

In the remainder of this article, we survey exciting progress that has been made
on the L vs. BPL problem in just the past few years. (See Saks’ survey [69] for an
overview of older work.) We structure our discussion around four recurring tech-
nical themes: the iterated pseudorandom restrictions framework (Section 2), the
inverse Laplacian perspective (Section 3), error reduction procedures (Section 4),
and expander graphs (Section 5).

2 Iterated Pseudorandom Restrictions

2.1 Arbitrary-Order ROBPs
Nisan’s classic PRG [58] suffers from a strange weakness. It turns out that per-
muting the output bits does not, in general, preserve the pseudorandomness prop-
erty [78]. In other words, Nisan’s PRG does not fool “arbitrary-order ROBPs.” An
arbitrary-order ROBP is defined just like a standard-order ROBP (Definition 1), ex-
cept that instead of reading the input bits in the standard order x1, x2, . . . , xn, it reads
the input bits in the order xπ(1), xπ(2), . . . , xπ(n) for some permutation π : [n]→ [n].7

An interesting line of work has shown how to construct alternative PRGs for
ROBPs that work even in the arbitrary-order setting [12, 76, 20, 50, 31]. We
highlight a breakthrough paper by Forbes and Kelley [31]. Building on several
earlier papers [66, 37, 20], Forbes and Kelley constructed two explicit PRGs for
arbitrary-order ROBPs.

Theorem 1 (PRGs for arbitrary-order ROBPs [31]). For every w, n ∈ N and ε > 0,
there exist explicit ε-PRGs for width-w length-n arbitrary-order ROBPs with seed
lengths

O(log(wn/ε) · log2 n) (2)

and
Õ(w · log(n/ε) · log n). (3)

These seed lengths are only a little worse than Nisan’s seed length [58], yet the
PRGs fool a more powerful model.

For our main application (derandomizing BPL), it is no loss of generality to
assume that the random bits are read in the standard order x1, x2, x3, . . . , so why

7To be clear, these programs are still “oblivious,” meaning that vertices in the same layer read
the same input bit. Arbitrary-order ROBPs are also called “unordered ROBPs” or “unknown-order
ROBPs.”



study arbitrary-order ROBPs? One reason is that they capture other interesting
models of computation such as read-once formulas [12, 32, 22, 28, 29, 30]. Another
reason is that studying arbitrary-order ROBPs forces us to develop new techniques
for fooling ROBPs. Indeed, the ideas underlying Forbes and Kelley’s PRGs [31] are
completely different than those underlying Nisan’s PRG [58]. Forbes and Kelley’s
PRGs [31] are based on the framework of iterated pseudorandom restrictions – our
first “theme.”

2.2 Forbes-Kelley Restrictions

Ajtai and Wigderson introduced the iterated restrictions framework in the context
of pseudorandomness for AC0 circuits [3]. Much later, Gopalan, Meka, Reingold,
Trevisan, and Vadhan brought the framework to the world of L vs. BPL [36]. The
idea is as follows. Our goal is to sample a string X ∈ {0, 1}n that fools some function
of interest f : {0, 1}n → {0, 1}. Our first step is to design a pseudorandom restriction
X ∈ {0, 1, ?}n, i.e., we pseudorandomly assign values to a pseudorandom subset
of the variables. We ensure that X “preserves the expectation” of f , meaning that
X ◦ U fools f , where X ◦ U denotes the string obtained by sampling X and then
replacing each ? with a fresh truly random bit. Intuitively, designing such an X
is easier than designing a full PRG, because in the analysis, some helpful truly
random bits (U) are sprinkled in among the pseudorandom bits.

After assigning values according to X, our remaining task is to fool the restricted
function f |X. Therefore, we repeat the process, i.e., we sample a restriction X′ that
preserves the expectation of f |X. Iterating in this way, we assign values to more
and more variables. Eventually, we have assigned values to all the variables and
hence we have a full PRG.

Forbes and Kelley’s primary contribution is to show how to accomplish the first
step, i.e., how to sample a pseudorandom restriction that assigns values to many
variables while preserving the expectation of every bounded-width arbitrary-order
ROBP [31]. Indeed, they prove the following.

Theorem 2 (Restrictions for arbitrary-order ROBPs [31]). Let w, n ∈ N and ε > 0,
and let k = 4 log(wn/ε). Let D and T be k-wise independent n-bit strings (with
uniform marginals), let U be uniform random over {0, 1}n, and assume that D,
T , and U are mutually independent. Then D + (T ∧ U) fools width-w length-n
arbitrary-order ROBPs with error ε, where + denotes bitwise XOR and ∧ denotes
bitwise AND.

The strings D and T define a restriction X by letting T indicate the ? positions
and using D to assign values to the non-? positions. The statement that X preserves
the expectation of f is equivalent to the statement that D+ (T ∧U) fools f . The way



of thinking exemplified by the latter statement can be called the “pseudorandomness
plus noise” perspective [37, 49].

Using standard constructions of k-wise independent random variables [44],
one can explicitly sample D and T using O(k log n) = O(log(wn/ε) · log n) truly
random bits. In expectation, each restriction assigns values to half of the living
variables, so after roughly log n iterations, we should intuitively expect that all the
variables have been assigned values. Indeed, a more careful argument shows how
to achieve an overall seed length of O(log(wn/ε) · log2 n) (see Forbes and Kelley’s
work for details [31, Section 7]).

The proof of Theorem 2 is a beautiful application of Boolean Fourier analysis.
Forbes and Kelley’s techniques [31] work particularly well in the constant-width
setting. By leveraging “Fourier growth bounds” for ROBPs [66, 76, 20, 48],
Forbes and Kelley obtain restrictions for constant-width arbitrary-order ROBPs
with better parameters. In the constant-width case, rather than k-wise independent
distributions, Forbes and Kelley use “δ-biased distributions,” i.e., distributions that
fool parity functions with error δ/2 [55].

Theorem 3 (Restrictions for constant-width arbitrary-order ROBPs [31]). Let
w ∈ N be a constant. For every n ∈ N and ε > 0, there exists a value δ =

exp
(
−Õ(log(n/ε))

)
such that the following holds. Let D and T be δ-biased random

variables distributed over {0, 1}n, let U be uniform random over {0, 1}n, and assume
that D, T , and U are mutually independent. Then D+ (T ∧U) fools width-w length-
n arbitrary-order ROBPs with error ε, where + denotes bitwise XOR and ∧ denotes
bitwise AND.

Using standard constructions of δ-biased distributions [55, 5], the random
variables D and T of Theorem 3 can be sampled explicitly using O(log(n/δ)) =

Õ(log(n/ε)) truly random bits. This leads to a PRG for constant-width arbitrary-
order ROBPs with seed length Õ(log(n/ε) · log n).

2.3 The Early Termination Technique

Forbes and Kelley’s PRGs [31] are examples of restrictions-based PRGs with
seed length polylog(n), similar to the seed length of Nisan’s PRG [58]. In some
cases, we can use the iterated restrictions framework to get seed lengths as low
as Õ(log n) or even O(log n). The key idea is to show that after applying a few
pseudorandom restrictions (say, poly(log log n) many), the function f that we are
trying to fool “simplifies” in some sense with high probability. When this occurs,
we can terminate the restriction process early, and use some other approach to fool
the restricted function, taking advantage of its simplicity.



This “early termination” technique was introduced by Gopalan, Meka, Rein-
gold, Trevisan, and Vadhan [36], and it has turned out to be useful for quite a few
PRG problems [36, 50, 28, 47, 49, 29, 30]. Let us briefly discuss three examples.

• Gopalan, Meka, Reingold, Trevisan, and Vadhan designed an explicit PRG
for read-once CNF formulas with near-optimal seed length Õ(log(n/ε)) [36].

• Doron, Hatami, and Hoza designed an explicit PRG for read-once AC0

formulas with near-optimal seed length Õ(log(n/ε)) [28].

• Doron, Meka, Reingold, Tal, and Vadhan designed an explicit PRG for
constant-width arbitrary-order monotone ROBPs (defined next) with near-
optimal seed length Õ(log(n/ε)) [30].

Definition 3 (Monotone ROBPs). Let f be a width-w length-n arbitrary-order
ROBP with transition functions f1, . . . , fn : [w] × {0, 1} → [w]. We say that f is
monotone if, for each i ∈ [n] and each bit b ∈ {0, 1}, the transition function fi(·, b)
is a monotone function [w]→ [w] [51, 30].

It turns out that constant-width arbitrary-order monotone ROBPs can simulate read-
once AC0 formulas [22, 30]. In turn, obviously read-once AC0 formulas generalize
read-once CNF formulas. Thus, the classes fooled by the three PRGs mentioned
above form a hierarchy:

read-once CNFs

⊆ read-once AC0

⊆ constant-width arbitrary-order monotone ROBPs.

Over time, we are gradually figuring out how to fool more and more powerful
classes with near-optimal seed length, building our way up toward the class of
general (arbitrary-order) ROBPs. This type of progress (steadily improving the
class of functions fooled) has turned out to be more feasible than insisting on
fooling all (standard-order) ROBPs and trying to improve the seed length.

Recall that Forbes and Kelley’s work (Theorem 3) shows how to assign values
to half the input variables of a constant-width arbitrary-order ROBP at a cost of
only Õ(log(n/ε)) truly random bits. To get a full PRG in the monotone case, Doron,
Meka, Reingold, Tal, and Vadhan show that after a few Forbes-Kelley restrictions,
monotone ROBPs are likely to simplify [30]. Roughly speaking, the notion of
simplification is that the width of the program steadily decreases until the function
is trivial.

We remark that Doron, Meka, Reingold, Tal, and Vadhan’s work [30] is one
example where techniques designed for the arbitrary-order case have turned out to



be useful even for the standard-order case.8 This demonstrates the counterintuitive
wisdom of working on problems that are even more difficult than the problems that
we care about most.

2.4 A Challenge: Parity Gates
The iterated restrictions paradigm is flexible and powerful, especially when it is
combined with the early termination technique. All of the recent work using these
techniques is certainly exciting and encouraging. Unfortunately, however, we
still do not have a clear path toward fooling all constant-width ROBPs (let alone
polynomial-width ROBPs) with near-logarithmic seed length. Indeed, it seems that
this line of work is perhaps “running out of steam.”

To understand the limitations of these techniques, observe that for any arbitrary-
order ROBP f : {0, 1}n → {0, 1}, we can define a more complicated function
g : {0, 1}n

2
→ {0, 1} by block-composing with the parity function, i.e.,

g(x11, . . . , xnn) = f

 n⊕
i=1

x1i,

n⊕
i=1

x2i, . . . ,

n⊕
i=1

xni

 .
If the initial ROBP f has width w = O(1), then g can be computed by an arbitrary-
order ROBP of width 2w = O(1), but the early termination technique seems to
break down when we try to apply it to g. It seems that (pseudo)random restrictions
have very little effect on g, because a restriction of the parity function is always
either the parity function or its complement. Fooling a typical restriction of g is
thus at least as difficult as fooling f .

More concretely, consider the problem of fooling read-once AC0 formulas
with parity gates (Figure 1). Doron, Hatami, and Hoza gave an explicit PRG
for this class with seed length Õ(t + log(n/ε)) where t is the number of parity
gates in the formula [28]. For the depth-2 case, we have explicit PRGs with near-
optimal seed length [49, 50, 47], and in fact with “partially optimal” seed length
O(log n) + Õ(log(1/ε)) [29]. However, when the depth is a large constant and the
number of parity gates is unbounded, it seems quite difficult to achieve seed length
Õ(log n).

3 The Inverse Laplacian Perspective
In light of challenges such as that discussed in Section 2.4, it is worthwhile to take
a step back and ask whether we truly need to design better PRGs for ROBPs. After

8The monotone ROBP model was first introduced by Meka and Zuckerman [51], who were not
concerned with issues of variable ordering. They presented PRGs for the standard-order case [51];
in the constant-width regime, their seed length matches Nisan’s [58].
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x8 x10 x1 x5x13 x2 ¬x9 x6 ¬x11 x4 x12 ¬x7¬x3

Figure 1: We would like to design explicit PRGs for constant-width (arbitary-
order) ROBPs with near-optimal seed length Õ(log(n/ε)). The class of read-once
AC0 formulas with parity gates is a challenging special case. Indeed, the case of
read-once AND ◦ OR ◦ PARITY formulas already seems formidable.

all, our primary goal is derandomizing space-bounded computation. In this section,
we discuss a non-PRG-based approach to proving L = BPL.

3.1 The Matrix of Expectations of Subprograms
To derandomize BPL, it suffices to design a deterministic log-space algorithm that
is given a width-n length-n standard-order ROBP f and estimates E[ f ] to within a
small additive error. There is no need to treat f as a black box; it is permissible to
inspect the transitions of f and try to thereby gain some advantage. Since we are
only concerned with space complexity, if we intend to estimate the expectation of
the program, we might as well estimate the expectations of all subprograms, too.

Definition 4 (Subprograms). Suppose f is a width-w length-n standard-order
ROBP with layers V0, . . . ,Vn. Let u ∈ Vi and v ∈ V j be vertices with i ≤ j. We
define the subprogram fu→v to be the width-w length-( j − i) standard-order ROBP
on layers Vi,Vi+1, . . . ,V j obtained from f by designating u as the start vertex and v
as the unique accepting vertex.

Let us collect all the expectations of these subprograms E[ fu→v] in an m × m
matrix P, where m is the number of vertices in f , namely m = w · (n + 1). That is,
for every pair of vertices u, v in f , if u ∈ Vi and v ∈ V j, then

Pu,v =

E[ fu→v] if i ≤ j
0 if i > j.

(4)

The following problem is essentially complete for BPL:



• Input: A width-n length-n standard-order ROBP f .

• Output: A matrix P̂ that approximates the matrix of expectations of subpro-
grams (P) to within additive entrywise error 0.1.

(By “essentially complete for BPL,” we mean that a decision version of the problem
is complete for the promise version of BPL with respect to deterministic log-space
reductions. These technicalities do not seem to be important.)

3.2 The Inverse Laplacian of a Standard-Order ROBP
To try to approximate P, we can start by computing the random walk matrix W.
By definition, for each pair of vertices u, v in f , the entry Wu,v gives the probability
of arriving at v when we start at u and take a single random step. Computing W is
trivial: Wu,v is half the number of edges from u to v.

The expectations of subprograms of f correspond to powers of W. Indeed,
(W t)u,v is the probability that a t-step random walk from u arrives at v. Therefore,
if u ∈ Vi and v ∈ V j, then

(W t)u,v =

E[ fu→v] if j − i = t
0 otherwise.

Consequently, there is a simple formula for the matrix of expectations of subpro-
grams (P) in terms of the random walk matrix (W):

P = W0 + W1 + W2 + · · · + Wn. (5)

Furthermore, Wn+1 = 0, so we can simplify Equation (5) using the geometric series
formula:

P = (I −W)−1.

The matrix I −W is called the (directed) Laplacian matrix of the program f and
denoted L. Thus, we are looking for an approximate inverse Laplacian P̂ ≈ L−1.
This way of thinking – the “inverse Laplacian perspective” – was introduced
most clearly in work by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [1], and it is our second technical “theme.”

3.3 Local Consistency
A key benefit of the inverse Laplacian perspective is that it suggests a new way of
thinking about error. Suppose that someone gives us a candidate matrix P̂. Is P̂ a
good approximation to P? We cannot directly compare the entries of P̂ to those



of P, because we do not know P (remember, approximating P is essentially BPL-
complete). However, we can compute the error after multiplying by the Laplacian
matrix. That is, we can compare P̂L to the identity matrix. Define E to be the error
matrix E = I − P̂L.

This error matrix E has a natural probabilistic interpretation. Expanding the
definition, we have E = I − P̂ · (I −W) = I + P̂W − P̂. Therefore, if u ∈ Vi and
v ∈ V j where i < j, then

Eu,v = (P̂W)u,v − P̂u,v =

 ∑
s∈V j−1

P̂u,s ·Ws,v

︸               ︷︷               ︸
(∗)

−P̂u,v.

The entry Eu,v measures the difference between two different methods of using P̂ to
estimate E[ fu→v]. The first method is to simply consult the (u, v) entry of P̂, since
after all P̂ is intended to be an approximation to P. The second method is to look
at P̂’s estimates for the probabilities of arriving at vertices in the layer V j−1 that
precedes v, and then propagate those probabilities forward by a single step, leading
to quantity (∗).

Thus, E measures the extent to which P̂ is locally consistent with itself ; we
refer to E as the matrix of local consistency errors. The term “local consistency”
was introduced by Cheng and Hoza [23]; the connection between local consistency
and the Laplacian matrix was observed by subsequent papers [24, 63, 39]. We
will discuss an application of the notion of local consistency next. For additional
applications of the inverse Laplacian perspective, see Sections 4 and 5.

3.4 One-Sided vs. Two-Sided Derandomization
Cheng and Hoza used the concept of local consistency to prove a new conditional
derandomization of BPL [23]. Recall that a hitting set generator (HSG) is a
one-sided version of a PRG.

Definition 5 (HSGs). Let F be a class of functions f : {0, 1}n → {0, 1} and let
ε > 0. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that for every
f ∈ F ,

if Pr[ f (Un) = 1] ≥ ε, then there exists x such that f (G(x)) = 1.

If G is an ε-PRG for F , then G is also is an ε′-HSG for F for every ε′ > ε.
HSGs are potentially much easier to construct than PRGs, so it is worthwhile to
ask, what would be the applications of optimal explicit HSGs? Working through
the definitions, one can easily show that an optimal explicit HSG for standard-
order ROBPs would imply L = RL (one-sided derandomization). Cheng and



Hoza showed that it would also imply the stronger statement L = BPL (two-sided
derandomization) [23].

Theorem 4 (HSGs would derandomize BPL [23]). Assume that for every n ∈ N,
there is a 1

2 -HSG for width-n length-n standard-order ROBPs that has seed length
O(log n) and that is computable in space O(log n). Then L = BPL.

Let us briefly sketch the proof of Theorem 4. Suppose we are given a width-n
length-n standard-order ROBP f . Let G be an HSG with output length nc, where c
is a large enough constant. For each seed x, we think of G(x) as a long stream of
random bits and use it to compute a matrix P̂(x) that is a candidate approximation to
the matrix P of expectations of subprograms of f . Using the hitting property of G,
one can show that there is at least one “good seed” x such that P̂(x) ≈ P. To identify
such a seed algorithmically, we find an x such that P̂(x) has good local consistency.

We remark that an analogous theorem for time-bounded derandomization has
been known for decades [6, 7, 18, 34]. In fact, Buhrman and Fortnow showed
generically that derandomizing the promise version of RP would imply P = BPP,
regardless of whether the derandomization is via an HSG [18]. An interesting
open problem is to prove the analogous theorem for the space-bounded setting,
generalizing Theorem 4.

4 Error Reduction Procedures
In the previous section, we introduced the inverse Laplacian perspective, and
we discussed one application (the derandomization of BPL using a hypothetical
HSG). There are several other applications of the inverse Laplacian perspective.
These other applications take advantage of the rich literature on fast, randomized
algorithms for approximately solving Laplacian systems of equations, starting with
Spielman and Teng’s seminal work [74]. Most especially, these other applications
work by importing error reduction techniques – our third “theme” – to the space-
bounded derandomization setting.

4.1 Non-Black-Box Error Reduction

As our first example, let us discuss a theorem by Ahmadinejad, Kelner, Murtagh,
Peebles, Sidford, and Vadhan [1] (strengthening prior work by Hoza and Zucker-
man [41]). Their theorem shows how to generically decrease the error of space-
bounded derandomization algorithms. In the following, think of ε as negligibly
small compared to n, such as perhaps ε = 2− polylog(n).



Theorem 5 (Error reduction for non-black-box derandomization [1]). Let S : N→
N be a function. Assume that given a width-n length-n standard-order ROBP f , it
is possible to deterministically compute E[ f ] to within ±1/n3 in space S (n). Then
given f and ε > 0, it is possible to deterministically compute E[ f ] to within ±ε in
space

O(S (n) + log n · log logn(1/ε)).

Let us sketch the proof of Theorem 5, which uses the inverse Laplacian per-
spective. Let P be the matrix of expectations of subprograms of f . Using the given
S (n)-space algorithm, we can construct a matrix P̂ such that

∥∥∥P − P̂
∥∥∥
∞
≤ O(1/n).9

Let W be the random walk matrix of f , let L = I − W be the Laplacian matrix,
and let E = I − P̂L be the error matrix after multiplying by L (aka the matrix of
local consistency errors). Then, we define a new approximation matrix P̂′ by the
formula

P̂′ = P̂ + EP̂ + E2P̂ + · · · + EmP̂

for a suitably chosen parameter m. (Intuitively, we start with P̂, and then we add a
sequence of finer and finer “correction terms” EP̂, E2P̂, . . . , EmP̂.) Let us measure
the quality of this new approximation. The key, again, is to measure quality after
multiplying by the Laplacian matrix, which causes a telescoping sum:

P̂′L = (I − E) + E · (I − E) + E2 · (I − E) + · · · + Em · (I − E) = I − Em.

Amazingly, we have managed to replace E with Em, which intuitively should mean
that the errors are getting much smaller. This technique for decreasing the error of
an approximate matrix inverse is called preconditioned Richardson iteration.

Ultimately, what we care about is entrywise closeness to P. We can bound the
entrywise errors using the submultiplicative ‖ · ‖∞ matrix norm:∥∥∥P̂′ − P

∥∥∥
∞

=
∥∥∥∥(P̂′L − I

)
· P

∥∥∥∥
∞

= ‖Em · P‖∞ ≤ ‖E‖m∞ · ‖P‖∞

=
∥∥∥∥(P − P̂

)
· L

∥∥∥∥m

∞
· ‖P‖∞

≤
(∥∥∥P − P̂

∥∥∥
∞
· ‖L‖∞

)m
· ‖P‖∞

≤ O(1/n)m · O(n),

which is at most ε if we choose a suitable value m = O(log(1/ε)/ log n). One can
compute P̂′ deterministically in space O(S (n) + log n · log m), completing the proof
of Theorem 5.

9Indeed, ‖P − P̂‖∞
def
= maxu

∑
v |Pu,v − P̂u,v| ≤ n · (n + 1) ·maxu,v |Pu,v − P̂u,v| ≤ n · (n + 1) · n−3.



4.2 Weighted Pseudorandom Generators (WPRGs)
The parameters of Theorem 5 are impressive; we pay very little penalty for error
reduction, even when the target error ε is extremely small. The algorithm of
Theorem 5 is non-black-box, because we must inspect the graph structure of the
given ROBP to compute the matrices W, L, E, etc.

As discussed previously, non-black-box algorithms are sufficient for proving
L = BPL. However, black-box algorithms are stronger, and they tend to be more
useful as building blocks inside larger algorithms. What is the best way to compute
E[ f ] to within a tiny additive error ε if we only have query access to a standard-
order ROBP f ? An ε-PRG clearly suffices for this task, but could there be an easier
approach? This motivates the intriguing concept of a weighted pseudorandom
generator (WPRG), introduced by Braverman, Cohen, and Garg [15].

Definition 6 (WPRGs). Let F be a class of functions f : {0, 1}n → {0, 1} and
let ε > 0. An ε-WPRG for F is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and
ρ : {0, 1}s → R, such that for every f ∈ F ,∣∣∣∣∣ Ex∼Un

[ f (x)] − E
x∼Us

[ f (G(x)) · ρ(x)]
∣∣∣∣∣ ≤ ε. (6)

A PRG is the special case ρ ≡ 1. Crucially, Definition 6 allows for ρ(x) < 0,
which opens the door for the possibility of error cancellation in Equation (6).10 One
can think of these negative weights as effectively introducing a kind of “negative
probability” into the picture; WPRGs are also called pseudorandom pseudodistri-
bution generators.11

One can show that if (G, ρ) is an ε-WPRG for F , then G is an ε′-HSG for F
for every ε′ > ε. Thus, we have a hierarchy,

PRG =⇒ WPRG =⇒ HSG.

When they introduced the concept of a WPRG, Braverman, Cohen, and Garg
presented an explicit construction of an ε-WPRG for polynomial-width standard-
order ROBPs [15] with seed length

Õ(log2 n + log(1/ε)). (7)

For comparison, recall that Nisan’s PRG ε-fools polynomial-width standard-order
ROBPs with seed length O(log2 n + log n · log(1/ε)) [58]. Thus, Braverman, Cohen,

10WPRGs with nonnegative weight functions ρ : {0, 1}s → [0,∞) are essentially equivalent to
unweighted PRGs [63, Appendix C of ECCC version].

11Braverman, Cohen, and Garg coined the term “pseudorandom pseudodistribution” [15]. The
alternative term “weighted pseudorandom generator” was introduced later, by Cohen, Doron,
Renard, Sberlo, and Ta-Shma [24].



and Garg’s seed length [15] is superior when ε is very small (again, the case
ε = 2− polylog(n) is good to have in mind). Prior to their work [15], it was not even
known how to construct an ε-HSG with the seed length that they achieve.

Braverman, Cohen, and Garg’s work [15] is quite complex. This spurred
a search for simpler approaches [41, 21, 24, 63, 39]. In addition to achieving
improved simplicity, this line of work was also able to remove the lower-order
terms hiding under the Õ in Equation (7).

Theorem 6 (Optimal-error WPRGs [39]). For every w, n ∈ N and ε > 0, there is
an explicit ε-WPRG for width-w length-n standard-order ROBPs with seed length
O(log(wn) · log n + log(1/ε)).

To prove Theorem 6, we start with Nisan’s PRG with error 1/ poly(nw) and
seed length O(log(wn) · log n). Then, we use the preconditioned Richardson
iteration technique that we discussed in Section 4.1 to decrease the error of the
PRG. Implementing this technique is not completely straightforward, because we
are in the black-box setting, and hence we can no longer compute the matrices W,
L, E, etc. However, two independent papers (one by Cohen, Doron, Renard, Sberlo,
and Ta-Shma [24] and the other by Pyne and Vadhan [63]) contributed the insight
that one can set up the WPRG construction in such a way that preconditioned
Richardson iteration happens in the analysis. Finally, to achieve the seed length of
Theorem 6, we combine these ideas with a suitable sampler trick [39].

In general, starting from an explicit PRG for width-w length-n standard-order
ROBPs with error 1/(wn)c and seed length s (for a suitable constant c > 1), we
get an explicit WPRG for such programs with arbitrarily small error ε and seed
length O(s + log(1/ε)) [39]. There are other, related error reduction procedures
that achieve slightly better parameters in some cases [41, 24, 63]. For example,
consider standard-order ROBPs of width w and length logc w for a constant c ∈ N.
Nisan and Zuckerman showed how to fool these short, wide programs with seed
length O(log w) and a relatively large error such as 2−(log w)0.99

[61]. By applying an
error-reduction procedure to the Nisan-Zuckerman PRG [61], Hoza and Zuckerman
designed an explicit ε-HSG for these programs with asymptotically optimal seed
length O(log(w/ε)), even when ε is small [41]. It remains an interesting open
problem to match this seed length with a WPRG.

4.3 Improving the Saks-Zhou Algorithm
Let us now discuss an application of low-error WPRGs. Recall our original deran-
domization goal: we want to deterministically decide languages in BPSPACE(S ),
for S ≥ log N, using as little space as possible.

Savitch’s theorem [71] implies that RSPACE(S ) ⊆ DSPACE(S 2). The more
general inclusion BPSPACE(S ) ⊆ DSPACE(S 2) follows from early work on the



non-halting version of BPSPACE(S ) [13, 45]. Later, Saks and Zhou used Nisan’s
PRG [58] in a sophisticated way to prove BPSPACE(S ) ⊆ DSPACE(S 3/2) [70].
Now, decades later, we can finally improve Saks and Zhou’s bound.

Theorem 7 (Improved derandomization of BPSPACE [39]). Let S : N→ N be a
function satisfying S (N) ≥ log N. Then

BPSPACE(S ) ⊆ DSPACE

 S 3/2√
log S

 . (8)

Admittedly, the bound of Equation (8) is only barely better than Saks and
Zhou’s O(S 3/2) bound [70]. Still, Theorem 7 potentially has some “psychological”
value, because it demonstrates that Saks and Zhou’s result [70] is not the “end of
the road.” There is no particular reason to think that Theorem 7 is the end of the
road either. No compelling barriers to further progress are known; humanity has
no real excuse for having not yet proven L = BPL.

The starting point for proving Theorem 7 is work by Armoni from more than
two decades ago [8]. Armoni designed an explicit ε-PRG for width-w length-n
standard-order ROBPs based on a generalization of Nisan and Zuckerman’s tech-
niques [61]. Armoni’s seed length is slightly better than Nisan’s seed length [58]
in the regime n � w and ε � 1/w [8]. By combining his PRG with recent error
reduction techniques [24, 63], we get an explicit WPRG with a seed length that
is slightly better than Nisan’s seed length [58] in the regime n � w, even for low
error such as ε = 1/ poly(w).

The original Saks-Zhou algorithm [70] uses Nisan’s PRG with parameters in
this regime (n � w and ε = 1/ poly(w)) as a subroutine. Armoni showed how
to use a generic PRG in place of Nisan’s PRG [8], and Chattopadhyay and Liao
showed more generally how to use WPRGs [21], building on an earlier suggestion
by Braverman, Cohen, and Garg [15]. Combining these results proves Theorem 7.
(See Figure 2.) This argument appears in work by Hoza [39], but to be clear, the
ingredients all come from prior work [70, 8, 21, 24, 63]. Hoza’s contribution to
the proof of Theorem 7 is merely to put the pieces together [39].

Cohen, Doron, and Sberlo recently designed an algorithm that improves on
Saks and Zhou’s work [70] in a different direction [25]. Consider the following
natural computational problem.

• Input: A value n ∈ N and a stochastic matrix M ∈ Rw×w, where each entry
has bit complexity O(log(wn)).

• Output: A matrix that approximates Mn to additive entrywise error 0.1.

When we restrict to the case n = w, the problem above is essentially complete for
BPL. One can think of the Saks-Zhou algorithm as a method of solving the problem
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Figure 2: Saks and Zhou’s derandomization of BPSPACE [70] (left) vs. the new
and improved derandomization of BPSPACE (Theorem 7, right).



in space O(log(wn) ·
√

log n). Cohen, Doron, and Sberlo show how to solve the
problem in space Õ(log w ·

√
log n+ log n) [25], which is a significant improvement

in the regime n � w. Their algorithm combines the Saks-Zhou algorithm with
Richardson iteration, but in a different way than the proof of Theorem 7.

5 Spectral Expander Graphs
Let us consider one more natural problem that is essentially complete for BPL.

• Input: A directed graph G, two vertices s and t, and two positive integers k
and m (represented in unary).

• Output: The probability that a k-step random walk starting at s ends at t, to
within an additive error of 1/m.

An appealing special case is when G is undirected. As mentioned previously, Rein-
gold designed a deterministic log-space algorithm to determine whether there exists
a path from s to t in an undirected graph G [65], which, intuitively, corresponds
to the case k = ∞. A recent line of work has studied the case that k is finite, and
in particular, k might be smaller than the mixing time of G [53, 54, 1]. For any k,
Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan gave an algorithm
for computing k-step random walk probabilities in undirected graphs that runs in
near-logarithmic space [1].

Theorem 8 (Estimating random-walk probabilities in undirected graphs [1]). Given
an undirected graph (or, more generally, an Eulerian digraph) G, two vertices
s and t, and positive integers k and m represented in unary, it is possible to
deterministically compute the probability that a length-k random walk starting
at s arrives at t to within additive error 1/m in space Õ(log N), where N is the
bit-length of the input.

One of the (many) ideas in the proof of Theorem 8 is to use expander graphs
to take a certain type of pseudorandom walk through G instead of a truly random
walk. There is a long history of using expanders as tools for space-bounded
derandomization, going back to work by Ajtai, Komlós, and Szemerédi [2]. Modern
work on L vs. BPL continues to develop new ways of using and analyzing expanders
– our fourth technical “theme.”

5.1 The Derandomized Square
In more detail, the proof of Theorem 8 uses expanders via Rozenman and Vad-
han’s derandomized square operation [68]. For simplicity, consider a D-regular



undirected graph G. By definition, a single step in the square graph G2 consists of
two steps in the original graph G. Effectively, this means that squaring G places a
clique on the D neighbors of each vertex v. The idea of the derandomized square
is to instead place an expander graph on the neighbors of v, thereby producing a
sparse approximation to G2.

In Rozenman and Vadhan’s original paper, they prove that the spectral expan-
sion of the derandomized square is almost as good as that of G2 [68]. They use
this bound to derive an alternative proof that undirected connectivity is in L [68].
Recent work [53, 54, 1] shows that the derandomized square approximates G2 in
much stronger senses. The proof of Theorem 8 combines this analysis with several
other techniques, including the inverse Laplacian perspective and error reduction
methods.

5.2 The INW Generator
The derandomized square operation also has connections to the PRG approach to L
vs. BPL, and in particular to a PRG by Impagliazzo, Nisan, and Wigderson [43] (the
“INW generator”). The INW generator samples n pseudorandom bits as follows:

1. Recursively construct a PRG G : {0, 1}s → {0, 1}n/2.

2. Sample a uniform random vertex X and a uniform random neighbor Y in a
low-degree expander graph on 2s vertices.

3. Output the concatenation G(X) ◦G(Y).

Several decades after its introduction [43], we are still learning more and more
about what the INW generator is capable of. It has been shown to work particularly
well for (standard-order) regular and permutation ROBPs, defined next.

Definition 7 (Regular and permutation ROBPs). Let f be a width-w length-n
standard-order ROBP with transition functions f1, . . . , fn : [w] × {0, 1} → [w]. We
say that f is a permutation ROBP if, for every i ∈ [n] and every b ∈ {0, 1}, the
function fi(·, b) is a permutation on [w]. More generally, we say that f is regular if,
for every i ∈ [n] and every u ∈ [w], we have | f −1

i (u)| = 2.

Regular and permutation ROBPs have been studied extensively over the course
of roughly the past decade [16, 17, 27, 46, 75, 66, 19, 1, 40, 62, 63, 26, 64, 11,
35, 48]. We now have various types of pseudorandomness results for regular or
permutation ROBPs that are superior to the best corresponding results for general
ROBPs, including constructions of PRGs [16, 17, 27, 46, 75, 66, 19, 40, 48],
WPRGs [63], and HSGs [16, 11]. In many cases, the proofs consist of improved
analyses of the classic INW construction [43] (with modified parameters). In other
cases, the INW generator is one of multiple ingredients.



5.3 Unbounded-Width ROBPs

The first few papers on regular and permutation ROBPs [16, 17, 27, 46, 75, 66]
focused on constant-width programs. Arguably the most important case is that of
polynomial-width programs. The trend recently has been to study the intriguing
setting of unbounded-width programs [40, 62, 63, 64, 11, 35, 48].

Without further constraints, unbounded-width standard-order permutation
ROBPs are too powerful to be interesting: they can compute all Boolean functions.
Therefore, we assume that the program has a bounded number of accepting states
in the final layer. Admittedly, width is a more natural complexity measure than
the number of accepting states, but it turns out that programs with a bounded
number of accepting states have some interesting properties. Even with just one
accept state, exponential-width standard-order permutation ROBPs can compute
doubly-exponentially many distinct functions:

Proposition 1 ([40]). Let n ∈ N be a positive even integer, and let π : {0, 1}n/2 →
{0, 1}n/2 be a permutation. There exists a width-(2n/2) length-n standard-order
permutation ROBP f computing the following function:

f (x, y) = 1 ⇐⇒ π(x) = y.

(Briefly, to prove Proposition 1, we use the state space {0, 1}n/2. The all-zeroes
state is the start state and the unique accepting state. We XOR x into our state, then
apply π to our state, then XOR y into our state.) On the other hand, one can check
that the majority function on three bits cannot be computed by a standard-order
regular ROBP with a single accept vertex, no matter how wide the program is.
Thus, these strange unbounded-width models have both dramatic strengths and
dramatic weaknesses. One of the most striking results in this area is the following
theorem by Pyne and Vadhan [63].

Theorem 9 (WPRGs for unbounded-width permutation ROBPs [63]). For every
n ∈ N and ε > 0, there is an explicit ε-WPRG for unbounded-width standard-order
permutation ROBPs with a single accept state with seed length

Õ
(
log3/2 n + log n ·

√
log(1/ε) + log(1/ε)

)
.

Theorem 9 has implications for the more conventional setting of bounded-
width standard-order permutation ROBPs. Every ε-WPRG for programs with
one accepting state automatically (εm)-fools programs with m accepting states.
Therefore, Theorem 9 implies an explicit WPRG for width-n length-n standard-
order permutation ROBPs (with any number of accepting vertices) with error 1/n
and seed length Õ(log3/2 n), compared to Nisan’s O(log2 n) bound.



Theorem 9 also helps to clarify the importance of weights. When ε = 1/n,
the seed length in Theorem 9 is Õ(log3/2 n). In contrast, Hoza, Pyne, and Vadhan
proved that every unweighted PRG that (1/n)-fools unbounded-width standard-
order permutation ROBPs with a single accept vertex must have seed length
Ω(log2 n) [40]. Therefore, in at least one natural setting, WPRGs are intrinsically
more powerful than traditional PRGs.

The proof of Theorem 9 uses the INW generator, the inverse Laplacian perspec-
tive, and error reduction techniques, among other ideas.

5.4 The Permutation Case and the Monotone Case: Opposite
Extremes

Why study regular and permutation ROBPs? The main reason is the hope that
studying these special cases will lead to improvements in the general case. Indeed,
there is a reduction showing that good PRGs or HSGs for polynomial-width
standard-order regular ROBPs imply good PRGs or HSGs for all polynomial-
width standard-order ROBPs [67, 11].12

In addition to that reduction [67, 11], there is another approach for constructing
PRGs for constant-width standard-order ROBPs (albeit a vague and speculative
one). At an intuitive level, one can argue that permutation ROBPs and monotone
ROBPs are “opposites” of one another. In a permutation ROBP, edges with the
same label never collide, whereas in a monotone ROBP, the only way that a layer
can do any nontrivial computation is by introducing collisions. Now, we have one
set of techniques that works well for (standard-order) permutation ROBPs: spectral
expanders and the INW generator. Meanwhile, we have another set of techniques
that works well for (arbitrary-order) monotone ROBPs: iterated restrictions with
early termination. Given that these two sets of techniques cover two “extreme”
classes of constant-width ROBPs, it is natural to try to combine the two sets of
techniques. Could this approach yield an explicit PRG that fools all width-w
standard-order ROBPs, with seed length Õ(log n) when w is a constant? The
idea might sound a bit naïve or fantastical, especially considering the difficulty
discussed in Section 2.4. Remarkably, however, Meka, Reingold, and Tal proved
that the answer is yes for the case w = 3 [50].

Theorem 10 (PRGs for width-3 ROBPs [50]). For every n ∈ N and ε > 0,
there is an explicit ε-PRG for width-3 standard-order ROBPs with seed length
Õ(log n · log(1/ε)).

12Note that Theorem 8 implies a non-black-box algorithm for estimating the expectation of a
given standard-order regular ROBP in near-logarithmic space. Unfortunately, the reduction from
the general case to the regular case does not work in the non-black-box setting.



To prove Theorem 10, Meka, Reingold, and Tal first show how to sample
pseudorandom restrictions that preserve the expectation of width-3 arbitrary-order
ROBPs. For this first step, one can alternatively use Forbes and Kelley’s analysis
(Theorem 3), which works more generally for width-w arbitrary-order ROBPs
where w is small. (The papers of Forbes and Kelley [31] and Meka, Reingold, and
Tal [50] are independent.)

Next, Meka, Reingold, and Tal show that width-3 arbitrary-order ROBPs sim-
plify after a few pseudorandom restrictions [50]. And what does “simplify” mean
in this context? Roughly speaking, they show that the program becomes more and
more permutation-like as the restrictions are applied. After poly(log log(n/ε)) many
restrictions, they terminate the restriction process and apply the INW generator [43]
as the final step. Building on Braverman, Rao, Raz, and Yehudayoff’s analysis [16],
they show that the INW generator fools these “highly permutation-like” ROBPs
with seed length Õ(log n · log(1/ε)) [50] (in the standard-order case).

It remains an open problem to design an explicit PRG (or WPRG or HSG) for
width-4 standard-order ROBPs with seed length o(log2 n).

6 Conclusions

We continue to make steady, substantial progress toward proving L = BPL. The
past few years alone have yielded many exciting results and developments. The
problem remains challenging, but there does not seem to be any firm obstacle
preventing further breakthroughs.
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